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Neutrinoless double-beta decay (0v3.3)
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J. M, Yao et al, PPNP. 126, 103965 (2022) Various nuclear models predict NMEs that differ by three to more!

We need to perform correlation analysis and uncertainty quantification for each model to understand
this discrepancy, which requires expensive calculations.
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Uncertainty Analysis

The source of uncertainty

@ Systematic error: due to imperfect modeling: deficient parametrizations, wrong
assumptions, and missing physics due to our lack of knowledge;

@ Statistical error: for a fixed model, statistical error refers to the model quality
deviation caused by the parameters that determine the model. By studying the
statistical error of parameters, the statistical error under fixed model can be given.

J Dobaczewski et al., J. Phys. G: Nucl. Part. Phys. 41 074001 (2014)

The task of this work is to analyze the statistical uncertainty of observables based on
the framework of multi-reference covariant density functional theory (MR-CDFT).

v Analysis approaches: Monte Carlo simulation prc. 110, 064606 (2024), Gaussian process
PRL. 132, 182502 (2024), Bayesian posterior analysis Nature Physics, 18, 1196-1200 (2022). ..
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Covariant Density Functional Theory (CDFT)

@ The CDFT starts from the following energy density functional (EDF) under the mean-field approximation:
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@ The interaction part with low-energy constants C = {as, S3s, vs, ds, v, Vv, dv, a1y, d7v}:
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@ The local densities ps(r) and currents ji/(r), I‘TLV(r) and pairing tensor k(r) are:
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Generator Coordinate Method (GCM)

@ The GCM wave function is expanded on a set of non-orthogonal basis for a certian EDF:
P. Ring and P. Schuck, The nuclear many-body problem (1980)
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where |JNZ: q) = IA:’x,,,KZOIAJN/AJZW(q)) are symmetry-projected quasiparticle vacua.
@ The variational principle yields the Hill-Wheeler-Griffin (HWG) equation:
> |H(a,d') - EMN(a,q) | £(a) = 0,

q’
which contains norm kernels A/ and Hamiltonian kernels .

The CDFT+GCM (MR-CDFT) method entails an extensive computational burden, thereby
rendering the statistical uncertainty analysis exceedingly challenging.
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Eigenvector continuation(EC)
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Subspace-projected covariant density functional theory(SP-CDFT)

@ In SP-CDFT, the wave function |[UIN4(C,)) of a target EDF Ec, (p) = Eo(p) + Co - p is
expanded in terms of the basis wave functions |W7V?(C,)) of the first knax states by the
N training EDFs,
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@ The mixing coefficient _f’,(,"éz@(u7 C.) is determined by the following equation,
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@ Here, we define the norm and Hamiltonian kernels of the EC method for a target EDF,
- <WJNZ |le,vz C.),
1Y (Co) = (WINZ(C)| F(Co) [WN2(Cy)) .
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SP-CDFT
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@ The energy overlap which is evaluated with the mixed-density prescription,
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@ Only the interaction energy term depends on the parameters cg of the target EDF,
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where ﬁs,j'”,j*}v are the mixed densities and currents.
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SP-CDFT (computational time)
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FIG. The ratio of the computation time of MR-CDFT calculation
to that of SP-CDFT calculation for °Nd.

@ The number of samples we
sample is about 108, and
the calculated ratio of
Tmr—cprT/ TsP—cDFT
10* for ™ONd.

@ The SP-CDFT allows us
within half an hour using a
PC, to predict nuclear
low-lying states for 1.3
millions of EDF samples
which would otherwise take
years with the MR-CDFT.
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SP-CDFT (benchmark)

Benchmark calculation using 64 testing set (1°°Nd)
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@ The relative error for the ground state properties are all within 0.3%.

4

@ The relative error for the low-lying states properties are all within 13%: due to the
overlap of errors between the ground state and the lower-lying state.
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SP-CDFT (hyperparameters)

V" we use the symbol SP-CDFT (N, kmax) to mark the number of two hyperparameters.
v we introduce a scaling factor flc¢) = c¢/c) for each parameter in C, where ¢ is the value of the
coupling constant ¢, in the PC-PK1.
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FIG. The comparison of E,(2]) in 1%Nd from
MR-CDFT and SP-CDFT(2, kmax) calculations with
different values of kmax, as a function of f{c;) for as.

FIG. The relative errors of the ground-state energy
of 1°Nd from the SP-CDFT (N, 3) calculations for
the 64 testing sets as the function of N;.
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SP-CDFT (sampling range)

parameters | value uncorr. Train.
error [%] | range [%]

as -3.96291-10~* 0.83 0.5

Bs 8.6653-1011 4.7 2

s -3.80724-10~ 17 14 4

Ss -1.09108-10~10 23 20

ay 2.69040-10—* 1.2 0.8

v -3.64219-10~ 18 54 30

Sy -4.32619-10~10 76 20

aTy 2.95018-107° 11 10

S1v -4.11112-10710 1700 150

Phys. Rev. C 82, 054319 (2010)

v' The ranges for sampling of
the parameters are chosen
according to the uncorrelated
tolerance of parameters with
X< Xoin + 1

Phys. Rev. C 65, 044308 (2002)

v’ 14 training N; using Latin
hypercube sampling;

v' 1.3 million samples using
quasi Monte-Carlo (MC)
sampling with a uniform
distribution.
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SP-CDFT (global sensitivity analysis)
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@ We sample a parameter domain corresponding to a 0.5% variation around the PC-PK1 value.

@ The sensitivity of a parameter is calculated by:
Vi
S Vi Vit 4V,
=1 Vi i<j Vi 12...d
where V; = Var (EC, (Y] c,-)) denotes the variance of Ec. (Y| ¢;), which is the conditional expectation of

Y for the i-th parameter, Ec_ Y|c)= Ny Y(n(C).
N i
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SP-CDFT (correlation analysis)
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SP-CDFT (correlation analysis)
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v' Samples of EDFs: 1,310,720 (in blue).
v' Samples of EDFs refined with the nuclear
matter properties: 457,380 (in red).

Correlation Analysis

@ The excitation energies of the 2 and 47
states are weakly correlated with the E2
transition strengths due to the spherical
nuclei; the proton radius R, of the ground
state is positively correlated with the
B(E2: 0 — 2})

@ There are rather strong correlations between
the M* and the excitation energy of 2., 4,
states, but weak correlations between the
M and B(E2).
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SP-CDFT (uncertainty analysis)
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SP-CDFT (uncertainty analysis)
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SP-CDFT (uncertainty analysis)
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@ The final mean value and statistical uncertainty are 4.211%‘0170 for 13®Xe and 6.07100‘.3302 for ®'Nd for PC-F1. By using the

Bayesian model averaging (BMA) method, we obtain the NMEs of 4.34J:°0'_0191 for 13Xe and 5'52t%.2236 for 1ONd.
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SP-CDFT (application in high-energy nuclear collisions)
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Y.Li, X. Zhang, G. Giacalone, J. M. Yao, arXiv.2502.08027 [nucl-th] (2025).
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SP-CDFT (application in high-energy nuclear collisions)
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@ 1 is the final-state elliptic flow coefficient which
reflects the quadrupole deformation of the colliding
nuclei,

@ pr7 is the average hadron momentum which
differentiates the spectra of soft hadrons emitted to
the final states, revealing nuclear structure effects in
ultra-central collisions.

V' All of these variations are strongly correlated with the
value of the NME.

v' By extending the high-energy data to the Bayesian
analysis should effectively improve the extraction of the
nuclear deformation.



Summary and Prospect

@ We tested the effectiveness of SP-CDFT method. Then, the SP-CDFT method is applied to
calculate different observables under 1.3 million sets of interactions. We use these samples to
perform global sensiticity analysis, correlation analysis, and finally give the uncertainty of the
low-lying states and M®” of 1°°Nd and !30Xe.

@ We reveal prominent correlations between the NME and features of the quark-gluon plasma

(QGP) formed in these processes. Our findings demonstrate collider experiments involving
Ov3 decay candidates as a platform for benchmarking theoretical predictions of the NME.

@ We expect to analyze the uncertainty of matrix elements of more heavy nuclei and overweight
nuclei in low excited state and neutrino-free double beta decay candidates. In addition, we will
promote the large-scale application of SP-CDFT in combination with different interactions.

@ The results from calculations of heavy-ion collisions have to be followed up by a combined
Bayesian analysis of low- and high-energy data.
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SP-CDFT (Bayesian analysis)

@ The posterior distribution of certain observable ¥ is:

P(?|D):/p(j/|9)p(9|D)d9:/p(y|9)w

p(D)
@ The prior distribution is constructed as a Gaussian function. The center of Gaussian function is
PC-PK1 value (6°), and the bandwidth is the variance of sample parameters oy:

df

m(0) = exp[—(0 — 6°)? /20¢]
@ Likelihood function p(D|f) is constructed as:
p(DI0) = expl—(D - ¥(6))*/20]

@ The o in the likelihood function includes experimental uncertainty gexp, emulator error of SP-CDFT
Oem -

O = Oexp + Oem
Where oem is given by the minimum variance unbiased estimator (MVUE),

Giuliani, Pablo and Godbey, Kyle and Bonilla, Edgard and Viens, Frederi and Piekarewicz, Jorge, Front. Phys, 2022.1054524(2023)
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SP-CDFT
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FIG. (a), (b), (c) The correlations among mean-squared radius Rf, = NO_1 (J=0NZ 3,C| R,Q, |J=0NZ 3,,C),

reduced E2 transition matrix element Q, = (NoN,)~1/2 (J = 2NZ; 85, C||@2| |J = ONZ; 8, C) and
normalization factors /N from the calculations for 1°°Nd based on a single configuration with 8, = 0.3, where
N,y = (UJNZ; 82,C| INZ; 35, C). (d) The results from the configuration-mixing GCM calculations. The quantities
hatted with bars are unnormalized.
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SP-CDFT
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