Project C01 summary

Experimental study on the origin of mass due to the breaking of chiral symmetry

Vector meson measurements in nuclei

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- C01 organization
- physics motivation and the experiment J-PARC E16
- progress in JFY2012
- outlook

C01 organization 2012

JFY2012	延與 (研究代表者)	
(研究分担者) F 小沢	(研究分担者) F 四日市	(研究分担者) F 武藤 (磁石)
 (D3 渡辺(トラッカー)) D2/JRA 小松(トラッカー) M2 中井(回路) M2 菅野(HBD) M1 渋川(トラッカー) M1 小原(GEMトリガ) 	PD 青木(HBD) PD 荒巻(LG) PD 高橋(回路) PD 川間(回路・ソフト)	F 関本(GEM全般)
U-Tokyo/KEK	RIKEN	KEK

J-PARC E16	Collaboration				
RIKEN	S.Yokkaichi, K.	Aoki, Y. Aramal	ki, H. En'yo, J. Kanaya, D. Kawama, F. Sakuma,		
	T.N. Takahashi				
KEK	K.Ozawa, M. Naruki, R. Muto, S. Sawada, M. Sekimoto				
U-Tokyo	Y.S. Watanabe, Y.Komatsu, S.Masumoto,				
K.Kanno, W.Nakai, Y. Obara, T.Shibukawa					
CNS, U-Tokyo	H. Hamagaki				
Hiroshima-U	K. Shigaki	JASRI	A. Kiyomichi		

Origin of Mass (Higgs)

• Origin of lepton and quark mass: Higgs

[&]quot;New Hadrons" WS 2013Mar22 S.Yokkaichi

Origin of Mass (QCD)

- Origin of lepton and quark mass: Higgs
- Origin of quark and hadron mass : spontaneous breaking of chiral symmetry, originally proposed by Nambu
- Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10^{10} /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the $\,e^+e^-$ invariant mass spectrum
- A 30 GeV primary proton beam (10^{10} /spill) / 5 weeks of physics run to collect
- ${\sim}10^5\ \varphi \to e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance : x~ 5
- Higher energy beam (12 \rightarrow 30/50 GeV) : x ~2 of production
- Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)
- to cope with the high rate, new detectors (GEM Tracker & HBD) are required. **Proposed Spectrometer** Plan View Prototype Module nuclear targets 5m beam LeadGlass alorimeter EM calorimeter return 30/50 GeV proton beam **GEM** Tracker herenkoy adiator Hadron blind electron identifier magnet pole piece GEM tracker Pad chamber 26 detector modules "New Hadrons" WS 2013Mar22 S.Yokkaichi

7

<u>High-p line in the Hadron hall</u>

High-p line in the Hadron hall

<u>High-p line in the Hadron hall</u>

- budget requested by KEK to MEXT : finally funded
 - thanks to KEK staffs, and this grand-in-aid "New Hadrons" WS 2013Mar22 S.Yokkaichi

Progress in JFY 2012 (after the previous WS)

- R/O Circuit → Takahashi's Talk, (Takahashi, Nakai, Kawama)
 - 1st version of preamp board for GEM detectors are tested w/ beam.
 - trigger modules from Belle-II, LG-FEM prototype
- LG \rightarrow Aramaki's Talk (Aramaki, Sekimoto)
 - All LG is in hand. A few samples are tested w/ beam.
- Spectrometer Magnet (Muto, Ozawa)
 - Coil is delivered in Sep. / Pit is dug in Feb.
- HBD (Aoki, Kanno)
 - improvement of # p.e. and pion rejection factor
- GEM Tracker
 - trigger signal from the 3rd foil (Obara)
 - 1st version of the support frame is delivered in Mar. (Shibukawa)
 - 1st production type of 200mm and 300mm is delivered in Mar.(Komatsu)

E16 GEM Tracker

- 1st production type (100x100mm)
 Support frame made by CFRP
 - beam test at LEPS (2011) & J-PARC(2012) prototype is delivered in Mar.
 - trigger signal from the 3rd GEM foil

preamp board for GEM

- preamp board for GEM (68mm x 58mm)
 - with APV25 (CERN ASIC)
 - position resolution is improved via S/N improvement

managed by W.Nakai & T.N.Takahashi

 GEM Tracker (1st production type) is tested with the new preamp board at J-PARC K1.1BR

Lead Glass from TOPAZ / E362

HIM

Spectrometer Magnet

additional pole pieces

HBD (Hadron Blind Detector)

- Threshold type Gas Cherenkov, using CF₄
- developed thanks to Weizmann/Stony Brook
- Ionized electrons are collected by mesh
- photoelectrons are amplified by 3 stages
- ionized electrons are amp. by only last 2 stages
 - \rightarrow can detect only particles with cherenkov photons.
- (1/100 of pion rejection)
- GEM : LCP t=100um double stack
- Csl evaporation by Hamamatsu & RIKEN
- QE improved at RIKEN
- 10 photoelectrons detected (cf. PHENIX ~20 p.e.) as of 2011
- Test @ J-PARC in 2012: w/ pion beam
 - pion rejection factor measured for the first time
 - stability for the hadron-beam environment

readout pad

managed by K. Aoki & K.Kanno

HBD (Hadron Blind Detector)

- Test @ J-PARC K1.1BR in 2012/Jun (T43)
 - #p.e. improvement : $10 \rightarrow 13$
 - QE and HV config. optimization
 - however, still less than that of PHENIX
 - LCP-GEM double stack is unstable in the hadron beam environment
- Test @ J-PARC K1.1BR in 2013/Jan (T47)
 - PI-GEM triple stack is stable, even for CF₄
 - pion rejection is improved with a higher gain of new PI-GEM and smaller-size readout pad

- measure the distribution of the charge

 \rightarrow pion rejection factor 100 with e-efficiency 70% achieved, same level as PHENIX, in spite of the less #p.e.

• Should be checked using 300-PI-GEM in 2013/June.

managed by K. Aoki & K.Kanno "New Hadrons" WS 2013Mar22 S.Yokkaichi

Schedule

- •2007: stage1 approval
- •2008-2011 : detector R&D

•JFY2012 :

- Test exp (T43/T47) at J-PARC
 - GEM stabilty and HBD response for pion beam
 - GEM R/O circuit

•2013 Jan : High-p construction budget is approved

•In the Hadron hall schedule table, we are assinged

- 2014 Nov-2015 Jan : magnet reconstruction
- 2015 Feb-Aug : detector installation in the magnet
- 2016 Jan-Mar : detector commissioning

Summary

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum
 - major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration
 - Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra
 - but discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam.
 - confirm the observation by KEK-PS E325 and provide more precise information of the mass modification
 - preparation is underway with this Grant-in-Aid
 - Staged Goal of construction : 8 modules out of 26

[&]quot;New Hadrons" WS 2013Mar22 S.Yokkaichi

Detector R&D

- GEM Tracker to cope with the high rate
 - Ar+CO₂(70:30)
 - angled injection, 2D readout, etc.
 - required position resolution 100um is achieved for angled tracks w/ FADC R/O
- Hadron Blind Detector to trigger the electrons
 - CsI photocathode, CF₄ gas purity, etc.
- Domestic Large size (300mmx300mm) GEM
 - kapton (Polyimide, PI) t=50um for GT
 - LCP , t=100 um for HBD

Spectrometer Magnet re-construction

- FM magnet (used by KEK-PS E325)
 - additional poles and yokes
 - larger acceptance/stronger field
 - decompose -> proper location on the High-p line
 -> re-construction with new parts
 - a pit (digging of the floor concrete) is required under the magnet
 - takes 6-8 months
 - scheduling of the area and overhead crane usage
 - by the end of JFY2012
- detector installation in JFY2013
 - all the detectors are installed in the Magnet

