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Abstract

> The classical version of the density functional framework is
a fundamental framework in classical liquid theory.
> Application of classical liquid theory: Chemical reaction (solvent)

> A platform for developing more efficient methods than molecule dynamics
* Integral equation (Hypernetted chain...), BBGKY hierarchy...

> Method for including higher-order correlation (e.g.):
One-parameter evolution equation (Flow equation)

> Hierarchical reference theory (HRT): renormalization group  Parola, Reatto, PRA (1985)
* But hard-core references are needed.

> Previous work: Flow equation without hard-core references

TY, Haruyama, Sugino, PRE (2021), Talk in DFT2024
>  Flow equation for treating hard cores on an equal footing with attractions
> 1D numerical demonstration

> This talk: analysis of 3D classical liquid

> To achieve this, an efficient method for evaluating spatial integrals is
developed.



Classical liquids

> Consider liquids within N p? 2l | shortrange
statistical mechanics of Hy = Z o T Z VX, X)) repulsion
interacting classical particles =L iy \/_’ﬁ
> E.g., solvent in chemical reactions (water, ...) LomereneE S

> Molecular dynamics is a well-established method
but can be inefficient in some cases.

> E.g., multi-scale analysis, such as combination w/ electronic DFT (e.g., battery)

> The density functional framework serves as a platform
for alternative methods.

N
» DOF of the system: {x,}Y', & p(x) = )’ 5(x — x))
=l
» Thermodynamics & correlations: Free-energy density functional F|p]
> Integral equation method (hypernetted chain, Percus-Yevick), BBGKY hierarchy,
fundamental measure theory, renormalization group, machine learning...
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Classical liquids
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2-particle distribution function of water

How much accuracy can be achieved with the density
functional framework remains an open question.
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Kovalenko, Hirata, Chem. Phys. Lett. (1998) Mahoney, Jorgensen,
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Experiment

» Thermodynamics & correlations: Free-energy density functional F|p]

> Integral equation method (hypernetted chain, Percus-Yevick), BBGKY hierarchy,
fundamental measure theory, renormalization group, machine learning...
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The position of the second peak of g, is missed.




One-parameter exact flow equation

| will consider simple liquid cases: v;(x;, X;) = v(x; — X;), m; = m.

> One-parameter flow of v(x): Many-body effects are incorporated
through differential equations.

A=0 V,(x) =
. %) = ()

» Density functional formalism provides an exact & closed description!

Flow eq. for free-energy density functional F[p] w/ temperature 5~ I

—1
1 5*BF
J,pF[p]l = EJ 0,pv,(x —x)| p(x)p(x’) + Arlp) (x,x") — p(x)é(x — x')

X 0pop
Parola, Reatto, PRA (1985), TY, Haruyama, Sugino, PRE (2021)
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*quantum cases: Polonyi, Sailer (2002), Schwenk, Polonyi (2004), Kemler, Braun (2013), Liang, Niu, Hatsuda (2018), Kemler,
Pospiech, Braun (2017), TY, Yoshida, Kunihiro (2019), TY, Yoshida, Kunihiro (2019), TY, Naito (2019), TY, Naito

(2021), TY, Kasuya, Yoshida, Kunihiro(2021), TY, Naito (2022)
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Hierarchical reference theory (HRT)

Parola, Reatto, PRA (1985)

> Renormalization-group (RG) inspired flow equation method

> p(x) is included in an RG-like manner to analyze critical-point
properties.

> The repulsive core has a divergently large UV component;
therefore, it should be considered as the initial reference.

> v;t(x) = (x) + Vatt, /I(x) Only the attractive part is evolved.

epulsive

> Knowledge about the repulsive-core system is needed.

> |n general, methods that do not rely on the knowledge of
hard-core references are preferred.

We have developed a flow-equation method

w/0 hard-core references.
TY, Haruyama, Sugino, PRE (2021), Talk in DFT 2024



Functional Taylor expansion

~1
1 5°FF
0,pF;lp] = EJ 0,pv,(x —x")| p(xX)p(x’) + ?p ;[[)p] (x,x) — p(x)o(x — x’)

* Functional Taylor expansion for /[ p]

Hierarchical eq. for distribution functions
F .
ai% __ pf;’m[ 0,/ (0g2(r) Divergent from hard core

Free energy e
h

1+ @(r) -1
Chemical potential Prom |, [827(r) = 1]

n( > 2)th order 5,18/%”)(1'1, e F ) = = Z 9, [ﬂVg(ri - l'j)] 8,571)(1‘1, T, )

: i<j
n-particle
distribution function +ng (), o, 1, )0 + phoma/llu/l" [81("“)(1‘1, o, T, 1) = g (I, e l'n-1)]
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_phom[ Z 0, [ﬁvﬂ(r — rl.)] g/%"‘ﬂ)(l‘, r,-,r,_)
r =1
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ph / / /
- 20m [ 9, [ﬂvx(r —r )] [8,5%2)(1', T, T, ) = 8;2)(1' —r )g/%”)(rl, " rn—l)]
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Flow eq. for hard core

The divergence is removed when the cavity distribution functions

are introduced. " y(r-r,
(n)(r y n—l) — eﬁzl<JV,1(l' r])g;n)(r, "°9rn—1)

Exact egs. for cavity distribution functions

No divergence!

aﬂﬂ]{;ﬂ = ’Dt;’m [ 0,1]j(r)y(2)(r) (Only Mayer function f,(r,r’) = ¢ #""f) — 1 appears)
r

~Phom [ GLEWP®) =752 [ 0,30 = 1) [e O D, 1) — y P 1) Method w/o
L+ phom [ [e P @yP(r) — 1] hard-core reference!

azy;f")(rp T 1) = 0,0, <”)’;n)(r1a T p) +phomJ le—ﬁZ TP (nH)(r r,_,T)— )’ln)(rl n—l)])
r

n—1
+phomj a,l le_ﬁzi vﬂ(ri_r)_ﬁ‘}ﬂ(r)] y}fn-'-l)(r, rla ) rn—l)

r

1st 0,Pm) =

ph , _ n—1 e n—1 e _ ' ,
+ ;mJ 0,f,(r — r)le B viE—D)=p X v —r)=pry(r)—pr,(r )y;n+2)(r,r,r1 r_,)— y(2)(r l‘)y(n)(l'l, “‘arn—l)]

r,r

The repulsive reference is unnecessary.

We use the free-gas reference v, = 0. pFpl= J p(x)(ln (Ap(x)) — 1)
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Flow eq. for hard core

The divergen{ = .
J i We close the hierarchy using Kirkwood, JCP (1935)

are 'ntmduce Kirkwood superposition approximation (KSA)

> |Ignorance of mean many-body potential ﬁ_.'«
> Exact for low densities

Exact eqs. for )’53)(1', 1'1) ~ y/gz)(rl))’f)(l')}’f)(l' — 1‘1)

o ~ YOy Py @)y - r)y®@a - r)y@(r, - r)
1st I J 0 K@Y @) =2 [0, £ = ) [e OB w, 1) -y — 1)
AWPH), =

L+ phom | |e P ®yP () — 1]

n—1
0,y (xy, 1)) = 03B <ny)f")(l'1’ ) +ph0mJ le AY vy r-1) POy e, 1) — O, ...,rn_l)])

r

n—1
+phomj a,l le_ﬂzi vﬂ(ri_r)_ﬁ‘}ﬂ(r)] y}fn-'-l)(r, rla °tc, rn—l)

r

n—1 n—1 , ,
+/)1;>m [ 9, f,(r — 1) le—ﬁz,. DB L PO PO 0 e, ) = YO = )y, T, 1)]

r,r

The repulsive reference is unnecessary.

We use the free-gas reference v, = 0. pFpl= J p(x)(ln (Ap(x)) — 1)
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Demonstration w/ 1D exactly solvable model

TY, Haruyama, Sugino, PRE (2021)

(previous work)

Model (hard rod w/ attraction)

Better results By (x)
compared to integral- t
equation methods

are obtained in 1D
demonstrations.

— 2,0 Lasnneneane

Excess free energy
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Integral-equation method

irect cor. func.
Ornstein-Zernike eq. g¢x)=1+c¢x) (5°pF/op” + )
(Schwinger-Dyson eq.) N J dx'e(]x - x]gx) - 1]

+
Closure (approx.)

- Hypernetted chain (HNC)  g(x) = ¢ #"®+s—co-1

« Percus-Yevick eq. (PY) g(x) = ™ [g(x) — c(x)]

I
— Flow eq.

----- HNC

Extension to 3D case?




Spatial integrals in 8D cases

Flow eq. w/ KSA h2(r) = e P Oyr) - 1

2
p / / / / /
9, InyP(r)) = ) [drjdr 0, — )y P — )R @rP(r — r)hP @D — 1)) + -
Time consuming spatial integral...

Technique to reduce cost: Legendre expansion! Baker, Monaghan, JCP (1962)

A 20+ 1 ! S
-1

Angular integrals are analytically performed.

Cutoff L for computation

0, Iny\?(r) = 8z°p [ drr’g >Z dr' r2g PR (r, O r', r)Q,(r, ) + -
0

(2] + 1)2,[

20+ 1 (!

Ql(r, r') = > J_l dtg, (\/r2 +r?— 2rr’t> P((1)

. . . 6 1
Dlmensu-)ns of |nte-gral 6 2 = 21 J 10y, (VPFT=E7E) o0 (VPF T E7E) i
» Summation w.r.t. / is evaluated w/ a cutoff. .
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> Lennard-Jones potential

12 6
0]
vy =4de( (=) - (=

r r

» So far, numerical results have
been obtained for p* < 0.5

> Qur calculation becomes unstable
for higher densities.

> |t may not be an issue with the
algorithms (such as the
discretization of derivatives), but
rather a problem with truncation
(currently under investigation).

> The setting of flow:

Ji(r) = f(nf(dc — 1)

f(r) =70 - 1

MD simulation, Lin, Blanco, Goddard, JCP 119 (2003)

2.0

Lennard-Jones Phase Diagram

The region where our s}
numerical calc. works.

identify the thermodynamic state of each point (s for solid, / for liquid, g for
gas, m for metastable, and u for unstable). For clarity, points in the super-

Parameters for calculation

T* = 1.3, p* = 0.5
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Comparison of the pair distribution function w/ HNC, PY, KH
(Kovalenko-Hirata), and molecule dynamics (MD)

2.0-

1.51 KH

0.5-
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0.0 j

A
r!\
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_ A MD (N = 256)
= 1.01 - -
2

l9(x) — gup ()]

0.2

0.1

0.0

T* = 1.3, p% = 0.5

> Even with L = O (the cutoff for the series sum), the flow equation method

reproduces the MD result.

> The flow equation shows more minor deviations from the MD results than the

integral-equation methods.
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> The classical version of the density functional framework is
a fundamental framework in classical liquid theory.

> Previous work: Density functional flow equation without hard-
core references TY, Haruyama, Sugino, PRE (2021)

> |In this talk, | presented an extension to 3D cases.

> Lennard-Jones potential
> Reduction of nhumerical cost by use of Legendre expansion

> |s it possible to achieve stable calculations in a higher-density regime?

> Extension to non-simple liquids (water)
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