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Abstract
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‣ The classical version of the density functional framework is 
a fundamental framework in classical liquid theory.
‣ Application of classical liquid theory: Chemical reaction (solvent)

‣ A platform for developing more efficient methods than molecule dynamics

• Integral equation (Hypernetted chain…), BBGKY hierarchy…

‣ Method for including higher-order correlation (e.g.): 
One-parameter evolution equation (Flow equation)

‣ Previous work: Flow equation without hard-core references

‣ This talk: analysis of 3D classical liquid
‣ To achieve this, an efficient method for evaluating spatial integrals is 

developed.

‣ Flow equation for treating hard cores on an equal footing with attractions

‣ 1D numerical demonstration

TY, Haruyama, Sugino, PRE (2021), Talk in DFT2024

‣ Hierarchical reference theory (HRT): renormalization group

• But hard-core references are needed.

Parola, Reatto, PRA (1985)



Classical liquids
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N

∑
i=1
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i
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+ ∑

i<j

vij(xi, xj)
‣ Consider liquids within 

statistical mechanics of 
interacting classical particles

v(
x)

x

Short-range 
repulsion

Long-range attraction‣ E.g., solvent in chemical reactions (water, …)

‣ Molecular dynamics is a well-established method 
but can be inefficient in some cases.
‣ E.g., multi-scale analysis, such as combination w/ electronic DFT (e.g., battery)

‣ The density functional framework serves as a platform 
for alternative methods.

‣ DOF of the system: {xi}N
i=1 ⇔ ρ(x) =

N

∑
i=1

δ(x − xi)

‣ Thermodynamics & correlations: Free-energy density functional F[ρ]

‣ Integral equation method (hypernetted chain, Percus-Yevick), BBGKY hierarchy, 
fundamental measure theory, renormalization group, machine learning…
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Long-range attraction‣ E.g., solvent in chemical reactions (water, …)

‣ Molecular dynamics is a well-established method 
but can be inefficient in some cases.
‣ E.g., multi-scale analysis, such as combination w/ electronic DFT (e.g., battery)

‣ The density functional framework serves as a platform 
for alternative methods.

‣ DOF of the system:  (indistinguishable particles){xi}N
i=1 ⇔ ρ(x) =

N

∑
i=1

δ(x − xi)

‣ Thermodynamics & correlations: Free-energy density functional F[ρ]

‣ Integral equation method (hypernetted chain, Percus-Yevick), BBGKY hierarchy, 
fundamental measure theory, renormalization group, machine learning…
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The position of the second peak of  is missed.gOO

Mahoney, Jorgensen, JCP (2000)

∼ 4.5Å

∼ 6Å

Kovalenko, Hirata, Chem. Phys. Lett. (1998)

Integral-eq. method

Experiment

How much accuracy can be achieved with the density 
functional framework remains an open question.



One-parameter exact flow equation

v0(x) = vref(x) v1(x) = v(x)

λ = 0 λ = 1vλ(x)
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‣ One-parameter flow of : Many-body effects are incorporated 
through differential equations.

v(x)

‣ Density functional formalism provides an exact & closed description!

∂λβFλ[ρ] =
1
2 ∫x,x′ 

∂λβvλ(x − x′ ) ρ(x)ρ(x′ ) + ( δ2βFλ[ρ]
δρδρ )

−1

(x, x′ ) − ρ(x)δ(x − x′ )

Flow eq. for free-energy density functional  w/ temperature F[ρ] β−1

Parola, Reatto, PRA (1985), TY, Haruyama, Sugino, PRE (2021)

I will consider simple liquid cases: , .vij(xi, xj) = v(xi − xj) mi = m

*quantum cases: Polonyi, Sailer (2002), Schwenk, Polonyi (2004), Kemler, Braun (2013), Liang, Niu, Hatsuda (2018), Kemler, 
Pospiech, Braun (2017), TY, Yoshida, Kunihiro (2019), TY, Yoshida, Kunihiro (2019), TY, Naito (2019), TY, Naito 
(2021), TY, Kasuya, Yoshida, Kunihiro(2021), TY, Naito (2022)



Hierarchical reference theory (HRT)

‣Renormalization-group (RG) inspired flow equation method 
Parola, Reatto, PRA (1985)

‣ Knowledge about the repulsive-core system is needed.
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‣  is included in an RG-like manner to analyze critical-point 
properties.
v(x)

‣ The repulsive core has a divergently large UV component; 
therefore, it should be considered as the initial reference.

Only the attractive part is evolved.

‣ In general, methods that do not rely on the knowledge of 
hard-core references are preferred.

‣  vλ(x) = vrepulsive(x) + vatt,λ(x)

We have developed a flow-equation method 
w/o hard-core references.

TY, Haruyama, Sugino, PRE (2021), Talk in DFT 2024



∂λg(n)
λ (r1, ⋯, rn−1) = −

n

∑
i<j

∂λ [βvλ(ri − rj)] g(n)
λ (r1, ⋯, rn−1)

+ng(n)
λ (r1, ⋯, rn−1)∂λμλ + ρhom∂λμλ ∫r

[g(n+1)
λ (r1, ⋯, rn, r) − g(n)

λ (r1, ⋯, rn−1)]
−ρhom ∫r

n

∑
i=1

∂λ [βvλ(r − ri)] g(n+1)
λ (r, r1, ⋯, rn−1)

−
ρ2

hom

2 ∫r,r′ 
∂λ [βvλ(r − r′ )] [g(n+2)

λ (r, r′ , r1, ⋯, rn−1) − g(2)
λ (r − r′ )g(n)

λ (r1, ⋯, rn−1)]

Functional Taylor expansion

∂λβμλ =
ρhom ∫r ∂λβvλ(r)g(2)

λ (r) +
ρ 2

hom

2 ∫r,r′ 
∂λβvλ(r − r′ )[g(3)

λ (r, r′ ) − g(2)
λ (r − r′ )]

1 + ρhom ∫r [g(2)
λ (r) − 1]

0th order

1st order

th ordern( ≥ 2)

∂λ
βFλ

N
= −

ρhom

2 ∫r
∂λβvλ(r)g(2)

λ (r)

Free energy

Chemical potential

-particle  
distribution function

n

Hierarchical eq. for distribution functions
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∂λβFλ[ρ] =
1
2 ∫x,x′ 

∂λβvλ(x − x′ ) ρ(x)ρ(x′ ) + ( δ2βFλ[ρ]
δρδρ )

−1

(x, x′ ) − ρ(x)δ(x − x′ )

Functional Taylor expansion for Fλ[ρ]

Divergent from hard core



Flow eq. for hard core

No divergence! 
(Only Mayer function  appears)fλ(r, r′ ) = e−βvλ(r,r′ ) − 1

∂λβμλ =
−ρhom ∫r ∂λ fλ(r)y(2)

λ (r) −
ρ 2

hom

2 ∫r,r′ 
∂λ fλ(r − r′ )[e−βvλ(r)−βvλ(r′ )y(3)

λ (r, r′ ) − y(2)
λ (r − r′ )]

1 + ρhom ∫r [e−βvλ(r)y(2)
λ (r) − 1]

0th

1st

∂λ
βFλ

N
=

ρhom

2 ∫r
∂λ fλ(r)y(2)

λ (r)

∂λy(n)
λ (r1, ⋯, rn−1) = ∂λβμλ (ny(n)

λ (r1, ⋯, rn−1) + ρhom ∫r
[e−β∑n−1

i vλ(ri−r)−βvλ(r)y(n+1)
λ (r1, ⋯, rn−1, r) − y(n)

λ (r1, ⋯, rn−1)])
+ρhom ∫r

∂λ [e−β∑n−1
i vλ(ri−r)−βvλ(r)] y(n+1)

λ (r, r1, ⋯, rn−1)

+
ρ2

hom

2 ∫r,r′ 
∂λ fλ(r − r′ )[e−β∑n−1

i vλ(ri−r)−β∑n−1
i vλ(ri−r′ )−βvλ(r)−βvλ(r′ )y(n+2)

λ (r, r′ , r1, ⋯, rn−1) − y(2)
λ (r − r′ )y(n)

λ (r1, ⋯, rn−1)]

thn

Exact eqs. for cavity distribution functions

Method w/o  
hard-core reference!

The divergence is removed when the cavity distribution functions 
are introduced. y(n)

λ (r, ⋯, rn−1) = eβ∑n
i<j vλ(ri−rj)g(n)

λ (r, ⋯, rn−1)

The repulsive reference is unnecessary.

We use the free-gas reference .v0 = 0 βF0[ρ] = ∫x
ρ(x)(ln (Λ3ρ(x)) − 1)

8



Flow eq. for hard core
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hom
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The divergence is removed when the cavity distribution functions 
are introduced. y(n)

λ (r, ⋯, rn−1) = eβ∑n
i<j vλ(ri−rj)g(n)

λ (r, ⋯, rn−1)

y(3)
λ (r, r1) ≈ y(2)

λ (r1)y(2)
λ (r)y(2)

λ (r − r1)

y(4)
λ (r, r′ , r1) ≈ y(2)

λ (r)y(2)
λ (r′ )y(2)

λ (r1)y(2)
λ (r − r′ )y(2)

λ (r′ − r1)y(2)
λ (r1 − r)

Kirkwood, JCP (1935)We close the hierarchy using 

Kirkwood superposition approximation (KSA)

‣ Ignorance of mean many-body potential

‣ Exact for low densities



Demonstration w/ 1D exactly solvable model 
(previous work)
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Flow eq.

ρhomσ = 0.55

Model (hard rod w/ attraction)
βv(x)

xσp + σσ

−zpσp
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flow
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Excess free energy

(hypernetted chain)
(Percus-Yevick eq.)

ρhomσ

Flow eq.

TY, Haruyama, Sugino, PRE (2021)

Better results 
compared to integral-
equation methods 
are obtained in 1D 
demonstrations.

Extension to 3D case?

• Hypernetted chain (HNC)
• Percus-Yevick eq. (PY)

g(x) = e−βv(x)+g(x)−c(x)−1

g(x) = e−βv(x) [g(x) − c(x)]

Integral-equation method

Closure (approx.)

Ornstein-Zernike eq. 
(Schwinger-Dyson eq.)

+

g(x) = 1 + c(x)

+∫ dx′ c( |x − x′ | )[g(x′ ) − 1]

Direct cor. func. 
( )δ2βF/δρ2 + ⋯



Spatial integrals in 3D cases
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∂λ ln y(2)
λ (r1) =

ρ2

2 ∫ dr∫ dr′ ∂λ fλ(r − r′ )y(2)
λ (r − r′ )h(2)

λ (r)h(2)
λ (r − r1)h(2)

λ (r′ )h(2)
λ (r′ − r1) + ⋯

h(2)
λ (r) = e−βv(r)y(2)(r) − 1Flow eq. w/ KSA

Time consuming spatial integral…

Technique to reduce cost: Legendre expansion!

ĥl(r1, r2) =
2l + 1

2 ∫
1

−1
dt h ( r2

1 + r2
2 − 2r1r2t) Pl(t)

Q̂l(r, r′ ) =
2l + 1

2 ∫
1

−1
dtgλ ( r2 + r′ 2 − 2rr′ t) Pl(t)

R̂l(r, r′ ) =
2l + 1

2 ∫
1

−1
dt∂λ fλ ( r2 + r′ 2 − 2rr′ t) y(2)

λ ( r2 + r′ 2 − 2rr′ t) Pl(t)

Angular integrals are analytically performed.

‣ Dimensions of integral:  
‣ Summation w.r.t.  is evaluated w/ a cutoff.

6 → 2
l

∂λ ln y(2)
λ (r1) = 8π2ρ2 ∫

∞

0
dr r2g(2)

λ (r)
∞

∑
l=0

1
(2l + 1)2 ∫

∞

0
dr′ r′ 2g(2)

λ (r′ )R̂l(r, r′ )Q̂l(r′ , r1)Q̂l(r, r1) + ⋯

Baker, Monaghan, JCP (1962)

Cutoff  for computationL



Model
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MD simulation, Lin, Blanco, Goddard, JCP 119 (2003)

( = ρσ3)

‣ Lennard-Jones potential

v(r) = 4ϵ (( σ
r )

12

− ( σ
r )

6

)

(k
B

/β
ϵ

=
)

‣ So far, numerical results have 
been obtained for ρ* ≲ 0.5

Parameters for calculation
, T* = 1.3 ρ* = 0.5

‣ Our calculation becomes unstable 
for higher densities.
‣ It may not be an issue with the 

algorithms (such as the 
discretization of derivatives), but 
rather a problem with truncation 
(currently under investigation).

‣ The setting of flow: 
fλ(r) = f(r)θ(λσ − r)

f(r) = e−βv(r) − 1

The region where our 
numerical calc. works.



Result
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Comparison of the pair distribution function w/ HNC, PY, KH 
(Kovalenko-Hirata), and molecule dynamics (MD) , T* = 1.3 ρ* = 0.5

‣ Even with  (the cutoff for the series sum), the flow equation method 
reproduces the MD result.


‣ The flow equation shows more minor deviations from the MD results than the 
integral-equation methods.

L = 0



Summary
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‣ The classical version of the density functional framework is 
a fundamental framework in classical liquid theory.

‣ In this talk, I presented an extension to 3D cases.
‣ Lennard-Jones potential

‣ Reduction of numerical cost by use of Legendre expansion

TY, Haruyama, Sugino, PRE (2021)

Outlook

‣ Is it possible to achieve stable calculations in a higher-density regime?

‣ Extension to non-simple liquids (water)

‣ Previous work: Density functional flow equation without hard-
core references


