Hadron mass modification experiments at J-PARC

Satoshi Yokkaichi (RIKEN Nishina Center)

Meeting on "Origin of nucleon mass and its decomposition"@KEK

- physics
- precedent experiment KEK-PS E325
- proposed experiment J-PARC E16
- expected results in Run-1
- other experiments @J-PARC
- summary

J-PARC E16 Collaboration		
RIKEN S.Yokkaichi, H. En'yo, F. Sakuma, M. Sekimoto		
KEK K.Aoki, K.Ozawa, R. Muto, Y.Morino, S. Sawada		
H.Sugimura NiAS H.Hamagaki		
U-Tokyo K.Kanno, W.Nakai, S.Miyata, H.Murakami		
RCNP Y.Komatsu, H. Noumi, T.N.Takahashi		
Kyoto-U M. Naruki, S.Ashikaga, M. Ichikawa		
JASRI A. Kiyomichi BNL T.Sakaguchi		
JAEA H.Sako, S.Sato Hiroshima-U K. Shigaki		
U-Tsukuba T.Chujo, S.Esumi,Y.S.Watanabe		
Tohoku-U R.Honda		

In-medium mass modification of hadrons²

- hadron as the elementary excitation of QCD vacuum
 - elementary excitation on a ground state : changed when the ground state is changed
 - change of excitation reflects the vacuum nature : symmetry, phase
 - condensed matter: experimental examples, as the phonon softening in ferroelectric crystal around Tc
 - hadronic spectral function could be changed in the hot and/or dense matter, different vacuum on the QCD phase diagram
 - various theoretical calculations
- vector meson : dilepton decay
 - theoretically, spectral function probed by virtual photon
 - experimentally, smaller final-state interaction is expected
 - many dilepton measurements have been performed in the world
 - in hot matter : high-energy HI collision
 - in dense matter (nuclei) : γ +A, p+A reactions
 - ϕ meson is simple (while cross section is smaller)
 - isolated and narrow resonance unlike the ρ and ω mesons case (ρ/ω interfere, etc)

Klingle,Kaiser,Weige <u>vector meson spectra in dense</u> **<u>nuclear matter (theory)</u>** Post & Mosel [NPA699(02)169] A ^T[GeV⁻²] 2 0 0 0.25 ρ-meson mlGevi 0.5 9 [GeV] 0.2 density $\rho = \rho_0$

QCD phase diagram

@KEK 2017Sep01 S.Yokkaichi

4

dilepton measurements in different vacuum

μ

vector mesons in HI-collisions have been measured through the dilepton spectra in relation to the chiral symemtry restoration

HADES/CBM

DLS/HADES

E325/*E16*

TAPS/CLAS

PHENIX/STAR

CERES/NA60

In hot and dense matter, spectral modification of vector mesons (dilepton invariant mass) are observed in many experiments

observed dilepton spectra in the world ⁶

Dilepton spectrum measured at KEK-PS E3257

M. Naruki et al., 1600 PRL 96 (2006) 092301 ω(783) 1400 R.Muto et al., 1200 PRL 98 (2007) 042501 1000 12GeV p+C/Cu $\rightarrow \phi/\rho/\omega + X, \phi/\rho/\omega \rightarrow e^+e^-$ 800 At the lower energy, 600 **\$(1020)** - better S/N : approx. 1:1 400 smaller production cross section²⁰⁰ possibly simpler environment 0.25 0.5 0.75 1.75 5 .25 bkg not subtracted (T=0, no time evolution)

E325: measured kinematic distribution⁸

of $\omega/\phi \rightarrow ee$

 $0 < P_{_{T}} < 1 \text{ GeV/c}, \quad 0.5 < y < 2 \quad (y_{_{CM}}=1.66)$

 $1 < \beta \gamma (=p/m) < 3$ (0.8<p<2.4GeV/c for ω , 1<p<3 GeV/c for ϕ)

Expected Invariant mass spectra in ee⁹

- smaller FSI in e⁺e⁻ decay channel
- double peak (or tail-like) structure :
 - second peak is made by inside-nucleus decay (modified meson) : amount
 depend on the nuclear size and meson velocity

@KEK 2017Sep01 S.Yokkaichi

2) decay outside nuclei

р

ሐ

1) decay inside nuclei

р

E325 observed the meson modifications¹⁰

- in the e⁺e⁻ channel
- below the ω and ϕ , statistically significant excesses over the known hadronic sources including experimental effects

Discussion : modification parameter ¹³

- MC type model analysis to include the nuclear size/meson velocity effects
 - - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

 $k_1 = 0.034_{-0.007}^{+0.006}$ For φ, 3.4% mass reduction (35MeV) 0. $k^{\text{tot}} - 2.6^{+1.8}$ 3.6 times width broadening(15MeV) at ρ_0

J-PARC E16

- Systematic measurements of the spectral change of φ (and ρ/ω) in nuclei throught the e⁺e⁻ channel with high statistics (~100000 φ) & best mass resolution (~5 MeV) in the world, with various nuclei, various velocity bins.
- use 30 GeV p+A (C/Cu/Pb/CH₂) $\rightarrow \phi/\rho/\omega + X$, $\phi/\rho/\omega \rightarrow e^+e^-$
 - confirm the results of precedent exp. KEK-PS E325, establish the spectral change of φ/ρ/ω in nuclei w/ higher statistics
 - nuclear matter size dependence (H, C, Cu, Pb) : double-peak shape for the very slowly-moving \$\phi\$ mesons in larger nuclei
 - first measurement of the momentum dependence (dispersion relation) in nuclear matter
- New spectrometer is required to collect high statistics, to cope with the 10MHz interactions at the target w/ 30 GeV primary proton beam of ~10¹⁰ pps

E16 Detectors

- ~10 MHz interaction at the targets with ~5 GHz of 30 GeV proton beam
- Electron ID : Hadron Blind Detector(HBD) & lead glass EMC (LG)
- Tracking : GEM Tracker (3 layers of X&Y) / SSD (1 layer of X, most inner)
 - $5kHz/mm^2$ at the most forward, 100µm resolution(x) for 5 MeV/c² mass resolution
 - to avoid mistracking due to the accidental hits, SSD introduced
- Spectrometer Magnet: 1.77 T at the center, 0.78Tm for R=600 mm

E16 : development & achieved performance

construction and completed in early 2019.

High-p line in the J-PARC Hadron hall

• E16 spectrometer magnet is already located

17

- 30 GeV primary protons of 1x10¹⁰ / 2 sec spill (5.52~6 sec cycle)
- secondary pions (unseparated) : ~2x10⁶ / spill @20 GeV/c
- will be completed in the 1st-half of 2019

E16: staged construction plan

The spectrometer consists of 26 (=3x9-1) detector modules in a triple-decker → start with 8 modules in the middle deck

E16: Proposed Run plan

- Run-0
 - commissioning of beam line and detectors
 - background measurements: beam halo, single rate, etc.
 - 40 shifts (~14 days)
- Run-1
 - 1st physics run, using Cu (80um x2) & C (400um) targets
 - 0.2% interaction length, 1 x 10^{10} proton/2sec :10MHz interaction
 - 8 modules x 160 shifts (~53 days)
 - ~15000 (12000) φ for the Cu (C) target. : cf. ~2400 in E325
- Run-2
 - full (26) modules, depending on the budgetary situation

E16: simulation for the Run-1

- Geant4 detector simulation
 - including detector performance
 - pion rejection 0.6%(5%) by HBD(LG)
 - electron efficiency 63%(90%) by HBD(LG)

- GTR charge response which reproduces the resolution 100um
 - simulate the accidental hits in GTR: up to 5 kHz/mm²
- SSD used in test exp. : resolution 30um/4ns, X₀=0.3%
- Cu target (80um x 2), 1x10¹⁰ proton/spill, 8 modules
- G4 input : $\phi \rightarrow$ ee tracks from
 - (a)Breit-Wigner for vacuum shape
 - (b)simple model of spectral change: $k_1=0.034$, $k_2=2.6$
 - pole mass 3.4% reduced and width broadened x 3.6 at ρ_0
 - (a) and (b) are compared to check the sensitivity

E16: expected ϕ in Run-1, for Cu, w/ bkg²¹

- ~15000 ϕ for Cu target in 160 shifts (53 days)
 - 1x10¹⁰ protons/spill, 8 modules
- input to G4: Breit-Wigner for φ meson
- approx. 8 MeV of mass resolution
 - for the "all (integrated) $\beta\gamma$ " region
 - including internal radiative correction
 - including experimental effects as target & detector materials, misalignment, mistracking, etc.
- combinatorial background : ee, $e\pi$ and $\pi\pi$ pairs
 - π^0 Dalitz decays, γ conversion, and misidentified π
 - pions : evaluated by the cascade code JAM

E16 sim. : comparison with vacuum shap²²

• black point : expected data (modified ϕ), red histo: vacuum ϕ shape

E16 sim: comparison with vacuum shap²³

- black point : expected data (modified ϕ), red histo: vacuum ϕ shape
- significant change can be observed
 - left panel: fit with [vacuum shape+exponential bkg] fails, due to the excess left side of the peak

E16 sim: comparison with vacuum shap²⁴

- black point : expected data (modified ϕ), red histo: vacuum ϕ shape
- significant change can be observed
 - left panel: fit with [vacuum shape+exponential bkg] fails, due to the excess left side of the peak
- right panel : excluding the excess region(0.94-1.01GeV/c²), fit succeeds
 @KEK 2017Sep01 S.Yokkaichi

E16 sim.: βγ dependence

- divide to four $\beta\gamma$ regions : same results as for the all $\beta\gamma$
- $\beta\gamma$ dependence of excesses is examined \rightarrow next

@KEK 2017Sep01 S.Yokkaichi

25

excess ratio in E325

Nexcess/(Nexcess+Nphi)

0.4 (×°N+ N)/×°N N)/×°N 0.3 E325, C ۲ E325, Cu 0.25 E16, Cu 8 modules 0.2 0.15 0.1 0.05 0 -0.05 -0.1[□] 0.5 2.5 1.5 3.5 1 2 3 4 βγ

excess ratio in E325

Nexcess/(Nexcess+Nphi)

- only slow Cu is

significant in E325

larger excess in lower βγ
 (slower) bin : consistent
 with the modification in
 nuclei

excess ratio in E16 sim

- Nexcess/(Nexcess+Nphi)
 - all bins for Cu are significant in E16

 larger excess in lower βγ (slower) bin :

the tendency become more clear and significant

than that of E325.

E16: Run-2 prospect

- Pb targets (30um x 3)
- full (26) modules x 106 days
- modified BW (k₁=0.034 & k₂=2.6)
- selecting only $\beta\gamma < 0.5$ (very slow)
- (combinatorial bkg is not shown)

29

• mass resolution 5.8+-0.1 MeV

(excluding frame-hit events)

E16: analysis strategy

- model-independent analysis (Today's)
 - compare the data with the vacuum shape (Breit-Wigner)
 - difference is significant or not
 - examin the $\beta\gamma$ dependence of difference
 - larger difference is expected in slower component
- model-dependent analysis
 - determine the modification parameter as E325 performed
 - momentum dependence will be deduced with higher stat.
 - fit the data by theoretical spectral functions (cf. Gubler & Weise [NPA954(2016)125])
 - theoretical input is important, particularly the momentum dependence of mass shape for φ meson

Preparation status as of 2017/Aug.

- Basic performance of GTR/HBD/LG is confirmed
 - Production of parts is started (GEM, R/O board) & LG
 - parts for 6 GTR & 2 HBD, 8 LG modules are delivered.
- Spectrometer magnet assemble is completed.
- R/O circuits
 - FEM for 6 GTR, 2 HBD and 2 LG modules are delivered.
 - GTR trigger ASIC is OK, circuit board v2 is under the test.
 - HBD trigger ASIC is under the test
 - Trigger logic modules (firmware) are under development.
- PAC (Jan.,2017) said:
 - background issue is concerned.
 - commissioning run will be approved in the next PAC

Detectors: GTR set on the frame

by Y.Komatsu & M. Sekimoto

100mm x 100mm 200mm x 200mm and 300mm x 300mm

Detectors: GTR frame in the magnet

Detectors: HBD

@KEK 2017Sep01 S.Yokkaichi

by K. Aoki & K. Kanno

thanks to PHENIX/Weizmann group Other proposed experiments to measure the mass modification in nuclei : J-PARC E26 & E29

J-PARC E26: ω bound state in nuclei

- E26 proposed by Ozawa (KEK)
- missing mass spectroscopy in π⁻+ A reaction –
 select the bound state
- elementary : ~2 GeV/c π^- + p $\rightarrow \omega$ + n
- and measure the ω decay to $\pi^0 \gamma$
 - $\ensuremath{\mathsf{P}}\omega$ is low, and decay in nuclear matter

36

- E29: proposed by Ohnishi (Tohoku-U)
- missing mass spectroscopy in pbar + A / π^- + A reaction
 - elementary: ~1.3 GeV/c pbar + p $\rightarrow ~\varphi + \varphi$
 - (or ~2 GeV/c π^- + p \rightarrow ϕ + n)
 - measurements of the dilepton decay of $\boldsymbol{\varphi}$ is difficult

Summary

- mass modification of hadrons in medium reflects QCD vacuum nature.
- Dilepton spectra in medium have been measured, and the modification (spectral change) is observed in many experiments, including KEK-PS E325.
- J-PARC E16 will measure the modification of vector mesons in nuclei with the ee decay channel, using 30 GeV proton beam at the newly constructed high-momentum beam line in the J-PARC hadron hall.
 - confirm the observation by E325 and provide more systematic information of the spectral modification (as nuclear-size dependence, momentum dependence, etc) of vector mesons in the finite density matter.
 - preparation is underway and detector mass-production has been started.
 - expected spectra for Cu target in Run-1 are presented.
 - beamline construction is also underway, possibly completed in 2019.
- J-PARC E26 & E29 will measure the meson bound states to detect the mass modification in nuclei.

E16: another modification

- Gubler-Weise (GW) type spectral function of φ [NPA954(2016)125]
 - in vacuum: based on the experimental data (ee->KK) by Babar
 - in medium: hadronic calculation : KN interaction
 - ϕ mesons at rest in medium
- Calculation code is provided by coutresy of P. Gubler

E16: GW shape case

- data point: generated using the GW shape in medium
- fit : GW shape in vacuum + exponential bkg

- Fit fails for the four $\beta\gamma$ regions.
 - In-medium spectral change of this type can also be detected within the expected detector performance and statistics.

QCDSR analysis on vector mesons

Gubler & Ohtani arxiv:1404.7701 PRD90(2014)094002 using recent Lattice $m_s < N|\overline{ss}|N>$ $-\Delta m = ~1\%$ for ϕ 1.03 1.02 1.01

42

<u><ss> & o-meson mass</u>

- $<\overline{s}s>_{\rho}(\overline{s}s \text{ condensate in medium whose density is }\rho)$ is relevant the ϕ mass in nuclear matter under the QCD sum rule analysis
 - linear approximation : $\langle \overline{s}s \rangle_{\rho} = \langle \overline{s}s \rangle_{vac} + \langle N | \overline{s}s | N \rangle * \rho$
 - $<N|\overline{s}s|N>$ should be determined by experimental data
 - Recently <N|ss|N> (so called "strangeness content in nucleon") is calculated with Lattice QCD
 - Recent QCDSR analysis by Gubler & Ohtani [arXiv:1404.7701]

E16 : momentum dependence and stat. 44

- momentum dependence of mass
 - experimentally: extraporation to p=0
- curve: Lee's prediction (PRC57(98)927, up to 1GeV/c)
- full statistics (E325 x100) & limited stat. (E325 x 10)

organization

Data collection and trigger data flow

High-p experimental area plan

Discussion : modification parameter 49

- MC type model analysis to include the nuclear size/meson velocity effects
 - generation point : uniform for ϕ meson
 - from the measured A-dependence
 - measured momentum distribution
 - Woods-Saxon density distribution
 - decay in-flight : linearly dependent on the density of the decay point
 - dropping mass: $M(\rho)/M(0) = 1 k_1(\rho/\rho_0)$
 - width broadening: $\Gamma(\rho)/\Gamma(0) = 1 + k_2 (\rho/\rho_0)$
- consistent result with the predictions by Hatsuda & Lee (k₁), Oset & Lamos (Γ)

 $k_1 = 0.034_{-0.007}^{+0.006}$ For φ, 3.4% mass reduction (35MeV) 0. $k^{\text{tot}} - 2.6^{+1.8}$ 3.6 times width broadening(15MeV) at ρ_0

Modified shape of ϕ

- Cu, βγ<1.25,
- best fit values of k_1 and k_2

Fitting results (ρ/ω)

To reproduce the data by the fitting, we have to exclude the excess region : 0.60-0.76 GeV

2) ρ meson component seems to be vanished. ($\rho/\omega = 1.0\pm0.2$ in a former experiment)

51

Free param.: - scales of background and hadron components for each C & Cu - modification parameter k for ρ and ω is common to C & Cu

52

Remark on the model fitting

- constraint at right side of peak
- Introducing the width broadening (x2 & x3) are rejected by this constraint
- prediction of ' ρ mass increasing' is also not allowed.
- ρ (ω) decay inside nucleus : 46%(5%) for C, 61%(10%) for Cu
- used spectrum is the sum of the modified and not-modified components.
- momentum dependence of mass shift is not included.(But typical p =1.5GeV/c)

measured production CS of $\omega \& \phi$

- values for the CM backward
- consistent w/ the former measurement for ρ meson by Blobel (PLB48(1974)73)
- Nuclear dependence $\alpha_{\phi} = 0.937$ corresponds to about $\sigma_{\phi N} = 3.7$ mb (Sibirtsev et.al. EPJA 37(2008)287)
- additional Γ =12 MeV for 2 GeV/c ϕ (β =0.9) : consistent with Γ =15⁺⁸ MeV (i.e. k₂=2.6^{+1.8} -1.2)
- Remark:

 Γ_{ϕ} =15MeV at m_{ϕ}=985MeV is consistent with Oset & Ramos (NPA679(2001)616)

<u>theory: spectral modification of ϕ at ρ_0 </u>

parametrize the predicted spectral change with m & Γ

	m = 1019.456 MeV	Γ= 4.26 MeV
KEK-PS E325 experiment PRL 98 (2007) 042501	∆m = −35(28~41) MeV	15 (10~23) MeV
Hatsuda & Lee PRC 46 (1992) R34	∆m = –(12-44)MeV	not estimated
Klingl, Waas, Weise PLB 431(1998) 254	∆m < - 10MeV	~45 MeV
Oset & Ramos NPA 679 (2001) 616	∆m < - 10MeV	~22 MeV @ m=1020 ~16 MeV @ m=985
Cabrera & Vacas PRC 67 (2004) 045203	$\Delta m = -8 MeV$	~30 MeV @ m=1020

55

expected shape w/ various parameters 56

expected shape w/ various parameters 57

dispersion of elementary excitation in condensed matter

- ARPES (angle-resolved photoemission spectroscopy) measurements
 - mass acquisition of Dirac electron in the topological insulator
 - heavy electron w/ Kondo-effect in CeCoGe_{1.2}Si_{0.8}

momentum dependence of mass (dispersion)

change of excitation in condensed matter⁶⁰

0.06

0.09

0.03

softening around Tc

0

1.2

 phonon frequency in the ferroelectric crystal, changed when T is approaching Tc [Kittel, v5]

0.12

0.15

Figure 18 Decrease of a transverse phonon frequency as the Curie temperature is approached from below, in the ferroelectric crystal antimony sulphoiodide (SbSI). [After Raman scattering experiments by C. H. Perry and D. K. Agrawal, Solid State Comm. 8, 225 (1970).]

SbSI crystal, changing T, excited by laser, scattered photon is measured (Raman scattering)

Rb cold gas, changing coupling by optical lattice (j), excited by modulation(v), and T is measured.

change of excitation in condensed matter⁶¹

softening around Tc

 phonon frequency in the ferroelectric crystal, changed when T is approaching Tc [Kittel, v5]

Figure 18 Decrease of a transverse phonon frequency as the Curie temperature is approached from below, in the ferroelectric crystal antimony sulphoiodide (SbSI). [After Raman scattering experiments by C. H. Perry and D. K. Agrawal, Solid State Comm. 8, 225 (1970).]

SbSI crystal, changing T, excited by laser, scattered photon is measured (by Raman scattering)

Rb cold gas, changing coupling by optical lattice (j), excited by modulation(v), and T is measured.

hadronic matter, changing density ρ , excited by induced proton / γ / HI, mass spectrum is measured by dilepton. Klingle,Kaiser,Wei**6** [NPA 624(97)527] density $\rho = \rho_0/2$, ρ_0

