# <u>Measurements of the low mass dielectron</u> <u>spectra at J-PARC</u>

#### <u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- Physics : chiral symmetry in matter
- results of KEK-PS E325
- J-PARC E16 experiment
  - goal
  - Key issues of design
  - R&D status





- many theoretical predictions...





# E325 observed the meson modifications

- in the e<sup>+</sup>e<sup>-</sup> channel
- below the ω and φ ,statistically significant excesses over the known hadronic sources including experimental effects



# **E325 : interpretation**

- MC type model analysis to include the nuclear size/meson velocity effects
  - generation point : uniform for  $\phi$  meson
    - from measured A-dependence
  - measured momentum distribution
  - Woods-Saxon density distribution
  - decay in-flight : linearly dependent on the density of the decay point
    - dropping mass:  $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
    - width broadening:  $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent with the predictions

 $k_1 = 0.034_{-0.007}^{+0.006}$  $k_2^{\text{tot}} = 2.6_{-1.2}^{+1.8}$ 

3.4% mass reduction (35MeV)
3.6 times width broadening(16MeØ) at ρ₀



# **E325 : interpretation**

- MC type model analysis to include the nuclear size/meson velocity effects
  - generation point : uniform for  $\phi$  meson
    - from measured A-dependence
  - measured momentum distribution
  - Woods-Saxon density distribution
  - decay in-flight : linearly dependent on the density of the decay point
    - dropping mass:  $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
    - width broadening:  $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent with the predictions

 $k_1 = 0.034_{-0.007}^{+0.006}$  $k_2^{\text{tot}} = 2.6_{-1.2}^{+1.8}$ 

3.4% mass reduction (35MeV) 3.6 times width broadening(16MeV) at  $\rho_0$ 



# From "mass modification" to physics

- Mass shape modification of vector mesons in medium looks to be established by many experimental results (E325/CLAS-G7/TAPS at the lower energy, NA60/CERES in HI collision)
  - statements contradict each other
    - mass dropping and/or width broadening
    - depending on the interpretation models to include the matter size effect
  - physics
    - only hadronic effects ? or chiral restoration ?
- Next step in the invariant-mass approach
  - put an emphasis on  $\phi \rightarrow e^+e^-$  : less ambiguous
    - $\rho$ 's complicated shape,  $\rho$ - $\omega$  interference,  $\rho/\omega$  ratio, etc.
  - systematic study of the shape modification
    - nuclear matter size dependence : larger/smaller nuclei, collision geometry
    - momentum dependence : predicted, but not measured yet
  - check the validity of the interpretation models

NP08 08Mar06 S.Yokkaichi

#### dispersion relation (mass VS momentum)

- S.H.Lee (PRC57(98)927)  $m^*/m_0 = 1 k \rho/\rho_0$ 
  - $-\rho/\omega$  : k=0.16±0.06+(0.023±0.007)(p/0.5)<sup>2</sup>
  - $-\phi$  : k=0.15(±0.05)\*y + (0.0005±0.0002)(p/0.5)<sup>2</sup> 98
    - for p<1GeV/c
- Kondratyuk et al. (PRC58(98)1078) : ρ meson
- Post & Mosel(NPA699(02)169) : ρ meson





# ---J-PARC E16 experiment---Low-mass dielectron measurement

- 2007/3 : stage1 (physics) approval
- Detector R&D is on going





Proposal revised version 1 (2006 June 7) is located on : http://ribf.riken.jp/~yokkaich/paper/jparc-proposal-0604.pdf

### **J-PARC E16 experiment**

- Same concepts as KEK-PS E325
  - thin target (0.1% interaction) / primary beam (~10<sup>10</sup> /sec)/ slowly moving vector mesons in the ee channel
- Main goal : collect ~1-2 x  $10^5 \phi \rightarrow ee$  for each target in 5 weeks
  - ~100 times as large as E325
    - new nuclear targets : proton (CH<sub>2</sub> -C subtraction), Pb
    - collision geometry for Pb target (by multiplicity)
  - systematic study of the velocity & nuclear size dependence of excess ('modified' component)
    - check the interpretation models
    - extract the dispersion relation (momentum dependence of mass)
  - mass resolution : keep ~ 10 MeV
- $\rho$ ,  $\omega$  and  $J/\psi$  can be collected at the same time

#### **High momentum Beamline**



## velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for  $\phi$  (slow/Cu) has significant excess



# velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for  $\varphi$  (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model



# velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for  $\varphi$  (slow/Cu) has significant excess
- systematic study : all the data should be explained the interpretation model



## dispersion relation(mass VS momentum)

[MeV] prediction for  $\phi$  by • 1020 S.H.Lee(p<1GeV) mass ~35MeV current E325 analysis • 1000 neglects the dispersion (limited by the statistics) 980 E325 βγ<1.25 βγ<1.25 Cu 0 0.3 Cu Model Calc. k=0.04 Cu Model Calc. k=0.02 N<sub>excess</sub> /(N<sub>excess</sub>+N Model Calc. k=0.04 Model Calc. k=0.02  $\mathbf{0}$ 2 3 momentum [GeV/c] Cu .25<βγ<1.75 7MeV/c 25<βγ<1.7 1.75<βγ Cu 1.75<By 0 -0.1 1.5 2.5 2 З 1 [GeV/c<sup>3</sup> βγ NP08 08Mar06 S.Yokkaichi



#### Key issues/digits for the spectrometer design

- electron ID :  $10^{-4} \pi$  rejection
  - suppress the trigger rate and the background from missidentified pions
- low material: 0.5% X<sub>o</sub> for each target, 4% X<sub>o</sub> for trackers
  - suppress the background from the conversion electron pairs, reduce a tail due to the bremsstrahlung
- high rate capability: 10MHz interactions at targets
  - to collect high statistics in use of primary beam (~10<sup>10</sup> /sec)
- high mass resolution: less than 10 MeV (rms)
  - to see the modification
  - less than 200um of position resolution of the trackers

# experimental effects on the BW shape (E325)

- E325 Detector Sim.
  - target material is negligible for ~0.5% radiation length (X<sub>0</sub>)
  - detectors :up to 4.5
     % X<sub>0</sub> in the tracking region



# experimental effects on the BW shape (E325)

- E325 Detector Sim.
  - target material is negligible for ~0.5% radiation length (X<sub>0</sub>)
  - detectors :up to 4.5
     % X<sub>0</sub> in the tracking region



 bremsstrahlung in target is so large for the Cu case



#### mass resolution requirement

mass resolution should be kept less than ~10MeV



# **Proposed spectrometer**

- Spectrometer Magnet : reuse E325 's
  - remodeling the pole / repairing the coil
  - stronger field for compact detector size
- GEM(Gas electron multiplier) Tracker
  - 0.7mm pitch strip readout
- Two-stage Electron ID ( $10^{-4} \pi$  rejection)
  - Hadron Blind Detector (Gas Cherenkov)
    - GEM+CsI photocathode
    - hexagonal pad readout (~30mm \$\ophi\$)
  - Leadglass EMC: reuse of TOPAZ
- ~70K Readout Channels (in 26 segments)
  - cf. E325: 3.6K, PHENIX:~300K
- Cost : ~\$5M (including ~\$2M electronics)
  - cf. E325: \$2M not including electronics



#### **Prototype module is under construction**



• the spectrometer consists of 26 modules in the conceptual design

### **Prototype module is under construction**

- Items should be tested
  - thin readout boards :
    - Kapton 25um, Cu 4um
    - double sided (x,y) 350um pitch
  - domestic large GEM (300mm x 300mm)
  - alignment of the three GEM chambers
- Parts will be delivered till March 31, test will start in April





#### **Delivered parts (Feb.29)**





chamber frames





#### largest thin read-out board (300x300mm)

## **Detector R&D status**

- GEM : domestic products works well
  - high gain GEM / larger size (300mm x 300mm)
- HBD (Gas Cherenkov using GEM + CsI photocathord)
  - PHENIX prototype / working model
  - In Japan:
    - Csl photocathord (Hamamatsu)
    - CF<sub>4</sub> operation
    - Beam test @ HiSOR (Hiroshima-U)
    - long term operation
- GEM Tracker for high rate

- already tested on going construction -> test in JFY2008 ( 2007/08 Grant-in-Aid)
- Triple GEM w/ 2D double-sided strip read-out board (@U-Tokyo)
- low material strip read-out board
- prototype module of the spectrometer
  - Tracker + HBD in real-size



- Vector meson measurements in e<sup>+</sup>e<sup>-</sup> channel at J-PARC E16
  - to investigate the chiral symmetry in dense hadronic matter
- 30 (or 50) GeV primary proton beam (~1x10<sup>10</sup> /sec)
  - especially collect ~10<sup>5</sup> \$\overline\$ → e<sup>+</sup>e<sup>-</sup> for each target in ~5weeks (800 hours) operation : 100 times as large as KEK-PS E325's statistics
- New spectrometer using new technology (GEM tracker/HBD)
  - R&D is on going at U-Tokyo and RIKEN w/ grant-in-aid
  - Spectrometer design should be finalized in 2008
- Impact of the experiment
  - systematic study of the vector meson mass modification in various size (0~10fm) of dense matter (nuclear matter)
  - momentum dependence of in-medium mass (dispersion relation)
  - provide the systematic data which motivate to develop new theoretical calculations, including interpretation in the real nuclear matter



# **GEM Tracker to cope with high rate**

- Expected single rate is too high to use DC
  - origin : beam halo and/or from the interactions at the target
- E325 experience x 10 times
  - 1.8 MHz @ 6° (20mm from the beam) /3.5mm x100mm cell of DC @r=200mm
    - 5KHz/mm<sup>2</sup>  $\rightarrow$  GEM tracker can be operated (cf. COMPASS exp.)
  - 400KHz @ 60° /4mm x100mm @r=200mm
    - marginal rate for DC operation
  - E16
    - Fine segment to cope with the high rate
    - position resolution 0.2mm to keep the mass resolution
    - → GEM Tracker w/ 0.7mm pitch readout



# HBD (Hadron Blind Detector)

- HBD : Thr. type Gas Cherenkov Counter
  - Csl photocathode : UV photon sensitive
  - Triple GEM with pad readout
  - $CF_{4}$  is a radiator and amplification gas
  - Ionized electrons are collected by mesh
    - photoelectrons are amplified by 3 stages
    - ionized electrons are amp. by only last 2 stages
    - $\rightarrow$  can detect only particles with cherenkov photon.

- (1/100 of pion rejection)

- Joint development with Weitzman Institute
  - originally for PHENIX upgrade plan
- Cover large area with no mirror
- 10cm x 10cm of Trigger tile : effectively fine segmented
  - essential to trigger the e<sup>+</sup>e<sup>-</sup> pair from the vector meson NP08 08Mar06 S.Yokkaichi



## **To collect high statistics**

- For the statistics 100 times as large as E325, new spectrometer is required.
  - To cover larger acceptance
  - Higher energy beam (12  $\rightarrow$  30/50 GeV)
  - Higher intensity beam (  $10^9 \rightarrow 10^{10}$  /spill (1sec) ) : x 10 (  $\rightarrow$  10MHz

Geometrical (horizontal & vertical) coverage of the spectrometer



: x~ 5

- : x ~2 of production
- x 10 (  $\rightarrow$  10MHz interaction on targets)

# New nuclear targets with larger statistics

- Smaller nuclear target :
  - proton as reference(CH<sub>2</sub> -C subtraction)
  - LH target cannot be used because of the materials
- Larger nulcear target as Pb
  - larger nuclear matter
  - collision geometry(impact paramter) study using multiplicity
  - larger radiation length for heavier target  $\rightarrow$  more thiner foil target to keep S/N
    - high statistics capability is required.







# <u>Schedule</u>

- (already funded ~ \$ 0.15M )
  - 2007 -8:
    - prototype spectrometer module test/design finalize
- (budget dependent ~ \$5M)
  - 2008-9 :
    - production start
  - 2009-10
    - spectrometer construction at the counter hall
  - 2011
    - ready for 30GeV proton beam





## **Cost estimation**



NP08 08Mar06 S.Yokkaichi

# beam energy and spectrometer acceptance





expected  $\phi$  yield for two options(using JAM)

| beam energy                 |        | 12 GeV | 30 GeV | 50 GeV |
|-----------------------------|--------|--------|--------|--------|
| $\phi$ production CS (p+Cu) |        | 1.0 mb | 3.0 mb | 5.1 mb |
| detector acceptance         | case A | 8.8%   | 6.0%   | 4.5%   |
|                             | case B | 45%    | 31%    | 23%    |
| normalized yield by E325    | case A | 1      | 2.0    | 2.6    |
|                             | case B | 5.1    | 10.0   | 12.7   |

10 times can be collected by larger acceptance and beam energy (both 30 and 50 GeV are acceptable)

Further, for 10 times higher intensity beam (10<sup>10</sup>) (i.e. high interaction rate : 10MHz) to collect higher statistics (  $10^5 \phi = 100$  times of E325 ),

new spectrometer is required.

### **KEK-PS E325**

- to observe the vector meson modification in the cold nuclear matter at the normal nuclear density
- 12GeV p+C/Cu  $\to \rho/\omega/\varphi ~+ X~$  (  $\rho/\omega/\varphi \to e^+e^-$  ,  $\varphi \to K^+K^-$  ) , 1<p<3GeV/c for  $\varphi$
- run 1997-2002





- 1993 proposed

#### - 1994 R&D start

- 1996 construction start
- '97 data taking start
- '98 first ee data
  - PRL86(01)5019 ρ/ω (ee)
- 99,00,01,02....
  - x100 statistics
  - PRL96(06)092301 ρ/ω (ee)
  - PRC74(06)025201 α (ee)

  - PRL98(07)152302 **φ** (KK),α
- '02 completed
- spectrometer paper
  - NIM A457(01)581
  - NIM A516(04)390

# History of E325

E325 spectrometer located at KEK-PS EP1-B primary beam line



#### NP08 08Mar06 S.Yokkaichi