Measurements of Spectral Change of Vector Mesons in Nuclear Matter

<u>Satoshi Yokkaichi</u> (RIKEN Nishina Center)

- physics
- precedent experiment E325
- proposed J-PARC E16
- status of E16
- expected results in the 1st stage
- summary

J-PARC E16 Collaboration

RIKEN S.Yokkaichi, H. En'yo, F. Sakuma, M. Sekimoto KEK K.Aoki, K.Ozawa, R. Muto, Y.Morino, S. Sawada

U-Tokyo K.Kanno, W.Nakai, Y.Obara,

T.Shibukawa, S.Miyata, H.Murakami

RCNP Y.Komatsu, H. Noumi, T.N.Takahashi

CNS, U-Tokyo Y.S.Watanabe NiAS H.Hamagaki

Kyoto-U M. Naruki, S.Ashikaga Hiroshima-UK. Shigaki

JASRI A. Kiyomichi BNL T.Sakaguchi

JAEA H.Sako, S.Sato, H. Sugimura

U-Tsukuba T.Chujo, S.Esumi Osaka-U R.Honda

spectral change of vector mesons

- hadron as the elementary excitation of QCD vacuum
 - elementary excitation on a ground state : changed when the ground state is changed
 - change of excitation reflects the vacuum nature: symmetry, phase
 - condensed matter: experimental examples, as the phonon softning in ferroelectric crystal around Tc
 - hadroninc spectral function could be changed in the hot and/or dense matter, different vaccum on the QCD phase diagram
 - various theoretical calculations
- vector meson : dilepton decay
 - theoretically, spectral function probed by virtual photon
 - experimentally, smaller final-state interaction is expected
 - many dilepton measurements have been performed in the world
 - in hot matter : high-energy HI collision
 - in dense matter (nuclei) : γ+A, p+A reactions
 - - isolated and narrow resonance unlike the ρ and ω mesons case (ρ/ω interfere, etc)

vector meson spectra in dense nuclear matter (theory)

hadronic matter, changing density ρ , excited by induced proton / γ / HI, mass spectrum is measured by dilepton.

Klingle, Kaiser, Weise [NPA 624(97)527] density $\rho = \rho_0/2$, ρ_0

QCD phase diagram

observed dilepton spectra in the world

M. Naruki et al., PRL 96 (2006) 092301 R.Muto et al., PRL 98 (2007) 042501

At the lower energy,

- better S/N
- smaller production cross section²⁰⁰
- possibly simpler environment (T=0, no time evolution)

Expected Invariant mass spectra in ee

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity

 could be enhanced for slower mesons & larger nuclei p p p

2) decay outside nuclei

1) decay inside nuclei

E325 observed the meson modifications

- in the e⁺e⁻ channel
- below the ω and φ, statistically significant excesses over the known hadronic sources including experimental effects

Fitting results (ρ/ω)

1) excess at the low-mass side of ω

To reproduce the data by the fitting, we have to exclude the excess region: 0.60-0.76 GeV

2) ρ meson component seems to be vanished. (ρ/ω =1.0±0.2 in a former experiment)

<u>e[±]e[±] spectra of φ meson (divided by βγ)</u>

 $\beta \gamma < 1.25$ (Slow)

 $1.25 < \beta \gamma < 1.75$

 $1.75 < \beta \gamma \text{ (Fast)}$

<u>e</u>[±]<u>e</u>[±] spectra of ϕ meson (divided by $\beta\gamma$)

 $\beta \gamma < 1.25$ (Slow)

 $1.25 < \beta \gamma < 1.75$

 $1.75 < \beta \gamma \text{ (Fast)}$

only slow/Cu is not reproduced in 99% C.L.

2) decay outside nuclei

Discussion: modification parameter

 MC type model analysis to include the nuclear size/meson velocity effects

generation point : uniform for φ meson

from the measured A-dependence

measured momentum distribution

Woods-Saxon density distribution

 decay in-flight: linearly dependent on the density of the decay point

- dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
- width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

$$k_1 = 0.034_{-0.007}^{+0.006}$$
 $k_2^{\text{tot}} = 2.6_{-1.2}^{+1.8}$

For ϕ , 3.4% mass reduction (35MeV) 0. 3.6 times width broadening(15MeV) at ρ_0

1) decay inside nuclei

J-PARC E16

• Systematic measurements of the spectral change of ϕ (and ρ/ω) in nuclei throught the e⁺e⁻ channel with highest statistics (100000 ϕ) & best mass resolution (~5 MeV) in the world

use 30GeV p+A
$$\rightarrow \phi/\rho/\omega$$
 +X, $\phi/\rho/\omega \rightarrow e^+e^-$

- confirm the results of precedent exp. KEK-PS E325, establish the spectral change of $\phi/\rho/\omega$ in nuclei w/ higher statistics
- nuclear matter size dependence (H, C, Cu, Pb): double-peak shape for the very slowly-moving \(\phi \) mesons in larger nuclei
- first measurement of the momentum dependence (dispersion relation) in nuclear matter
- New spectrometer is required to collect high statistics, to cope with the 10MHz interactions at the target w/ 30 GeV primary proton beam of ~10¹⁰ pps

theory: spectral modification of φ at ρ₀

parametrize the predicted spectral change with $\,$ m & Γ

φ meson in vacuum	m = 1019.456 MeV	Γ= 4.26 MeV
KEK-PS E325 experiment PRL 98 (2007) 042501	$\Delta m = -35(28~41) \text{ MeV}$	15 (10~23) MeV
Hatsuda & Lee PRC 46 (1992) R34	$\Delta m = -(12-44)MeV$	not estimated
Klingl, Waas, Weise PLB 431(1998) 254	$\Delta m < -10 MeV$	~45 MeV
Oset & Ramos NPA 679 (2001) 616	$\Delta m < -10 MeV$	~22 MeV @ m=1020 ~16 MeV @ m=985
Cabrera & Vacas PRC 67 (2004) 045203	$\Delta m = -8MeV$	~30 MeV @ m=1020

expected shape w/ various parameters

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV Γ : 15 MeV Γ : 15 MeV

KWW-98

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

Γ : 50 MeV

Γ : 50 MeV

•using the parameters, spectra are approximated with the relativistic Breit-Wigner shape including experimental mass resolution

Pb

expected shape w/ various parameters

 Γ : 15 MeV Γ : 15 MeV

Γ : 50 MeV

KWW-98

 Δm : $-35 \text{ MeV} \Delta m$: -10 MeV

Γ : 50 MeV

Pb

blue: decays inside the half-density radius of nuclei in the MC

E16 Detectors

- ~10 MHz interaction at the targets with ~5 GHz of 30GeV proton beam
- Electron ID: Hadron Blind Detector(HBD) & lead glass EMC (LG)
- Tracking: GEM Tracker (3 layers of X&Y) / SSD (1layer of X, most inner)
 - 5kHz/mm² at the most forward, 100μm resolution(x) for 5 MeV/c² mass resolution
 - to avoid mistracking due to the accidental hits, SSD introduced
- Spectrometer Magnet: 1.77 T at the center, 0.78Tm for R=600 mm

E16: development & achieved performance

Hadron Blind Cherenkov Detector(HBD)

pion suppression down to ~0.03% is achieved with the combination of the two stage of electron-ID counters; HBD & LG

Experiment will start in early 2019.

position resolution 100 μm is achieved to keep the 5-6 MeV mass resolution for the slowly moving φ mesons.

450 400 350 300 250 200 150 100 035-04-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04 (Get

The spectromter magnet has been reconstructed and located at the new Highmomentum beam line, which is under construction and completed in early 2019.

I IIINI ZU IU ZU IUDGUUJ O. I URRAIUIII

Near future of the J-PARC Hadron hall

High-p line in the J-PARC Hadron hall

• High momentum line is under consturction

High-p line in the J-PARC Hadron hall

- High momentum line is under consturction
- completed in early 2019

<u>experimental area plan</u>

Detectors:GTR frame in the magnet

Detectors: HBD

Preparation status as of 2016/Dec.

- Basic performance of GTR/HBD/LG is confirmed
 - Production of parts is started (GEM, R/O board) & LG
 - parts for 6 GTR & 2 HBD, 8 LG modules are almost ready.

- Spectrometer magnet reassemble is completed.
- R/O circuits
 - GTR preamp is OK. HBD preamp w/SRS is also OK.
 - SRS-ATCA is worked basically
 - GTR trigger ASIC is OK, circuit board v2 is delivered
 - discharge protection
 - LG-ADC will be made in this JFY.
 - HBD trigger ASIC & trigger logic modules in tests.

E16: staged construction plan

The spectrometer consists of 26 (=3x9-1) detector modules in a triple-decker

→ start with 8 modules in the middle deck

(26 modules)

E16: simulation

- Geant4 detector simulation
 - including detector performance
 - pion rejection 0.6%(5%) by HBD(LG)
 - electron efficiency 63%(90%) by HBD(LG)

- simulate the accidental hits in GTR: up to 5 kHz/mm²
- SSD used in test exp. : resolution 30um/4ns, X_0 =0.3%
- simple model of spectral change: k₁=0.034, k₂=2.6
 - modified ϕ → ee : input to Geant4 simulation, w/ accidental hits on trackers
 - compared with the vacuum (Briet-Wigner) shape
- background tracks in the e⁺e⁻ spectra in the φ-mass region
 - pion misID, e⁺e⁻ from Dalitz decay & γ conversoin: pions from JAM
- Cu target (80um x 2), 1x10¹⁰ pps, 8 modules

E16: expected spectrum for Cu w/ bkg

- significant change: fit with [vacuum shape+exponential bkg] fails, due to the excess left side of the peak
- excluding the excess region(0.94-1.01GeV/c²), fit succeeds

E16: expected spectra

- divide to four $\beta \gamma$ regions
- $\beta \gamma$ dependence is examined \rightarrow next

excess ratio in E325

Nexcess/(Nexcess+Nphi)

excess ratio

- Nexcess/(Nexcess+Nphi)
 - only slow Cu is significant in E325

larger excess in lower $\beta\gamma$ (slower) bin : consistent with the modification in nuclei

excess ratio E16

- Nexcess/(Nexcess+Nphi)
 - all bins for Cu are significant in E16

- larger excess in lower βγ (slower) bin :
 - the tendency become more clear and significant than that of E325.

Summary

- spectral change of hadrons reflects QCD vacuum nature.
- dilepton spectra in medium have been measured, and spectral change is observed in many experiments, including KEK-PS E325.
- J-PARC E16 will measure the spectral change of vector mesons in nuclei with the ee decay channel, using 30GeV proton beam at the newly constructed high-momentum beam line in the J-PARC hadron hall.
 - confirm the observation by E325 and provide more systematic information of the spectral modification (as nuclear-size dependence, momentum dependence, etc) of vector mesons in the finite density matter.
 - preparation is underway and detector mass-production was started.
 - Staged goal of construction: 8 modules out of 26.
 - expected spectra for Cu target in the first stage are presented.
 - confirm the E325 results clearly even in the limited acceptance and stat.
 - beamline construction is also on-going, possibly completed in early 2019.