シンポジウム J-PARC ハドロン施設の近未来

核物質中での質量の変化と QCDでの質量獲得機構

理研仁科センター 四日市 悟

- physics motivation: hadron mass generation mechanism in QCD
- vector meson in nuclear matter: measurements in the world
- J-PARC E16: invariant mass spectroscopy
- Related experiment at J-PARC

Origin of Mass (Higgs)

Origin of lepton and quark mass: Higgs

Origin of Mass (QCD)

- Origin of lepton and quark mass: Higgs
- Origin of quark and hadron mass: spontaneous breaking of chiral symmetry, originally proposed by Nambu
 - Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter

Mass and chiral symmetry in nuclear matter

- Origin of quark and hadron mass: spontaneous breaking of chiral symmetry
- In hot/dense matter, chiral symmetry is expected to be restored
 - hadron spectral (mass , width) modification is also expected

vacuum

Vector meson measurements in the world

HELIOS/3 (ee, μμ)
 450GeV p+Be / 200GeV A+A

- DLS (ee) 1 GeV A+A

- CERES (ee) 450GeV p+Be/Au / 40-200GeV A+A

- E325 (ee,KK) 12GeV p+C/Cu

- NA60 (μμ) 400GeV p+A/158GeV In+In

PHENIX (ee,KK) p+p/Au+Au

dilepton measurement

- STAR $(\pi\pi, KK, ee)$ p+p/Au+Au

- HADES (*) (ee) 1-4 GeV p+A/ 1-2GeV A+A

- CLAS-G7 (*) (ee) 1~2 GeV γ+A

- <u>J-PARC E16 (ee) 30/50GeV p+A</u>

HADES/FAIR (ee) 2~8GeV A+A

- *CBM/FAIR* (ee) 20~30GeV A+A

- TAGX $(\pi\pi)$ ~1 GeV γ +A

- LEPS (KK) 1.5~2.4 GeV γ+A

- CBELSA/TAPS(*) $(\pi^0 \gamma)$ 0.64-2.53 GeV γ + p/Nb

- **ANKE** (KK) 2.83 GeV p+A

published/ 'modified' published/ 'unmodified' running/in analysis future plan

as of 2012/Sep

Dilepton spectrum measurements in the world

Dilepton spectrum measurements in the world

HADES/CBM

DLS/HADES

E325/E16

TAPS/CLAS

ρο

E325: ρ/ω mass dropping

mass dropping and broadening

CLAS-g7: ρ broadening

HADES: low-mass enhancement

Partial chiral restoration at ρ_0 is measured w/

the deeply bound pionic atom

ρ

E325

Deeply bound pionic atom@GSI

- optical potential b₁
 - → pion decay const.(TW)
 - → chiral condensate (GOR)

-0.13

-0.12

-0.11

 $b_1 \ [m_{\pi}^{-1}]$

-0.10

-0.09

K.Suzuki et al, PRL92(04)072302

Dilepton spectrum measurements in the world

Experimental methods:pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the φ modification?
 - proton induced : better S/N than the HI collisions
 - large stat. using a high intensity beam : cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate

J-PARC E16 Vector meson in nuclear matter

J-PARC E16 Collaboration

RIKEN S. Yokkaichi, K. Aoki, Y. Aramaki, H. En'yo,

J. Kanaya, D. Kawama, F. Sakuma,

T.N. Takahashi

KEK K.Ozawa, M. Naruki, R. Muto,

S. Sawada, M. Sekimoto

U-Tokyo Y.S. Watanabe, Y.Komatsu, S.Masumoto,

K.Kanno, W.Nakai, Y. Obara, T.Shibukawa

CNS, U-Tokyo H. Hamagaki Hiroshima-U K. Shigaki JASRI A. Kiyomichi

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e⁺e⁻ invariant mass spectrum
- A 30 GeV primary proton beam (10¹⁰/spill) / 5 weeks of physics run to collect
- ~10⁵ $\phi \rightarrow e^+e^-$ for each target

confirm the E325 results, and provide new information as the matter size/momentum

dependence of modification

Expected Invariant mass spectra in e⁺e⁻

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

2) decay outside nuclei

1) decay inside nuclei

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e⁺e⁻ invariant mass spectrum
- A 30 GeV primary proton beam (10¹⁰/spill) / 5 weeks of physics run to collect
- ~10⁵ $\phi \rightarrow e^+e^-$ for each target

• confirm the E325 results, and provide new information as the matter size/momentum

dependence of modification

To collect high statistics

 For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.

- To cover larger acceptance : x~ 5

- Higher energy beam (12 \rightarrow 30/50 GeV) : x ~2 of production

- Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)

to cope with the high rate, new detectors (GEM Tracker & HBD) are required.

High-p line in the Hadron hall

• 3 years plan of the construction : budget requested by KEK to MEXT

High-p line in the Hadron hall

• 3 years plan of the construction : budget requested by KEK to MEXT

ϕ -mass modification at ρ_0

- (vacuum value : m(0)=1019.456MeV, $\Gamma(0)=4.26MeV$)
 - $m(\rho)/m(0) = 1 k_1(\rho/\rho_0)$, $\Gamma(\rho)/\Gamma(0) = 1 + k_2(\rho/\rho_0)$
- determined by E325 (PRL98(2007)042581)
 - Δm : -35 (28~41) MeV, Γ : 15 (10~23) MeV
- Hatsuda, Lee [PRC46(1992)34)] QCD sum rule
 - Δm : -12~44 MeV (k=(0.15±0.05)y, y=0.12~0.22),
 - Γ : not estimated
- Klingl, Waas, Weise [PLB431(1998)254] hadronic
 - taking account of K-mass modification
 - Δm : < -10 MeV, Γ : ~45 MeV
- Oset , Ramos [NPA 679 (2001) 616] hadronic
 - different approach for K-mass
 - Δ m : < −10 MeV, Γ : ~22 MeV for m=1020MeV, ~16MeV for m=985 Me $\sqrt{}$
- Cabrera and Vacas [PRC 67(2003)045203] OR01+ hadronic
 - Δm : -8 MeV, Γ : ~30 MeV for m=1020MeV

 $k_1 = 0.034^{+0.006}_{-0.007}$ $k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}$

expected shape w/ various parameters

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 15 MeV Γ : 15 MeV

KWW-98

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 50 MeV Γ : 50 MeV

 $0.5 < \beta \gamma < 1.25$ $\beta\gamma < 0.5$

can distinguish

 $\Delta m = -35 \text{ or } -10 \text{ MeV}$

 $\Gamma = 15 \text{ or } 50 \text{ MeV}$

expected shape w/ various parameters

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 15 MeV Γ : 15 MeV

_

KWW-98

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 50 MeV Γ : 50 MeV

βγ<0.5 Cu

blue: decays inside the halfdensity radius of nuclei in the MC

momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest (p=0)
 - extrapolation to p=0 if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

E16 Schedule

- •2007: stage1 approval
- •2008-2010 : development of prototype detectors w/ Grant-in-Aid(2007-8, 2009-13)
- •2011 : additional parts of the spectrometer magnet , R/O circuit development
- •2012 : magnet re-construction
 - all the detectors are installed in the magnet
 - production of the detectors/circuits
- •2013 : staged goal of the spectrometer construction (w/ 8 detector modules) : ready for the beam
 - (beam power is enough for 10^10 /spill at High-p)
- •2014-15: production of detector modules (depending on the budget)
- High-p construction : 3-years plan : 2013-15

Impact of E16

- hadron modification are observed in several experiments but interpretation is not converged: "mass dropping or broadening?"
 - theoretically the question is oversimplified : T- dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
- pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0$, T=0) using ϕ meson
 - confirm the E325 observation with improved resolution(x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 - first measurement of the dispersion relation of hadrons in nuclear matter
- establish the QCD effect
 - mass generation due to the chiral symmetry breaking
- Further Step (future experiment)
 - slow ϕ at HIHR beam line with $10^9\,\pi$ beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 - chiral phase transition in the high-density region

International competition

- FAIR (GSI upgrade: new accelerator SIS 100 is funded)
 - Two spectrometers for the heavy-ion collisions are funded
 - HADES: 2-8 GeV: start ~2018
 - detectors will be moved from SIS 18 to SIS 100, as the 1st experiment
 - CBM: 15-30 GeV: probe the high-density state
 - newly constructed
 - Detector acceptances for the A+A: relatively forward
 - not suitable to detect slower mesons in p+A reactions
 - however, a clue is seen in 3.5 GeV p+A in HADES
 - design value of the interaction rate (10⁷Hz) is as high as E16
- We strongly urge the construction start of High-p line
 - If even a part of magnets are constructed in the JFY 2012, they can be aligned in the long shutdown in 2013 and thus the earlier completion is expected.

Related experiments at J-PARC

- ω bound state/invariant mass (E26) : K1.8 or High-p
- η bound state and N(1535) (LoI): K1.8BR or HIHR
- magnetic moment of Λ at finite density
- dilepton decay of slow ϕ using 10⁹ π beam at HIHR

<u>meson bound state in nuclei : E26 (ω)</u>

- ω bound state (J-PARC E26 Ozawa)
 - missing mass spectroscopy in π^- + A reaction select the bound state
 - elementary : ~2 GeV/c π^- + p $\rightarrow \omega$ + n
 - and measure the ω decay to $\pi^0\gamma$
 - Pω is low, and decay in nuclear matter

missing mass and invariant mass (a) $V_0 = -(156,29i)$ MeV [µb/sr MeV] $(0s_{1/2})_{\mathbf{n}}^{-1} \otimes s_{\omega}$ $(0p_{3/2})_{n}^{-1} \otimes p_{\infty}$ $\frac{d^2\sigma}{dEd\Omega}$ -50 50 -100 $E_{ex} - E_0$ [MeV] Spectrum [GeV²] 10⁻²

0.6

0.8

E [GeV]

Theoretical predictions of

meson bound state in nuclei: E29 (φ)

- - missing mass spectroscopy in pbar + A / π^- + A reaction
 - elementary: \sim 1.3 GeV/c pbar + p \rightarrow ϕ + ϕ
 - (or ~2 GeV/c π^- + p \rightarrow ϕ + n)
 - measurements of the dilepton decay of φ is difficult

Summary

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum
 - A major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration
 - Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra
 - but discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam at the High-p line.
 - confirm the observation by KEK-PS E325 and provide more precise information of the mass modification
- E26, E29, etc. will be performed at new beam lines in the Hadron hall, to explore the chiral symmetry at finite density