Measurement of spectral modification of vector mesons in nuclei at J-PARC

Satoshi Yokkaichi (RIKEN Nishina Center)

ELPH 研究会 C023

「原子核中におけるハドロンの性質とカイラル対称性の役割」

- physics
- precedent experiment KEK-PS E325
- proposed experiment J-PARC E16
- expected results in E16 Run-1
- summary

J-PARC E16 Collaboration

RIKEN S. Yokkaichi, H. En'yo, K. Kanno, W. Nakai,

F. Sakuma, M. Sekimoto

KEK K.Aoki, K.Ozawa, R. Muto, Y.Morino, S. Sawada

H.Sugimura NiAS H.Hamagaki

U-Tokyo S.Miyata, H.Murakami, T. Murakami

RCNP Y.Komatsu, H. Noumi, T.N.Takahashi

Kyoto-U M. Naruki, S.Ashikaga, M. Ichikawa, K.N.Suzuki

JASRI A. Kiyomichi BNL T.Sakaguchi

JAEA H.Sako, S.Sato Hiroshima-U K. Shigaki

U-Tsukuba T.Chujo, S.Esumi, Y.S.Watanabe

Tohoku-U R.Honda

In-medium mass modification of hadrons 2

- hadron as the elementary excitation of QCD vacuum
 - elementary excitation on a ground state : changed when the ground state is changed
 - · change of excitation reflects the vacuum nature : symmetry, phase
 - condensed matter: experimental examples, as the phonon softening in ferroelectric crystal around Tc
 - hadronic spectral function could be changed in the hot and/or dense matter, different vacuum on the QCD phase diagram
 - various theoretical calculations
- vector meson : dilepton decay
 - theoretically, spectral function probed by virtual photon
 - experimentally, smaller final-state interaction is expected
 - many dilepton measurements have been performed in the world
 - in hot matter : high-energy HI collision
 - in dense matter (nuclei) : γ+A, p+A reactions
 - - Exp: isolated and narrow resonance unlike the ρ and ω case (ρ/ω interfere, etc)
 - Th: moment of spectral fn. is related to $\langle \overline{s}s \rangle_0$

vector meson spectra in dense nuclear matter (theory)

Klingle, Kaiser, Weiße [NPA 624(97)527] density $\rho = \rho_0/2$, ρ_0

@ELPH 2018Sep12 S.Yokkaichi

QCD phase diagram

dilepton measurements in different vacuum

observed dilepton spectra in the world 6

Dilepton spectrum measured at KEK-PS E3257

E325: measured kinematic distribution⁸

of $\omega/\phi \rightarrow ee$

 $0 < P_T < 1 \text{ GeV/c}, \quad 0.5 < y < 2 \quad (y_{CM} = 1.66)$

 $1 < \beta \gamma (=p/m) < 3$ (0.8<p<2.4GeV/c for ω , 1<p<3 GeV/c for ϕ)

Expected Invariant mass spectra in ee9

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson): amount depend on the nuclear size and meson velocity
 - could be enhanced for slower mesons & larger nuclei

1) decay inside nuclei

2) decay outside nuclei

E325 observed the meson modifications

- in the e⁺e⁻ channel
- below the ω and φ, statistically significant excesses over the known hadronic sources including experimental effects

<u>e[±]e[±] spectra of φ meson (divided by βγ¹)</u>

 $\beta \gamma < 1.25$ (Slow)

 $1.25 < \beta \gamma < 1.75$

 $1.75 < \beta \gamma \text{ (Fast)}$

<u>e[±]e[±] spectra of φ meson (divided by βγ¹)</u>

 $\beta \gamma < 1.25$ (Slow)

 $1.25 < \beta \gamma < 1.75$

 $1.75 < \beta \gamma \text{ (Fast)}$

only slow/Cu is not reproduced in 99% C.L.

@ELPH 2018Sep12 S.Yokkaichi

2) decay outside nuclei

Discussion: modification parameter

MC type model analysis to include the nuclear size/meson velocity effects

generation point : uniform for ϕ meson

from the measured A-dependence

measured momentum distribution

- Woods-Saxon density distribution
- decay in-flight: linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by <u>Hatsuda &</u> Lee (κ₁) , Oset & Lamos (Γ)

$$k_1 = 0.034_{-0.007}^{+0.006}$$
 $k_2^{\text{tot}} = 2.6_{-1.2}^{+1.8}$

р 150 100 50 For ϕ , 3.4% mass reduction (35MeV) 0.9 1.0 [GeV] 3.6 times width broadening(15MeV) at ρ_0 @ELPH 2018Sep12 S.Yokkaichi

1) decay inside nuclei

J-PARC E16

- Systematic measurements of the spectral change of ϕ (and ρ/ω) in nuclei throught the e⁺e⁻ channel with high statistics (~100000 ϕ) & best mass resolution (~5 MeV) in the world, with various nuclei, various velocity bins.
- use 30 GeV p+A (C/Cu/Pb/CH₂) $\rightarrow \phi/\rho/\omega + X$, $\phi/\rho/\omega \rightarrow e^+e^-$
 - confirm the results of precedent exp. KEK-PS E325, establish the spectral change of $\phi/\rho/\omega$ in nuclei w/ higher statistics
 - nuclear matter size dependence (H, C, Cu,
 Pb): double-peak shape for the very slowly-moving φ mesons in larger nuclei
 - first measurement of the momentum dependence (dispersion relation) in nuclear matter
- New spectrometer is required to collect high statistics, to cope with the 10MHz interactions at the target w/ 30 GeV primary proton beam of ~10¹⁰ pps

E16 Detectors

- ~10 MHz interaction at the targets with 1x10¹⁰ / 2 sec spill (5~6 sec cycle) of 30 GeV proton beam at the high-p line in the hadron hall, ~10 times as high as that of E325, in order to accumulate the higher statistics.
- Electron ID: Hadron Blind Detector(HBD) & lead glass EMC (LG)
- Tracking: GEM Tracker (3 layers of X&Y) / SSD (1 layer of X, most inner)
 - 5 kHz/mm² at the most forward, 100μm resolution(x) for 5-6 MeV/c² mass resolution
 - to avoid mistracking due to the accidental hits, SSD is introduced

current status

- Detector development is completed and production is on-going.
- High-p beamline is under construction by KEK, toward Jan. 2020.
- Run-0 (commissioning run) is approved as stage-2 (PAC24, Jul. 2017)
 - 40 shifts: 10 shifts of beam halo minimization and 30 shifts of detector commissioning (including background study)
 - PAC & FIFC concerns
 - two types of background: random & combinatorial should be studied
 - trigger/DAQ integrated test should be performed under the realistic beam condition
 - Based on the results of Run-0, stage-2 approval for Run-1 will be requested.
- Budget in 2018
 - KAKENHI S 1.5 Oku-yen (2018-22) (Yokkaichi) is granted

Staging strategy (2018 Jul.)

- RUN 0 -- Jan. 2020 -- 40 shifts, C/Cu targets
 - 6 (SSD) + 6 (GTR) + 2 (HBD) + 2 (LG)

- 6 (SSD) + 8 (GTR) + 4 (HBD) + 4 (LG)
 - with KAKENHI-S (2018-22)
- Beamline / Detector commissioning + cross section
 - Prove that the E16 spectrometer works
- RUN 1 -- 2020-21 -- 160 shifts, C/Cu targets
 - 8 (SSD) + 8 (GTR) + 8 (HBD) + 8(LG)
 - Physics data taking. ϕ : 15k, ω : 77k
 - 6 (SSD) + 8 (GTR) + 6 (HBD) + 6(LG) is secured
 - Due to the time profile of budget, completion of 6 HBD+6
 LG in JFY 2019, i.e. Run-0, is difficult
 - To obtain new SSD, collaboration w/ CBM will start in this FY
- RUN 2 -- 320 shifts, C/Cu/Pb targets
 - 26 (SSD) + 26 (GTR) + 26 (HBD) + 26 (LG)

RUN 2 (26 modules)

E16: analysis strategy

- model-independent analysis
 - compare the data with the vacuum shape (Breit-Wigner)
 - difference is significant or not
 - examin the $\beta\gamma$ dependence of difference
 - larger difference is expected in slower component
- model-dependent analysis
 - fit the data by theoretical spectral functions (cf. Gubler & Weise [NPA954(2016)125])
 - theoretical input is important, particularly the momentum dependence of mass shape for φ meson
 - determine the modification parameter as E325 performed
 - momentum dependence will be deduced with higher stat.

E16: simulation for the Run-1

- Geant4 detector simulation
 - including detector performance
 - pion rejection 0.6%(5%) by HBD(LG)
 - electron efficiency 63%(90%) by HBD(LG)

- simulate the accidental hits in GTR: up to 5 kHz/mm²
- SSD used in test exp. : resolution 30um/4ns, X_0 =0.3%
- Cu target (80um x 2), 1x10¹⁰ proton/spill, 8 modules
 - above accidental bkg corresponds to Cu 80um x 4 + C 800um
- - (a)Breit-Wigner for vacuum shape
 - (b)simple model of spectral change: $k_1=0.034$, $k_2=2.6$
 - pole mass 3.4% reduced and width broadened x 3.6 at ρ_0
 - (a) and (b) are compared to check the sensitivity@ELPH 2018Sep12 S.Yokkaichi

E16: expected φ in Run-1, for Cu, w/ bkg

- - 1x10¹⁰ protons/spill, 8 modules
- approx. 8 MeV of mass resolution
 - for the "all (integrated) $\beta \gamma$ " region
 - including internal radiative correction
 - including experimental effects as target & detector materials, misalignment, mistracking, etc.
- combinatorial background : ee, $e\pi$ and $\pi\pi$ pairs (ratio ~13:7:1)
 - π^0 Dalitz decays, γ conversion, and misidentified π
 - pions : evaluated by the cascade code JAM

E16 sim.: comparison with vacuum shape

black point: expected data (modified φ), red histo: vacuum φ shape

E16 sim: comparison with vacuum shape

- black point : expected data (modified φ), red histo: vacuum φ shape
- significant change can be observed
 - left panel: fit with [vacuum shape+exponential bkg] fails, due to the excess left side of the peak

E16 sim: comparison with vacuum shape

- black point: expected data (modified φ), red histo: vacuum φ shape
- significant change can be observed
 - left panel: fit with [vacuum shape+exponential bkg] fails, due to the excess left side of the peak
- right panel: excluding the excess region(0.94-1.01GeV/c²), fit succeeds
 @ELPH 2018Sep12 S.Yokkaichi

E16 sim.: βγ dependence

- divide to four $\beta\gamma$ regions : same results as for the all $\beta\gamma$
- $\beta \gamma$ dependence of excesses is examined \rightarrow next

@ELPH 2018Sep12 S.Yokkaichi

excess ratio in E325

- Nexcess/(Nexcess+Nphi)
 - index of the modification

excess ratio in E325

- Nexcess/(Nexcess+Nphi)
 - only slow Cu is significant in E325

 larger excess in lower βγ (slower) bin : consistent with the modification in nuclei

excess ratio in E16 sim

- Nexcess/(Nexcess+Nphi)
 - all bins for Cu are significant in E16

• larger excess in lower $\beta\gamma$ (slower) bin :

the tendency become more clear and significant than that of E325.

E16: Run-2 prospect

- Pb targets (30um x 3)
- full (26) modules x 106 days
- modified BW $(k_1=0.034 \& k_2=2.6)$
- selecting only $\beta\gamma$ <0.5 (very slow)

(combinatorial bkg is not shown)

mass resolution 5.8+-0.1 MeV (excluding frame-hit events)

E16: analysis strategy

- model-independent analysis
 - compare the data with the vacuum shape (Breit-Wigner)
 - difference is significant or not
 - examin the $\beta\gamma$ dependence of difference
 - larger difference is expected in slower component
- model-dependent analysis
 - fit the data by theoretical spectral functions (cf. Gubler & Weise [NPA954(2016)125])
 - theoretical input is important, particularly the momentum dependence of mass shape for φ meson
 - determine the modification parameter as E325 performed
 - momentum dependence will be deduced with higher stat.

E16: another modification

- Gubler-Weise (GW) type spectral function of φ [NPA954(2016)125]
 - in vacuum: based on the experimental data (ee->KK) by Babar
 - in medium: hadronic calculation: KN interaction
- Calculation code is provided by coutresy of P. Gubler

E16: GW shape case

- data point: generated using the GW shape in medium
- fit: GW shape in vacuum + exponential bkg

- Fit fails for the four $\beta \gamma$ regions.
 - In-medium spectral change of this type can also be detected within the expected detector performance and statistics.

E16: momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extraporation to p=0
- curve: Lee's prediction (PRC57(98)927, up to 1GeV/c)

E16: momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extraporation to p=0
- curve: Lee's prediction (PRC57(98)927, up to 1GeV/c)
- full statistics (E325 x100)

E16: momentum dependence and stat.

- momentum dependence of mass
 - experimentally: extraporation to p=0
- curve: Lee's prediction (PRC57(98)927, up to 1GeV/c)
- full statistics (E325 x100) & limited stat. (E325 x 10)

Preparation status as of 2018/Jul.

- Basic performance of SSD/GTR/HBD/LG is confirmed
 - parts for 6 GTR & 2 HBD, 2 LG modules were delivered.
 - rest of parts for 8-4-4 config will be purchased in this FY
 - 6 SSD are borrowed from E03 group
 - construction of frames/supports for GTR/HBD/LG is started.
 - SSD support on the target chamber will be ordered in this FY

R/O circuits

- FEM for 6 GTR, 2 HBD and 2 LG modules were already delivered and rest wil be purchased.
- GTR trigger ASIC v2 production was OK → ASD board v2 will be ordered.
- HBD trigger ASD (discrete) v1 is ordered
 - will be tested in Aug-Sep. toward the production
- Trigger logic modules were delivered, firmware development is in progress.
- Trigger circuit /DAQ integrated test will start in Nov.
- Three students from Kyoto Univ. (supported by JSPS/RIKEN/JAEA) are eagerly working on LG, firmware, and ASD.
- Freshmen will come in autumn to work on SSD, GTR, etc.

Detectors: GTR set on the frame

100mm x 100mm

200mm x 200mm

and 300mm x 300mm

@ELPH 2018Sep12 S.Yokkaichi

Detectors: GTR frame in the magnet

Detectors: HBD

@ELPH 2018Sep12 S.Yokkaichi

Detectors: LG frame

LG frame-pillar

by S. Ashikaga (Kyoto, D1)

R/O and trigger modules

by M.Ichikawa (Kyoto, D1)

by K.N.Suzuki (Kyoto, M2)

@ELPH 2018Sep12 S.Yokkaichi

experimental area

experimental area

Summary

- Mass modification of hadrons in medium reflects QCD vacuum nature.
- Dilepton spectra in medium have been measured, and the modification (spectral change) is observed in many experiments, including KEK-PS E325.
- J-PARC E16 will measure the modification of vector mesons in nuclei with the ee decay channel, using 30 GeV proton beam at the newly constructed high-momentum beam line in the J-PARC hadron hall.
 - confirm the observation by E325 and provide more systematic information of the spectral modification (as nuclear-size dependence, momentum dependence, etc) of vector mesons in the finite density matter.
 - preparation is underway and detector mass-production has been started.
 - expected spectra for Cu target in Run-1 are presented.
- Beamline and detector commissioning (Run-0) will start in Jan. 2020
- Theoretical inputs are important to analyse the data.
 - spectral shape, momentum dependence, etc.