J-PARC E16 Vector meson in nuclear matter

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- physics motivation
- dilepton measurements in the world
- E16 status and plan

Collaboration

RIKEN S. Yokkaichi, K. Aoki, Y. Aramaki, H. En'yo,

J. Kanaya, F. Sakuma, T.N. Takahashi

KEK K.Ozawa, M. Naruki, R. Muto,

S. Sawada, M. Sekimoto

U-Tokyo Y.S. Watanabe, Y.Komatsu, S.Masumoto,

A.Takagi, K.Kanno, W.Nakai

CNS, U-Tokyo H. Hamagaki Hiroshima-U K. Shigaki JASRI A. Kiyomichi

Origin of Mass (Higgs)

Origin of lepton and quark mass: Higgs

Origin of Mass (QCD)

- Origin of lepton and quark mass: Higgs
- Origin of quark and hadron mass: spontaneous breaking of chiral symmetry, originally proposed by Nambu
 - Hadron mass could be modified in hot/dense matter, because of the chiral symmetry restoration is expected in such matter

Vector meson measurements in the world

- HELIOS/3 (ee, $\mu\mu$) 450GeV p+Be / 200GeV A+A

- DLS (ee) 1 GeV A+A

- CERES (ee) 450GeV p+Be/Au / 40-200GeV A+A

- E325 (ee,KK) 12GeV p+C/Cu

- NA60 (μμ) 400GeV p+A/158GeV In+In

PHENIX (ee,KK) p+p/Au+Au

dilepton measurement

- HADES (*) (ee) 1-4 GeV p+A/ 1-2GeV A+A

- CLAS-G7 (*) (ee) 1~2 GeV γ+A

- <u>J-PARC E16 (ee) 30/50GeV p+A</u>

- HADES/FAIR (ee) 2~8GeV A+A

- *CBM/FAIR* (ee) 20~30GeV A+A

- TAGX $(\pi\pi)$ ~1 GeV γ +A

- STAR $(\pi\pi,KK)$ p+p/Au+Au

- LEPS (KK) 1.5~2.4 GeV γ+A

- CBELSA/TAPS(*) $(\pi^0 \gamma)$ 0.64-2.53 GeV γ + p/Nb

- **ANKE** (KK) 2.83 GeV p+A

published/ 'modified'
published/ 'unmodified'
running/in analysis
future plan

as of 2012/Mar

Dilepton spectrum measurements in the world

Experimental methods:pros and cons

- leptonic decay VS hadronic decay
 - small FSI in the matter, but small branching ratio
- proton/photon induced VS heavy-ion collision
 - cold VS hot
 - static environment VS time evolution
 - S/N is better, production cross section is smaller
- ϕ VS ρ/ω
 - isolated and narrow, but production CS is smaller
- Why only KEK-PS E325 can observe the φ modification?
 - proton induced : better S/N than the HI collisions
 - large stat. using a high intensity beam : cope with the small CS
 - good spectrometer keeps the good mass resolution and works under the higher interaction rate

Expected Invariant mass spectra in e⁺e⁻

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

2) decay outside nuclei

1) decay inside nuclei

KEK-PS E325

- 12GeV p+A (C/Cu) $\rightarrow \rho$, ω , ϕ in the e⁺e⁻ channel
- below the ω and ϕ peaks, statistically significant excesses over the known hadronic sources including experimental effects
- interpreted: mass dropping $9.2\%(\rho, \omega)$, $3.4\%(\phi)$

E325 Fitting results (ρ/ω)

- 1) excess at the low-mass side of ω
 - To reproduce the data by the fitting, we have to exclude the excess region: 0.60~0.76 GeV
- 2) p—meson component seems to be vanished High-p WS@KEK 2012May16 S.Yokkaichi

<u>e[±]e[±] spectra of φ meson (divided by βγ)</u>

 $\beta y < 1.25$ (Slow)

 $1.25 < \beta \gamma < 1.75$

 $1.75 < \beta \gamma (Fast)$

only slow/Cu is not reproduced in 99% C.L.

2) decay outside nuclei

Discussion: modification parameters

- MC type model analysis to include the nuclear size/meson velocity effects
 - - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight: linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k_1) , Oset & Lamos (Γ)

$$k_1 = 0.034^{+0.006}_{-0.007}$$
 $k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}$

For ϕ , 3.4% mass reduction (35MeV) 3.6 times width broadening(15MeV) at ρ_{α}

1) decay inside nuclei

Vector meson measurements in Heavy Ion Collision

Vector meson measurements in HIC

- CERES: e⁺e⁻ (EPJC 41('05)475)
 - anomaly at lower region of ρ/ω
 - in A+A, not in p+A
 - relative abundance is determined by their statistical model

bkg subtracted

- NA60 : (PRL96(06)162302)
 - $\rho \rightarrow \mu^+ \mu^-$:
 - width broadening
 - 'BR scaling is ruled out'

Vector meson measurements in Heavy Ion Collision

- PHENIX: (arXiv:0706.3034v1,0912.0244v1)
 - 200GeV /u Au+Au \rightarrow e⁺e⁻
 - enhancement below ω
 - cannot reproduced by any model at low pT
 - at high pT, thermal photons reproduce

HADES

- lower energy HI collisions : A+A → e⁺e⁻
- DLS data is confirmed, and the puzzle in C+C is resolved by (pp+np)[PLB690(10)118]
- However, Ar+KCI have enhancement over the (pp+np) estimation [PRC84(11)014902]

HADES 3.5GeV pp and pNb

• Selecting slower mesons, an excess is seen below the ω peak in the larger nuclei data (preliminary)

J-PARC E16

J-PARC E16 experiment

- Measure the vector-meson mass modification in nuclei systematically with the e⁺e⁻ invariant mass spectrum
- A 30 GeV primary proton beam (10¹⁰/spill) / 5 weeks of physics run to collect
- ~10⁵ $\phi \rightarrow e^+e^-$ for each target

confirm the E325 results, and provide new information as the matter size/momentum

dependence of modification

To collect high statistics

 For the statistics 100 times as large as E325, a new spectrometer and a primary beam in the High-p line are required.

- To cover larger acceptance : x~ 5

- Higher energy beam (12 \rightarrow 30/50 GeV) : x ~2 of production

- Higher intensity beam ($10^9 \rightarrow 10^{10}$ /spill (1sec)) : x 10 (\rightarrow 10MHz interaction on targets)

to cope with the high rate, new detectors (GEM Tracker & HBD) are required.

High-p line in the Hadron hall

3 years plan of the construction : budget requested by KEK to MEXT

ϕ -mass modification at ρ_0

- (vacuum value : m(0)=1019.456MeV, $\Gamma(0)=4.26MeV$)
 - $m(\rho)/m(0) = 1 k_1(\rho/\rho_0)$, $\Gamma(\rho)/\Gamma(0) = 1 + k_2(\rho/\rho_0)$
- determined by E325 (PRL98(2007)042581)
 - Δm : -35 (28~41) MeV, Γ : 15 (10~23) MeV
- Hatsuda, Lee [PRC46(1992)34)] QCD sum rule
 - Δm : -12~44 MeV ($k=(0.15\pm0.05)y$, y=0.12~0.22),
 - Γ: not estimated
- Klingl, Waas, Weise [PLB431(1998)254] hadronic
 - taking account of K-mass modification
 - Δm : < -10 MeV, Γ : ~45 MeV
- Oset , Ramos [NPA 679 (2001) 616] hadronic
 - different approach for K-mass
 - Δ m : < −10 MeV, Γ : ~22 MeV for m=1020MeV, ~16MeV for m=985 Me $\sqrt{}$
- Cabrera and Vacas [PRC 67(2003)045203] OR01+ hadronic
 - Δm : -8 MeV, Γ : ~30 MeV for m=1020MeV

$$k_1 = 0.034^{+0.006}_{-0.007}$$
 $k_2^{\text{tot}} = 2.6^{+1.8}_{-1.2}$

expected shape w/ various parameters

E325 OR-01

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 15 MeV Γ : 15 MeV

_

KWW-98

 Δm : -35 MeV Δm : -10 MeV

 Γ : 50 MeV Γ : 50 MeV

 $0.5 < \beta \gamma < 1.25$

can distinguish

 $\Delta m = -35 \text{ or } -10 \text{ MeV}$

 $\Gamma = 15 \text{ or } 50 \text{ MeV}$

Cu

expected shape w/ various parameters

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV Γ : 15 MeV Γ : 15 MeV

KWW-98

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

 Γ : 50 MeV Γ : 50 MeV

 $0.5 < \beta \gamma < 1.25$ $\beta\gamma < 0.5$

blue: decays inside the halfdensity radius of nuclei in the MC

Pb

momentum dependence

- From the view point of experimentalists
 - many predictions are for the mesons at rest (p=0)
 - extrapolation to p=0 if it is a simple dependence
- From the view point of theorists
 - dispersion relation of quasi particles are characteristic
 - other effects

Schedule

- •2007: stage1 approval
- •2008-2010 : development of prototype detectors w/ Grant-in-Aid(2007-8, 2009-13)
- •2011 : additional parts of the spectrometer magnet , R/O circuit development

- test using pion beam @ J-PARC
- •2012 : magnet re-construction
 - all the detectors are installed in the magnet
 - production of the detectors/circuits
- •2013 : staged goal of the spectrometer construction(w/ 8 detector modules) : ready for the beam
 - (beam power is enough for 10^10 /spill at High-p)
- •2014-15: production of detector modules (depending on the budget)

Impact of E16

- hadron modification are observed in several experiments but interpretation is not converged: "mass dropping or broadening?"
 - theoretically the question is oversimplified: T- dependence, momentum dependence
 - analysis difficulties in ρ/ω in the dilepton decay channel
 - small statistics and small data sets
- pin down the phenomena for the vector meson in nuclei ($\rho=\rho_0$, T=0) using ϕ meson
 - confirm the E325 observation with improved resolution(x2) and statistics (x100)
 - matter-size dependence and momentum dependence will be examined systematically
 - first measurement of the dispersion relation of hadrons in nuclear matter
- establish the QCD effect
 - mass generation due to the chiral symmetry breaking
- Further Step (future experiment)
 - slow ϕ at HIHR beam line with $10^9 \, \pi$ beam, $\mu\mu$ pair measurement, etc.
 - higher density state using medium-energy HI collisions
 - chiral phase transition in the high-density region

International competition

- FAIR (GSI upgrade: new accelerator SIS 100 is funded)
 - Two spectrometers for the heavy-ion collisions are funded
 - HADES: 2-8 GeV: start ~2018
 - detectors will be moved from SIS 18 to SIS 100, as the 1st experiment
 - CBM: 15-30 GeV: probe the high-density state
 - newly constructed
 - Detector acceptances for the A+A: relatively forward
 - not suitable to detect slower mesons in p+A reactions
 - however, a clue is seen in 3.5 GeV p+A in HADES
 - design value of the interaction rate (10⁷Hz) is as high as E16
- We strongly urge the construction start of High-p line
 - If even a part of magnets are constructed in the JFY 2012, they can be aligned in the long shutdown in 2013 and thus the earlier completion is expected.

Schedule

This year(JFY)

possibly compete with HADES/FAIR

E16 Detector R&D

GEM R&D for Tracker/HBD

- GEM Tracker to cope with the high rate
 - $Ar+CO_2(70:30)$
 - angled injection, 2D readout, etc.
 - required position resolution 100um is achieved for angled tracks w/ FADC R/O
 - Hadron Blind Detector to trigger the electrons
 - CsI photocathode, CF₄ gas purity, etc.
- Domestic Large size (300mmx300mm) GEM
 - kapton (Polyimide, PI) t=50um for GT
 - LCP , t=100 um for HBD

High-p WS@KEK 2012May16 S.Yokkaichi

Beam test results of prototype detectors

HBD (Hadron-Blind Cherenkov detector) **GEM Tracker** Cherenkov photon electron track l<mark>l</mark>ead Glass Calorimeter Gas Cherenkov GEM Tracker/Photon detector **UV** Cherenkov photons are QE upto 40% 100x100 200x200 300x300 detected with 8.5 9. Photon Energy [eV Required position resolution CsI-evaporated (~100μm) is achieved wavelength [nm] LCP-GEM

Large size (300x300mm) PI- and LCP-GEM are successfully worked for a electron beam

and CF₄ gas

- Stability for a pion beam should be checked. : Test @ J-PARC at June.
- GEM Tracker is successfully worked.
- Improvement of the photo-detection efficiency of HBD is on going

Three types of 2D-R/O board of GEM Tracker

- thin two-dimensional read out board
 - base: t=25 um kapton
 - strip pitch : X: 350 um, Y:350 um
 - required resolution X:100um , Y: 700um
 - double side type
 - Y- efficiency is bad (~80%)
 - mesh type
 - amplified electrons can reach both X and Y strips by etching-out of base kapton
 - expensive and fragile
 - BVH (blind-via-hole) type
 - island electrodes between X strips to transport the electrons to Y strips via holes
 - pitch of Y is changed: 1400um
 - tested in Oct. 2011, works well

GEM Tracker test @ LEPS

- •1st 100mm x 100mm production type Tracker
 - BVH-type R/O board
 - Al-mylar cathode
 - gas-tight is kept by the GEM frame, Al-mylar and the R/O board
 - resolution (efficiency) under the gain=5000
 - 105μm (98%) for X
 - 310 μm (93%) for Y : can be improved by gain=10000

HBD (Hadron Blind Detector)

- HBD (Thr. type Gas Cherenkov)
 - developed thanks to Weizmann/Stony Brook
 - Ionized electrons are collected by mesh
 - photoelectrons are amplified by 3 stages
 - ionized electrons are amp. by only last 2 stages
 - → can detect only particles with cherenkov photons.
 - (1/100 of pion rejection)
 - GEM (LCP 100um: higher gain) by Scienergy.Co.
 - Csl evaporation by Hamamatsu & RIKEN
 - QE improved at RIKEN : beam test at 2011/3
 - 10 photoelectrons detected (cf. PHENIX ~20 p.e.)
 - Improvement of gas purity and GEM HV config. are required
 - Test @ J-PARC in June
 - pion rejection & p.e. improvement

Concept of HBD

CF4 radiator

E=0

E_GEM

Csl

E_transfer

pads

High-p WS@KEK 2012May16 S.Yokkaichi

6 S.Yokkaichi

Lead Glass from TOPAZ / E362

(Apr. 2012)

FM magnet re-modeling

Hadron hall

yoke extension

additional pole piece

delivered in Feb.2012 (managed by R. Muto)

Summary

- Investigation of the hadron spectral modification in nuclear matter is a study of the nature of QCD vacuum
 - A major origin of hadron mass is the spontaneous breaking of chiral symmetry and the spectral modification could be a signal of the chiral restoration
 - Spectral modification of hadrons is observed in hot (HI collisions) and dense (nuclei) matter in the dilepton invariant mass spectra
 - but discussion is not converged : chiral restoration or not
- J-PARC E16 will measure the vector meson modification in nuclei with the ee decay channel, using 30GeV primary proton beam at the High-p line.
 - confirm the observation by KEK-PS E325 and provide more precise information of the mass modification
 - establish the QCD-originated mass
 - preparation is underway
 - Staged Goal of construction : the end of JFY 2011 h-p WS@KEK 2012May16 S.Yokkaichi

back up

Spectrometer Magnet re-construction

- FM magnet (used by KEK-PS E325)
 - additional poles and yokes
 - larger acceptance/stronger field
 - decompose -> proper location on the High-p line -> re-construction with new parts
 - a pit (digging of the floor concrete) is required under the magnet
 - cannot be managed by Grant-in-Aid : at least, 'overhead' of grants should be used.
 - takes 6-8 months
 - scheduling of the area and overhead crane usage
 - by the end of JFY2012
- detector installation in JFY2013
 - all the detectors are installed in the Magnet

CLAS-G7(PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+e^-$
- no anomaly for p >0.8GeV/c

CLAS-G7(PRC78(2008)015201)

- $\gamma + A \rightarrow V \rightarrow e^+e^-$
- no anomaly for p >0.8GeV/c : ρ mass dropping <4% in 95%C.L.
 - ρ width broadening (up to ~45%) is consistent with the collisional broadening
 - ω modification is not included in the analysis

CBELSA/TAPS (PRL94(05)192303)

800

600

400

200

[12 MeV/c²]

counts / |

- $\omega \rightarrow \pi^0 \gamma (\rightarrow \gamma \gamma \gamma)$
- anomaly in γ +Nb, not in γ +p
 - shift param. k~0.14

CBELSA/TAPS

- $\gamma + A \rightarrow \omega \rightarrow \pi^0 \gamma (\rightarrow \gamma \gamma \gamma)$
- excess in γ +Nb, not in γ +p [PRL94(05)192303]

 excess is not reproduced significantly by the following experiment [EPJA47(11)16]

dispersion of quasi particle in condensed matter

- ARPES (angle-resolved photoemission spectroscopy) measurements
 - Mass acquisition of Dirac electron in the topological insulator
 - heavy electron w/ Kondo-effect in CeCoGe_{1.2}Si_{0.8}

Note: shape and its nuclear matter size / momentum dependence

size of "mass shift" or "mass dropping" (△m)

proportional to the density : physics

- could be dependent on the momentum : physics

number of "shifted" meson

- proportional to the matter size : experimental viewpoint : use larger nuclei

- depend on the meson life

βγ of mesons : experimental viewpoint: select slower

decay width change : physics

observed shape

- depend on the "shift", width, and density distribution of the nuclei

width broadening by absorption

- Attenuation measurements:
 - absorption in nuclei evaluated from the A-dependence of production CS using theoretical models (Glauber, Valencia, Giessen...)
 - additional width: $\Gamma_{abs} = \hbar \rho \beta c \sigma_{abs}$
- LEPS: ϕ : σ_{abs} = 35mb, p=1.8 GeV/c [PLB608(05)215] (\rightarrow Γ = ~100 MeV)
- TAPS: ω : $\sigma_{abs} = 70$ mb, p=1.1GeV/c, $\Gamma = \sim 150$ MeV [PRL100(08)192302]
- CLAS: φ: 16-70mb, 2 GeV/c, Γ=23-100MeV [PRL105(10)112301]
 - A-dependence of ω (p=1.7GeV/c) is not reproduced by any model
- ANKE: φ: 14-21mb, 0.6-1.6GeV/c, 50-70MeV [arXiv:1201.3517v1]
 - 2.83 GeV p+A
- Note:
 - different from the old higher-energy photo-production data
 - No one measured the width directly through the mass shape

E325 A-dependence of the meson production cross sections

- values for the CM backward
- consistent w/ the former measurement for ρ meson by Blobel (PLB48(1974)73)
- Nuclear dependence $\alpha_{_{o}} = 0.937$ corresponds to about σ_{MN} =3.7mb Sibirtsev et.al. EPJA 37(2008)287)

additional Γ =12 MeV for 2 GeV/c ϕ $(\beta=0.9)$: consistent with MeV (i.e. $k_2 = 2.6$)

Remark:

 Γ_{ϕ} =15 MeV at m_{ϕ}=985MeV is consistent with Oset & Ramos et.al (NPA679(2001)616)

nuclear mass number