Electron pair spectrometer to study the meson modification

Satoshi Yokkaichi, RIKEN
&
Kyoichiro Ozawa, CNS, U-Tokyo

• Physics: Chiral symmetry in nuclear matter
• Recent results of KEK-PS E325: $\rho/\omega/\phi \rightarrow e^+e^-$
• Proposed Experiment & Spectrometer at J-PARC
• Detector R&D status
Chiral symmetry restoration in nuclear matter

- Spontaneous CS braking is the origin of hadron mass
- confine-deconfinement phase transition is related with chiral transition
- In hot/dense matter, chiral symmetry is expected to restore
 - hadron modification is expected in such matter
 - HI collision
 - quark-antiquark condensate (order parameter) ~2/3 even at the normal nuclear density, T=0
 - p+A reaction
- Many theoretical predictions of vector meson (mass/width) modification in dense medium, related (or not related) with CS
 - Brown & Rho ('91) : \(m^*(\rho)/m_0 \sim f^*_\pi/f_\pi \sim 0.8 \) at \(\rho=\rho_0 \)
 - Hatsuda & Lee ('92), Klingle, Keiser & Weise ('97), Muroya, Nakamura & Nonaka ('03), etc.
mass decreasing
~16% for ρ/ω
~2-4% for ϕ
at the normal nuclear density

(Lee also predicted
the momentum dependence
of mass decreasing)
Vector meson measurements

• Leptonic decay channel
 - **HELIOS** (ee, μμ) 450GeV p+Be / 200GeV A+A
 - **CERES** (ee) 450GeV p+Be/Au / 40-200GeV A+A
 - **E325** (ee,KK) 12GeV p+C/Cu
 - **PHENIX** (ee,KK) p+p/Au+Au
 - **NA60** (μμ) 400GeV p+A/158GeV A+A
 - **HADES** (ee) 4.5GeV p+A/ 1-2GeV A+A
 - **J-PARC** (ee) 30/50GeV p+A / ~20GeV A+A
 - **CBM (GSI)** (ee) 8~40GeV A+A

• Hadronic decay channel
 - **TAGX** (ππ) ~1 GeV γ+A
 - **STAR** (ππ,KK) p+p/Au+Au
 - **LEPS** (KK) ~2 GeV γ+A

 red : state modification
 blue : not state/in analysis
 green: future project

NP04 S.Yokkaichi 04Aug04
Vector meson measurements in HI collisions

- STAR: 'shift' in p+p & A+A peripheral (nucl-ex/0307023)
 - relative abundance is free parameter/shape is BWxPS
 - ~770MeV

- CERES:
 - anomaly in A+A, not in p+A
 - relative abundance is determined by their statistical model

NP04 S.Yokkaichi 04Aug04
Expected signal in $p+A \rightarrow e^+e^-$ channel

- smaller FSI in e^+e^- decay channel
- double peak or tail-like structure
 - second peak is made by inside-nucleus decay (modified meson)
 - larger nuclei / slowly moving mesons are expected to have larger 'peak(tail)'
- comparison of ρ and ϕ
 - ρ (770) & ω (783):
 - larger production cross section
 - larger decay prob. inside nuclei
 - cannot distinguish ρ & ω in e^+e^-
 - ϕ (1020): narrow width
 - smaller decay prob. inside nuclei
 - smaller production cross section
Experiment KEK-PS E325

- 12GeV p+A -> ρ/ω/φ +X (ρ/ω/φ -> e⁺e⁻, φ->K⁺K⁻)

- Experimental key issues:
 - Very thin target to suppress the conversion electron background (typ. 0.1% interaction/0.2% radiation length of C)
 - To compensate the thin target, high intensity proton beam to collect high statistics (typ. 10⁹ ppp -> 10⁶Hz interaction)
 - Large acceptance spectrometer to detect slowly moving mesons, which have larger probability decaying inside nuclei (1<βγ<3)

Collaboration

(Cont'd)

- History of E325
 - 1996 const. start
 - '97 data taking start
 - '98 first ee data
 - PRL86(01)5019
 - 99,00,01,02....
 - x100 statistics
 - presented today
 - '02 completed
 - spectrometer paper
 - NIM A516(04)390
Experimental setup

- **Spectrometer Magnet**
 - 0.71T at the center
 - 0.81Tm in integral

- **Targets**
 - at the center of the Magnet
 - C & Cu are used typically
 - very thin: ~0.1% interaction length

- **Primary proton beam**
 - 12.9 GeV/c
 - ~1x10^9 in 2sec duration, 4sec cycle
Experimental setup - Detectors

Electron ID counters
- Gas Cherenkov & Lead Glass EMC
- total 3×10^{-4} π rejection with 78% e efficiency in two-stage operation

Tracker
- Three Drift Chambers

Kaon ID counters
- Aerogel Cherenkov & TOF
Observed e^+e^- invariant mass spectra

- from 2002 run data (~70% of total data)
- C & Cu target
- clear resonance peaks
- $m<0.2$ GeV is suppressed by detector acceptance
- acceptance uncorrected
Fitting with known sources

- Hadronic sources of e^+e^-:
 - $\rho/\omega/\phi \rightarrow e^+e^-$, $\omega \rightarrow \pi^0e^+e^-$, $\eta \rightarrow \gamma e^+e^-$
 - Breit-Wigner shape (no modification is assumed)
 - Geant4 detector simulation (energy loss of e^+/e^- in detector, acceptance, etc.)

- Combinatorial background: event mixing method

- Relative abundance of these components are determined by the fitting

- **excess** at the low-mass side of ω (0.6~0.75 GeV)
- ρ–meson component seems to be **vanished**!
E325 e^+e^- spectra (BKG subtracted)

\[
\frac{\rho}{\omega} = 0.0 \pm 0.01 \text{(stat.)} \pm 0.2 \text{(sys.)}, \quad 0.0 \pm 0.05 \text{(stat.)} \pm 0.5 \text{(sys.)}
\]

- However, $\frac{\rho}{\omega} \sim 1$ in former experiment ($p+p$, 1974) suggests the excess is from modified ρ mesons
Discussion: Toy model including modification

- Assumptions to include the nuclear size effect in the fitting shape
 - meson fly through the nucleus, decay with modified mass if the decay point is inside nuclei
 - meson production point: incident surface of nuclei
 - meson momentum: measured distribution in our experiment
 - nuclear density distribution: Woods-Saxon type

- modification as: \(\frac{m^*}{m_0} = 1 - 0.16 \frac{\rho^*}{\rho_0} \) (Hatsuda & Lee, '92,'95)
 - (width modification & momentum dependence of modification are not taken into account)
- \(\rho/\omega \) ratio is fixed to unity as measured in former exp.
Fitting results by the toy model

- the tendency of the data are reproduced qualitatively by the model
E325 e^+e^- spectra of ϕ meson (BKG not subtracted)

Clear peak is already seen, over 1000 of ϕ s for each target, in 2001/02 all statistics

• careful and precise analysis is on going

work in progress
Proposed Experiment at J-PARC
Proposed Experiment at J-PARC

- Same concept as E325
 - thin target / primary beam \((10^9 \sim 10^{10} \text{ ppp})\)/ slowly moving mesons

- **Main goal**: collect \(10^4 \sim 10^5 \phi \rightarrow ee\) for each target in 100 shifts
 - 10-100 times as large as E325
 - velocity dependence of 'modified' component
 - new nuclear targets: proton \((\text{CH}_2 - \text{C subtract}), \text{Pb}\)
 - narrow width \(\rightarrow\) sensitive to modification
 - free from \(\omega - \rho\) interference

- \(\omega, \rho\) and \(J/\psi\) can be collected at the same time
 - higher statistics of \(\omega, \rho\) than E325 with differ A targets
 - 100-1000 \(J/\psi\) are expected in 50GeV operation

- Normal nuclear density \((p+A)\)
 - but also high matter density \((A+A, \sim 20\text{GeV/u})\) in the future
Spectrometer : two options

A) Reuse of E325 spectrometer
or
B) Newly constructed larger acceptance spectrometer

using Gas Electron Multiplier (GEM) as a Cherenkov photon sensor and/or tracker

Further, for 10 times higher intensity beam (10^{10})
(i.e. high interaction rate : 10MHz)
to collect higher statistics (100 times of E325 = $10^5 \phi$), (B) is needed
Proposed new spectrometer

- Tracking Device
 - Drift Chamber
 - GEM (Gas electron multiplier)
 - strip readout
- Two-stage Electron ID
 - Gas Cherenkov
 - PMT+2 mirrors
 - GEM+CsI photocathode
 - pad readout
 - Leadglass EMC
- ~30K Readout Channels (in 20 units)
 - E325: 3.6K, PHENIX:~300K
- Cost: ~$5M (including $2M electronics)
Challenges in Detector R&D

• Environment with high intensity beam: \((10^9 \sim 10^{10} \text{ ppp})\)
 high interaction rate (1-10MHz)
 beam halo is origin of trigger background/saturation of forward detector
 spot size: \(~1\text{mm}\)

• Tracking detector should cope with high intensity beam/high int. rate
 - Drift Chamber
 - GEM and strip read out for tracking detector
 • No drop of gain up to particle flux of \(~10\text{KHz/mm}^2\) (E325 highest is 0.5KHz/mm^2)

• High performance electron ID counter: \(\pi\) rejection \(~10^{-4}\)
 - Leadglass EMC recycled from TRISTAN: < 10^{-1}
 - Gas Cherenkov: \(~10^{-3}\)
 - advantages of GC with GEM-CsI photocathode and pad readout (HBD: hadron blind detector)
 • No mirror and No segment. \(-\rightarrow\) No photon loss with reflection at mirrors
 • Less materials.
 • Flexible trigger configuration with pad readout.
Detector R&D status
GEM R&D at CNS, U-Tokyo

- GEM foils and CsI photo cathode
 - Originally, made in CERN. Recently, Fuchigami Micro co. and 3M produce GEM foils.
 - R&D program is on going at CNS, Weitzman, and BNL.
 - mainly for the PHENIX upgrade program.
 - Check the feasibility
 - Basic parameters (Gain, Quantum Eff. and so on)
 - long term stability
- Results from CNS
 - Produce GEM foils
 - Collaborate with Fuchigami co.
 - Use plasma-etching method.
 - Compare gain with CERN’s foils.
 - We have established the scheme for making foils.
 - Checking for gain stability should be done soon.
 - Produce GEM foils with CsI cathode
 - Collaborate with Hamamatsu co.
HBD (Hadron Blind Detector)

- HBD : Thr. type Gas Cherenkov Counter
 - CsI photocathode : UV photon sensitive
 - Triple GEM with pad readout
 - low granularity/low gain
 - Ionized electrons are collected by mesh
 - photoelectrons are amplified by 3 stages
 - ionized electrons are amp. by only last 2 stages
 - -> can detect only particles with cherenkov photon.
- Joint development with Weitzman Institute
 - originally for PHENIX upgrade
 - GEM with CsI
 - made in CERN and also in Japan are tested
- beam test was done in this May at KEK
Beam test at KEK (2004/May)

setup at KEK-PS π2 beam line

GEM(CNS)
Beam Test at KEK

- detector response for π and electron are tested
- Two detectors
 - Weitzman
 - CNS

Response of Weitzman detector

- ADC spectrum for π is very consistent with Energy loss in Gas.
- Electron produces more (photo-)electron than π.
 - However, it is smaller than expectation. Still, we’re investigating this problem.

Further analysis is underway. Please see K.Ozawa’s talk in JPS.
Summary

• Measure the vector meson modification in nuclear matter to investigate the chiral symmetry in QCD

• E325-type experiment at J-PARC
 - use primary proton beam \((1\times10^9 \sim 1\times10^{10} \text{ /sec})\) on thin targets \((\sim 0.1\% \text{ int.length})\) to reduce electron background
 - especially collect \(10^4 \sim 10^5 \phi \rightarrow e^+e^-\) in p+A reaction in 100shift(1month)
 • (10-100 times as large as E325's statistics)
 - Using old E325 spectrometer, 2-3 times larger statistics than E325 with 30~50GeV proton beam

• New spectrometer using new technology (GEM tracker/HBD)
 - better mass resolution : \(\sim 5 \text{ MeV/c}^2\)
 - larger acceptance -> 10 times larger statistics.
 - higher rate capability -> more 10 times stat. using higher intensity beam

• Test Detector with new technology is being developed. Beam test was done and also planned in next year.