Experiment on meson-mass modifications at J-PARC

Satoshi Yokkaichi
RIKEN Nishina Center

- physics motivation: hadron mass generation mechanism in QCD
- vector meson measurements
- J-PARC E16: invariant mass spectroscopy
 - experimental method
 - expected mass spectra
- Related experiment at J-PARC
Origin of Mass (Higgs)

- Origin of lepton and quark mass: Higgs
• Origin of lepton and quark mass: Higgs

• Origin of quark and hadron mass: spontaneous breaking of chiral symmetry, originally proposed by Nambu

 - Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter
Vector meson measurements in the world

- **HELIOS/3** (ee, μμ) 450GeV p+Be / 200GeV A+A
- **DLS** (ee) 1 GeV A+A
- **CERES** (ee) 450GeV p+Be/Au / 40-200GeV A+A
- **E325** (ee,KK) 12GeV p+C/Cu
- **NA60** (μμ) 400GeV p+A/158GeV In+In
- **PHENIX** (ee,KK) p+p/Au+Au
- **STAR** (ππ, KK, ee) p+p/Au+Au
- **HADES (*)** (ee) 1-4 GeV p+A/ 1-2GeV A+A
- **CLAS-G7 (*)** (ee) 1~2 GeV γ+A
- **J-PARC E16** (ee) 30/50GeV p+A
- **HADES/FAIR** (ee) 2~8GeV A+A
- **CBM/FAIR** (ee) 20~30GeV A+A
- **TAGX** (ππ) ~1 GeV γ+A
- **LEPS** (KK) 1.5~2.4 GeV γ+A
- **CBELSA/TAPS(*)** (π^0γ) 0.64-2.53 GeV γ + p/Nb
- **ANKA** (KK) 2.83 GeV p+A

Published/ 'modified'
Published/ 'unmodified'
Running/in analysis
Future plan
As of 2012/Sep
Dilepton spectrum measurements in the world

- CERES/NA60
- PHENIX/STAR
- E325/E16
- TAPS/CLAS
- HADES/CBM
- DLS/HADES
Dilepton spectrum measurements in the world

NA60: ρ width broadening
PHENIX: enhancement (cannot be explained yet)

Chiral restoration at High-T is not confirmed yet

NA60

- ρ width broadening

PHENIX

- Enhancement (cannot be explained yet)
- Chiral restoration at High-T is not confirmed yet

E325

- ρ/ω mass dropping
- ϕ mass dropping and broadening

CLAS-g7

- ρ broadening

HADES

- Low-mass enhancement
- Partial chiral restoration at ρ_0 is measured with the deeply bound pionic atom

Mass and chiral symmetry in nuclear matter

BKG subtracted
High-p-WS@KEK 2013Jan17 S.Yokkaichi

Dilepton spectrum measurements in the world

- CERES/NA60
- PHENIX/STAR
- E325/E16
- DLS/HADES
- TAPS/CLAS
- HADES/CBM

NA60: \(\rho \) width broadening

PHENIX: enhancement (cannot be explained yet)

Chiral restoration at High-T is not confirmed yet

E325: \(\rho/\omega \) mass dropping

\(\phi \) mass dropping and broadening

CLAS-g7: \(\rho \) broadening

HADES: low-mass enhancement

Partial chiral restoration at \(\rho_0 \) is measured with the deeply bound pionic atom

D C

BKG subtracted

Fe+Ti
Dilepton spectrum measurements in the world

CERES/NA60
PHENIX/STAR

E325:
- ρ/ω mass dropping
- ϕ mass dropping and broadening

PHENIX:
enhancement (cannot be explained yet)

Chiral restoration at High-T is not confirmed yet

E325: ρ/ω mass dropping

CLAS-g7: ρ broadening

HADES: low-mass enhancement

Partial chiral restoration at ρ_0 is measured w/ the deeply bound pionic atom
KEK-PS E325

- 12GeV p+A (C/Cu) $\rightarrow \rho$, ω, ϕ in the e^+e^- channel
- below the ω and ϕ peaks, statistically significant excesses over the known hadronic sources including experimental effects
- interpreted: mass dropping 9.2% (ρ, ω), 3.4% (ϕ)

![Graph](image-url)
Dilepton spectrum measurements in the world

NA60: ρ width broadening
PHENIX: enhancement (cannot be explained yet)

Chiral restoration at High-T is not confirmed yet

PHENIX/STAR
CERES/NA60

E325:
- ρ/ω mass dropping
- ϕ mass dropping and broadening

CLAS-g7: ρ broadening

HADES: low-mass enhancement

TAPS/CLAS

E325/E16

DLS/HADES

HADES/CBM

Open question:
Observed hadron modifications are signature of the chiral restoration / evidence of the QCD mass generation?
Experimental methods: pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the ϕ modification?
 - proton induced: better S/N than the HI collisions
 - large stat. using a high intensity beam: cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate
J-PARC E16 experiment
Systematic study of the modification of vector meson spectra in nuclei to approach the chiral symmetry restoration

J-PARC E16 Collaboration
KEK K. Ozawa, M. Naruki, R. Muto, S. Sawada, M. Sekimoto
CNS, U-Tokyo H. Hamagaki
Hiroshima-U K. Shigaki
JASRI A. Kiyomichi
J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e^+e^- invariant mass spectrum
- A 30 GeV primary proton beam (10^{10}/spill) / 5 weeks of physics run to collect $\sim 10^5 \phi \rightarrow e^+e^-$ for each target
- confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

Proposed exp. E16

- ϕ-mass is modified in large nuclei for slowly moving mesons... consistent with the prediction based on the QCD sum rule

Precedent exp. (KEK-PS E325)

Nuclear matter size dependence of mass modification are measured

Expected

Momentum dependence

$\Delta M \sim 35\text{MeV}$

Measured by E325

Cu, Pb, H
To collect high statistics

- For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.
 - To cover larger acceptance: $x \sim 5$
 - Higher energy beam (12 → 30/50 GeV): $x \sim 2$ of production
 - Higher intensity beam (10⁹ → 10¹⁰ /spill (1sec)): $x \times 10$ (\rightarrow 10MHz interaction on targets)
 - to cope with the high rate, new detectors (GEM Tracker & HBD) are required.

Proposed Spectrometer

Plan View

Prototype Module

26 detector modules
High-p line in the Hadron hall

- 3 years plan of the construction: budget requested by KEK to MEXT
High-p line in the Hadron hall

- 3 years plan of the construction: budget requested by KEK to MEXT
E16 Schedule

• 2007: stage1 approval
• 2008-2010: development of prototype detectors w/ Grant-in-Aid(2007-8, 2009-13)
• JFY 2011-12: additional parts of the spectrometer magnet, R/O circuit development
 – 1st module of production type (GT and HBD)
 – 1st test type preamp for GT
 • tests @ J-PARC K1.1BR
• JFY 2013: start the production of the detectors/circuits
• JFY 2013/4Q-2014/1Q: magnet reconstruction
 – start the detector install
2014/4Q: ready for the first beam
 – staged goal of the spectrometer construction (w/ 8 detector modules)
J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e^+e^- invariant mass spectrum

- A 30 GeV primary proton beam (10^{10}/spill) / 5 weeks of physics run to collect
 $\sim 10^5 \phi \rightarrow e^+e^-$ for each target

- Confirm the E325 results, and provide new information as the matter size/momentum dependence of modification

Precedent exp. (KEK-PS E325)

ϕ-mass is modified in large nuclei for slowly moving mesons... consistent with the prediction based on the QCD sum rule

Proposed exp. E16

Nuclear matter size dependence of mass modification are measured

Momentum dependence
ee spectra of ϕ meson (divided by $\beta\gamma$)

$\beta\gamma<1.25$ (Slow) $1.25<\beta\gamma<1.75$ $1.75<\beta\gamma$ (Fast)

only slow/Cu is not reproduced in 99% C.L.
Expected Invariant mass spectra in e^+e^-:

- smaller FSI in e^+e^- decay channel
- double peak (or tail-like) structure:
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

longer-life meson (ω & ϕ) cases: Schematic picture

outside decay (natural) + inside decay (modified) =

expected to be observed
Discussion: modification parameters

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point: uniform for \(\phi \) meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight: linearly dependent on the density of the decay point
 - dropping mass: \(M(\rho)/M(0) = 1 - k_1 (\rho/\rho_0) \)
 - width broadening: \(\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0) \)
 - consistent result with the predictions by Hatsuda & Lee (\(k_1 \)), Oset & Lamos (\(\Gamma \))

\[
\begin{align*}
k_1 &= 0.034^{+0.006}_{-0.007} \\
k_2^{\text{tot}} &= 2.6^{+1.8}_{-1.2}
\end{align*}
\]

For \(\phi \), 3.4\% mass reduction (35MeV) 3.6 times width broadening (15MeV) at \(\rho_0 \)
E16 : mass resolution requirement

- mass resolution should be kept less than \(\sim 10\text{MeV} \)
- Very ideal case: very slow mesons w/ best mass resolution:

\[
\phi (1020) \\
\text{Cu} \\
\beta\gamma < 1.25
\]

\(\beta\gamma < 0.5, \sigma = 5 \text{ MeV} \)

(E325 data)

(model calc.)
φ-mass modification at ρ₀

- (vacuum value: m(0)=1019.456MeV, \(\Gamma(0)=4.26\text{MeV}\))

 \[
 m(\rho)/m(0) = 1 - k_1 (\rho/\rho_0), \quad \Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)
 \]

- determined by E325 (PRL98(2007)042581)

 \[
 \Delta m : -35\ (28\sim41) \text{MeV}, \quad \Gamma : 15\ (10\sim23) \text{MeV}
 \]

- Hatsuda, Lee [PRC46(1992)34] *QCD sum rule*

 \[
 \Delta m : -12\sim44 \text{MeV} \quad (k=(0.15\pm0.05)y, \ y=0.12\sim0.22), \quad \Gamma: \text{not estimated}
 \]

 - taking account of K-mass modification

 \[
 \Delta m : < -10 \text{ MeV}, \quad \Gamma : \sim45 \text{ MeV}
 \]

- Oset, Ramos [NPA 679 (2001) 616] *hadronic*

 - different approach for K-mass

 \[
 \Delta m : < -10 \text{ MeV}, \quad \Gamma : \sim22 \text{ MeV for } m=1020\text{MeV}, \sim16\text{MeV for } m=985 \text{MeV}
 \]

- Cabrera and Vacas [PRC 67(2003)045203] OR01+ *hadronic*

 \[
 \Delta m : -8 \text{ MeV}, \quad \Gamma : \sim30 \text{ MeV for } m=1020\text{MeV}
 \]

- \[
 k_1 = 0.034^{+0.006}_{-0.007}
 \]

- \[
 k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}
 \]
expected shape w/ various parameters

<table>
<thead>
<tr>
<th>E325</th>
<th>OR-01</th>
<th>KWW-98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm: -35 MeV</td>
<td>Δm: -10 MeV</td>
<td>Δm: -35 MeV</td>
</tr>
<tr>
<td>Γ : 15 MeV</td>
<td>Γ : 15 MeV</td>
<td>Γ : 50 MeV</td>
</tr>
<tr>
<td>Cu</td>
<td>Pb</td>
<td>Cu</td>
</tr>
<tr>
<td>βγ<0.5</td>
<td>0.5<βγ<1.25</td>
<td>βγ<0.5</td>
</tr>
<tr>
<td>Δm: -35 MeV</td>
<td>Γ : 15 MeV</td>
<td>βγ<0.5</td>
</tr>
<tr>
<td>Γ : 50 MeV</td>
<td></td>
<td>0.5<βγ<1.25</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
<td>Γ : 50 MeV</td>
</tr>
</tbody>
</table>

- Δm = -35 or -10 MeV
 Γ = 15 or 50 MeV

OR-01
Δm: -10 MeV
Γ : 15 MeV

KWW-98
Δm: -35 MeV
Γ : 50 MeV

can distinguish
Δm = -35 or -10 MeV
Γ = 15 or 50 MeV
expected shape w/ various parameters

<table>
<thead>
<tr>
<th>E325</th>
<th>OR-01</th>
<th>KWW-98</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta m : -35\ MeV$</td>
<td>$\Delta m : -10\ MeV$</td>
<td>$\Delta m : -35\ MeV$</td>
</tr>
<tr>
<td>$\Gamma : 15\ MeV$</td>
<td>$\Gamma : 15\ MeV$</td>
<td>$\Gamma : 50\ MeV$</td>
</tr>
</tbody>
</table>

- blue: decays inside the half-density radius of nuclei in the MC

$\Delta m : -35\ MeV$
$\Gamma : 15\ MeV$

$\Delta m : -10\ MeV$
$\Gamma : 15\ MeV$

$\Delta m : -35\ MeV$
$\Gamma : 50\ MeV$
<s\bar{s}> & \phi\text{-meson mass}

- $<\bar{s}s>(\rho)$ (\bar{s}s condensate in medium whose density is ρ) is relevant the ϕ mass in nuclear matter under the QCD sum rule analysis by Hatsuda & Lee (PRC46(92)R34 : HL92)
 - linear approx. : $<\bar{s}s>(\rho)=<\bar{s}s>$ (vacuum) + $<N|\bar{s}s|N> \times \rho$

- Recently $<N|\bar{s}s|N>$ (so called “strangeness content in nucleon”) is calculated with Lattice QCD
 - found to be smaller than the assumed value in HL92, however, agree within the error: predicted value '2-4%' is not so affected

\[f_{Ts} = \frac{m_s}{m_N} <N|\bar{s}s|N> \]
\[m_s = 80\text{MeV} \]

arXiv:1208.4185
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for \(\phi \) (slow/Cu) has significant excess
- systematic study: all the data should be explained the interpretation model

- establish the modification
 - by

\[
\begin{align*}
N_{\text{excess}} / (N_{\text{excess}} + N_0) & \quad \text{Cu Model Calc. } k=0.04 \\
& \quad \text{Cu Model Calc. } k=0.02 \\
& \quad \text{C Model Calc. } k=0.04 \\
& \quad \text{C Model Calc. } k=0.02
\end{align*}
\]

x 100 stat.

\[
\begin{align*}
N_{\text{excess}} / (N_{\text{excess}} + N_0) & \quad \text{Pb}
\end{align*}
\]

\[
\begin{align*}
N_{\text{excess}} / (N_{\text{excess}} + N_0) & \quad \text{proton}
\end{align*}
\]
velocity and nuclear size dependence

- velocity dependence of excesses ('modified' component)
- E325 only one data point for ϕ (slow/Cu) has significant excess
- systematic study: all the data should be explained the interpretation model

- establish the modification
- check the interpretation model with shape analysis for each histogram
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee($p<1\text{GeV/c}$)
- current E325 analysis neglects the dispersion (limited by the statistics)
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee (p<1GeV/c)
- current E325 analysis neglects the dispersion (limited by the statistics)
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee ($p<1\text{GeV/c}$)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter $k_1(p)$, to all nuclear targets in each momentum bin

![Graph showing dispersion relation](image)
dispersion relation (mass VS momentum)

- prediction for ϕ by S.H.Lee($p<1\text{GeV/c}$)
- current E325 analysis neglects the dispersion (limited by the statistics)
- fit with common shift parameter $k_1(p)$, to all nuclear targets in each momentum bin
momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest (p=0)
 - extrapolation to p=0 if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

- Weldon (PRD40(89)2410)
- Harada & Sasaki (PRC80(09)054912)
- Kondratyuk et al. (PRC58(98)1078)
Impact of E16

• hadron modification are observed in several experiments but interpretation is not converged: “mass dropping or broadening?”
 - theoretically the question is oversimplified: T-dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
• pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0, T=0$) using ϕ meson
 - confirm the E325 observation with improved resolution (x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 • first measurement of the dispersion relation of hadrons in nuclear matter
• establish a low energy phenomenon which can be predicted by means of QCD
 - mass generation due to the chiral symmetry breaking
• Further Step (future experiment)
 - slow ϕ at HIHR beam line with $10^9 \pi$ beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 • chiral phase transition in the high-density region
Related experiments at J-PARC

- ω bound state/invariant mass (E26) : K1.8 or High-\(p\)
- ϕ bound state (E29) : K1.1 or K10
- η bound state and N(1535) (LoI) : K1.8BR or HIHR
- magnetic moment of Λ at finite density
- dilepton decay of slow ϕ using $10^9 \pi$ beam at HIHR
meson bound state in nuclei : $E26$ (ω)

- ω bound state (J-PARC E26 / K. Ozawa)
 - missing mass spectroscopy in $\pi^- + A$ reaction – select the bound state
 - elementary: ~ 2 GeV/c $\pi^- + p \rightarrow \omega + n$
 - and measure the ω decay to $\pi^0\gamma$
 - P_ω is low, and decay in nuclear matter

![Diagram of detector setup]

- γ detector around the target
- Neutron counter at the forward direction

Theoretical predictions of missing mass and invariant mass

Expected modified ω spectrum

High p-WS@KEK 2013Jan17 S.Yokkaichi
meson bound state in nuclei: E29 (ϕ)

- ϕ bound state: (J-PARC E29 / H. Ohnishi)
 - missing mass spectroscopy in pbar + A / π^- + A reaction
 - elementary: \sim1.3 GeV/c pbar + p \rightarrow ϕ + ϕ
 - (or \sim2 GeV/c π^- + p \rightarrow ϕ + n)
 - measurements of the dilepton decay of ϕ is difficult

![Diagram of meson interactions]
Summary

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum

 • A major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration

 • Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra

 • but discussion is not converged: chiral restoration or not

- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam at the High-p line.

 • confirm the observation by KEK-PS E325 and provide more precise information of the mass modification

- E26, E29, etc. will be performed at new beam lines in the Hadron hall, to explore the chiral symmetry at finite density