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Neutrinoless double-beta decay（0νββ）

✓ 0νββ decay：
(Z, A) → (Z + 2, A) + 2e−

The half-life of 0νββ decay in
the standard mechanism of
light neutrino exchange is：(
T0ν

1/2

)−1
= G0ν ·

∣∣∣∣ ⟨mββ⟩
me

∣∣∣∣2 ∣∣M0ν∣∣2

The matrix element (NME) is:

M0ν =
〈
Ψf|O0ν |Ψi

〉
.

J, M, Yao et al., PPNP. 126, 103965 (2022) Various nuclear models predict NMEs that differ by three to more!

We need to perform correlation analysis and uncertainty quantification for each model to understand
this discrepancy, which requires expensive calculations.
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Uncertainty Analysis

The source of uncertainty
Systematic error: due to imperfect modeling: deficient parametrizations, wrong
assumptions, and missing physics due to our lack of knowledge;
Statistical error: for a fixed model, statistical error refers to the model quality
deviation caused by the parameters that determine the model. By studying the
statistical error of parameters, the statistical error under fixed model can be given.

J Dobaczewski et al., J. Phys. G: Nucl. Part. Phys. 41 074001 (2014)

The task of this work is to analyze the statistical uncertainty of observables based on
the framework of multi-reference covariant density functional theory (MR-CDFT).

✓ Analysis approaches: Monte Carlo simulation PRC. 110, 064606 (2024), Gaussian process
PRL. 132, 182502 (2024), Bayesian posterior analysis Nature Physics, 18, 1196–1200 (2022)...
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Covariant Density Functional Theory (CDFT)
The CDFT starts from the following energy density functional (EDF) under the mean-field approximation:

Etot = EDF
[

τ , ρS, jµi ,Aµ

]
+ Epair

[
κ, κ

∗
]

+ Emic
cm

=

∫
d3r

(
Ekin(r) + E int(r) + Eem(r)

)
−

∑
τ=n,p

Vτ

4

∫
d3rκ∗

τ (r)κτ (r) + Emic
cm

The interaction part with low-energy constants C = {αS, βS, γS, δS, αV, γV, δV, αTV, δTV}:

E int (r) =
αS

2
ρ

2
S +

βS

3
ρ

3
S +

γS

4
ρ

4
S +

δS

2
ρS∆ρS

+
αV

2
jµjµ +

γV

4
(

jµjµ
)2

+
δV

2
jµ∆jµ

+
αTV

2
j⃗µTV ·

(⃗
jTV

)
µ

+
δTV

2
j⃗µTV · ∆

(⃗
jTV

)
µ

The local densities ρS(r) and currents jµV (r), j⃗µTV(r) and pairing tensor κ(r) are:

ρS(r) =
∑

k

v2
kψ̄k(r)ψk(r) , jµV (r) =

∑
k

v2
kψ̄k(r)γµ

ψk(r)

j⃗µTV(r) =
∑

k

v2
kψ̄k(r)τ⃗γµ

ψk(r) , κ(r) = −2
∑
k>0

fkukvk |ψk(r)|2
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Generator Coordinate Method (GCM)

The GCM wave function is expanded on a set of non-orthogonal basis for a certian EDF:
P. Ring and P. Schuck, The nuclear many-body problem (1980)∣∣ΨJNZ

ν

〉
=

Nq∑
q

fJNZ
ν (q) |JNZ; q⟩ ,

where |JNZ; q⟩ ≡ P̂J
M,K=0P̂NP̂Z|Φ(q)⟩ are symmetry-projected quasiparticle vacua.

The variational principle yields the Hill-Wheeler-Griffin (HWG) equation:∑
q′

[
H(q, q′) − EJNZ

ν N (q, q′)

]
fJNZ
ν (q′) = 0,

which contains norm kernels N and Hamiltonian kernels H.

The CDFT+GCM (MR-CDFT) method entails an extensive computational burden, thereby
rendering the statistical uncertainty analysis exceedingly challenging.
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Eigenvector continuation(EC)

✓ The core idea of EC is that
the ground state eigenvector
for the given Hamiltonian
family H(c) = H0 + cH1 can be
extended to eigenvectors at the
training points:

|Ψg.s(c)⟩ =
∑

ci

f̄(ci)|Ψg.s(ci)⟩

PRL 121，032501 (2018)
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Subspace-projected covariant density functional theory(SP-CDFT)

In SP-CDFT, the wave function
∣∣Ψ̄JNZ(C⊙)

〉
of a target EDF EC⊙(ρ) = E0(ρ) + C⊙ · ρ is

expanded in terms of the basis wave functions
∣∣ΨJNZ

ν (Ct)
〉

of the first kmax states by the
Nt training EDFs, ∣∣Ψ̄JNZ

k (C⊙)
〉

=
kmax∑
ν=1

Nt∑
t=1

f̄JNZ
k,C⊙

(ν, Ct)
∣∣ΨJNZ

ν (Ct)
〉

,

The mixing coefficient f̄JNZ
k,C⊙

(ν, Ct) is determined by the following equation,

kmax∑
ν′=1

Nt∑
t′=1

[
H νν′

tt′ (C⊙) − ĒJNZ
k,C⊙

N ν,ν′

tt′

]̄
fJNZ
k,C⊙

(ν′, Ct′) = 0,

Here, we define the norm and Hamiltonian kernels of the EC method for a target EDF,

N νν′

tt′ =
〈
ΨJNZ
ν (Ct)

∣∣ ΨJNZ
ν′ (Ct′⟩,

H νν′

tt′ (C⊙) =
〈
ΨJNZ
ν (Ct)

∣∣ Ĥ(C⊙)
∣∣ΨJNZ

ν′ (Ct′)
〉

.
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SP-CDFT

H νν′

tt′ (C⊙) =
∑

q,q′ fJNZ
ν (q, Ct)fJNZ

ν′ (q′, Ct′ ) ⟨JNZ; q, Ct| Ĥ(C⊙) |JNZ; q′, Ct′ ⟩ ,

⟨JNZ; q, Ct| Ĥ(C⊙) |JNZ; q′, Ct′ ⟩ = 2J+1
2

∫
dJ

00(cos θ)d(cos θ)
∫ e−iNφn

2π dφn
∫ e−iNφp

2π dφp

× ⟨Φ(q, Ct)| Ĥ(C⊙)eiθĴy eiφnN̂eiφpẐ |Φ(q′, Ct′ )⟩ ,

The energy overlap which is evaluated with the mixed-density prescription,

⟨Φ(q, Ct)| Ĥ(C⊙)eiθĴy eiφnN̂eiφpẐ |Φ(q′, Ct′ )⟩
⟨Φ(q, Ct)| eiθĴy eiφnN̂eiφpẐ |Φ(q′, Ct′ )⟩

=
∫

d3r
[
τ̃(r) + Ẽem(r) +

9∑
ℓ=1

c⊙
ℓ ẼNN

ℓ (r)
]
.

Only the interaction energy term depends on the parameters c⊙
ℓ of the target EDF,

9∑
ℓ=1

c⊙
ℓ ẼNN

ℓ (q, Ct; q′, Ct′ ) =
α⊙

S
2 ρ̃2

S +
α⊙

V
2 j̃µ j̃µ +

α⊙
TV
2

⃗̃jµTV · (⃗̃jTV)µ + · · ·

where ρ̃S, j̃µ, j̃µTV are the mixed densities and currents.
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SP-CDFT (computational time)

FIG. The ratio of the computation time of MR-CDFT calculation
to that of SP-CDFT calculation for 150Nd.

The number of samples we
sample is about 106, and
the calculated ratio of
TMR−CDFT/TSP−CDFT ≃
104 for 150Nd.
The SP-CDFT allows us
within half an hour using a
PC, to predict nuclear
low-lying states for 1.3
millions of EDF samples
which would otherwise take
years with the MR-CDFT.
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SP-CDFT (benchmark)

Benchmark calculation using 64 testing set (150Nd)

The relative error for the ground state properties are all within 0.3%.
The relative error for the low-lying states properties are all within 13%: due to the
overlap of errors between the ground state and the lower-lying state.
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SP-CDFT (hyperparameters)
✓ we use the symbol SP-CDFT(Nt, kmax) to mark the number of two hyperparameters.
✓ we introduce a scaling factor f(cℓ) = cℓ/c0

ℓ for each parameter in C, where c0
ℓ is the value of the

coupling constant cℓ in the PC-PK1.

FIG. The relative errors of the ground-state energy
of 150Nd from the SP-CDFT(Nt, 3) calculations for
the 64 testing sets as the function of Nt.

FIG. The comparison of Ex(2+
1 ) in 150Nd from

MR-CDFT and SP-CDFT(2, kmax) calculations with
different values of kmax, as a function of f(cℓ) for αS.
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SP-CDFT (sampling range)

parameters value uncorr.
error [%]

Train.
range [%]

αS -3.96291·10−4 0.83 0.5
βS 8.6653·10−11 4.7 2
γS -3.80724·10−17 14 4
δS -1.09108·10−10 23 20
αV 2.69040·10−4 1.2 0.8
γV -3.64219·10−18 54 30
δV -4.32619·10−10 76 20
αTV 2.95018·10−5 11 10
δTV -4.11112·10−10 1700 150

Phys. Rev. C 82, 054319 (2010)

✓ The ranges for sampling of
the parameters are chosen
according to the uncorrelated
tolerance of parameters with
χ2 ≤ χ2

min + 1;
Phys. Rev. C 65, 044308 (2002)

✓ 14 training Nt using Latin
hypercube sampling;
✓ 1.3 million samples using
quasi Monte-Carlo (MC)
sampling with a uniform
distribution.
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SP-CDFT (global sensitivity analysis)

We sample a parameter domain corresponding to a 0.5% variation around the PC-PK1 value.
The sensitivity of a parameter is calculated by:

Si =
Vi∑d

i=1 Vi +
∑d

i<j Vij + · · · + V12...d

where Vi = Var
(

EC̄i
(Y | ci)

)
denotes the variance of EC̄i

(Y | ci), which is the conditional expectation of
Y for the i-th parameter, EC̄i

(Y | ci) = 1
NY

∑NY
n=1 Y(n)(Cī).
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SP-CDFT (correlation analysis)

✓ Samples of EDFs: 1,310,720 (in blue).
✓ Samples of EDFs refined with the nuclear
matter properties: 457,380 (in red).

Correlation Analysis
There are strong correlations between Rp and
ρ0, E(0+

1 ) and E/A.
The excitation energies of the 2+

1 and 4+
1

states are anti-correlated with the E2
transition strengths; the proton radius Rp of
the ground state is positively anti-correlated
with the B(E2 : 0+

1 → 2+
1 )

The correlations of the quantities for nuclear
matter with M0ν are weak.
There are rather strong correlations between
the M0ν and nuclear low-lying states.
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SP-CDFT (correlation analysis)

✓ Samples of EDFs: 1,310,720 (in blue).
✓ Samples of EDFs refined with the nuclear
matter properties: 457,380 (in red).

Correlation Analysis
The excitation energies of the 2+

1 and 4+
1

states are weakly correlated with the E2
transition strengths due to the spherical
nuclei; the proton radius Rp of the ground
state is positively correlated with the
B(E2 : 0+

1 → 2+
1 )

There are rather strong correlations between
the M0ν and the excitation energy of 2+

1 , 4+
1

states, but weak correlations between the
M0ν and B(E2).
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SP-CDFT (uncertainty analysis)

Uncertainty analysis of low-lying states
The excitation energies and E2
transition strengths of 150Nd and
150Sm are reasonably reproduced;
The collectivity of the single-magic
nucleus 136Xe is overestimated due
to the lack of particle-hole excitation
configurations in the model space.
C. R. Ding et al., PRC 108, 054304 (2023)

The statistical uncertainties from the
nine parameters in the particle-hole
part of the EDF are within 9% for the
excitation energies and 5% for the E2
transition strengths.
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SP-CDFT (uncertainty analysis)

Uncertainty analysis of M0ν

The use of the information of
nuclear matter and nuclear low-lying
states in the Bayesian method does
not change evidently the NME;
The final mean value and statistical
uncertainty (68% confidence level)
of the NME are 5.51(14), and
4.33(5) for 150Nd and 136Xe,
respectively, in line with the values
5.60 and 4.32 by the PC-PK1.
J. M. Yao et al., PRC 91, 024316 (2015)
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SP-CDFT (uncertainty analysis)

The final mean value and statistical uncertainty are 4.21+0.07
−0.10 for 136Xe and 6.07+0.30

−0.32 for 150Nd for PC-F1. By using the
Bayesian model averaging (BMA) method, we obtain the NMEs of 4.34+0.09

−0.11 for 136Xe and 5.52+0.23
−0.26 for 150Nd.
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SP-CDFT (application in high-energy nuclear collisions)

  

y

x

z

150Nd

γ ≈ 1000 QGP x

y

e-

e-
Xmββνe

νe

FIG. Collider experiments with isobars provide robust probes of the nuclear geometry.

Y.Li, X. Zhang, G. Giacalone, J. M. Yao, arXiv.2502.08027 [nucl-th] (2025).
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SP-CDFT (application in high-energy nuclear collisions)
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MR-CDFT, 150Nd

SR-CDFT+TRENTo 150Nd+150Nd,
√
sNN = 5 TeV

∆(O) = (O − ⟨O⟩C)/|⟨O⟩C|,
ν2 is the final-state elliptic flow coefficient which
reflects the quadrupole deformation of the colliding
nuclei,
pT is the average hadron momentum which
differentiates the spectra of soft hadrons emitted to
the final states, revealing nuclear structure effects in
ultra-central collisions.

✓ All of these variations are strongly correlated with the
value of the NME.
✓ By extending the high-energy data to the Bayesian
analysis should effectively improve the extraction of the
nuclear deformation.
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Summary and Prospect

Summary
We tested the effectiveness of SP-CDFT method. Then, the SP-CDFT method is applied to
calculate different observables under 1.3 million sets of interactions. We use these samples to
perform global sensiticity analysis, correlation analysis, and finally give the uncertainty of the
low-lying states and M0ν of 150Nd and 136Xe.
We reveal prominent correlations between the NME and features of the quark-gluon plasma
(QGP) formed in these processes. Our findings demonstrate collider experiments involving
0νββ decay candidates as a platform for benchmarking theoretical predictions of the NME.

Prospect
We expect to analyze the uncertainty of matrix elements of more heavy nuclei and overweight
nuclei in low excited state and neutrino-free double beta decay candidates. In addition, we will
promote the large-scale application of SP-CDFT in combination with different interactions.
The results from calculations of heavy-ion collisions have to be followed up by a combined
Bayesian analysis of low- and high-energy data.
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Thanks!
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SP-CDFT (Bayesian analysis)

The posterior distribution of certain observable ŷ is:

p(ŷ|D) =
∫

p(ŷ|θ)p(θ|D)dθ =
∫

p(ŷ|θ) p(D|θ)π(θ)
p(D) dθ

The prior distribution is constructed as a Gaussian function. The center of Gaussian function is
PC-PK1 value (θ0), and the bandwidth is the variance of sample parameters σθ:

π(θ) = exp[−(θ − θ0)2/2σθ]

Likelihood function p(D|θ) is constructed as:

p(D|θ) = exp[−(D − y(θ))2/2σ]

The σ in the likelihood function includes experimental uncertainty σexp, emulator error of SP-CDFT
σem：

σ = σexp + σem

Where σem is given by the minimum variance unbiased estimator (MVUE)。
Giuliani, Pablo and Godbey, Kyle and Bonilla, Edgard and Viens, Frederi and Piekarewicz, Jorge, Front. Phys, 2022.1054524(2023)
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SP-CDFT

FIG. (a), (b), (c) The correlations among mean-squared radius R2
p = N−1

0 ⟨J = 0NZ; β2, C| R̂2
p |J = 0NZ; β2, C⟩,

reduced E2 transition matrix element Qp = (N0N2)−1/2 ⟨J = 2NZ; β2, C| |Q̂2| |J = 0NZ; β2, C⟩ and
normalization factors

√
NJ from the calculations for 150Nd based on a single configuration with β2 = 0.3, where

NJ = ⟨JNZ; β2, C| JNZ; β2, C⟩. (d) The results from the configuration-mixing GCM calculations. The quantities
hatted with bars are unnormalized.

X. Zhang 24 / 25



SP-CDFT

150Nd 136Xe
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