Computational Materials Design: DFT Application in Nuclear Medicine

Jeffrey Tanudji Institute of Radiation Sciences Osaka University

2025/03/25

Introduction

- Targeted alpha therapy (e.g. with ²¹¹At) is being developed as a new method for cancer therapy
- Compared to traditional methods, using gold nanoparticle as carrier could potentially bring more radionuclides to the target area, along with other drugs or 1maging agents

[1] J. Tanudji et al., Phys. Chem. Chem. Phys 26, 12915 (2024)

Experimental findings of ²¹¹At/Au use

[2] H. Kato et al., J. Nanobiotechnol. 19, 233 (2021)

Motivation

- •Experiments have shown gold nanoparticles to be able to hold astatine
- •Lack of fundamental understanding to allow us to design better or more efficient carrier
- •The goal of this series of studies is to design nanoparticles that can be used to carry astatine more effectively

Adsorption of astatine on Au(111)

	Adsorption energy of At/Au(111					
	w/o vdW [eV]	w/ vdW [eV]	w/ vdW SOC [e			
fcc hollow	-0.91	-1.43	-1.4			
hcp hollow	-0.90	-1.42	-1.4			
bridge site	-0.85	-1.37	-1.4			
top site	-0.60	-1.20	-1.20			

Adsorption energies on Au(111)

	hcp hollow top	At/Au(111) adsorption energy			I/Au(111) adsorption energy			
bridge fc		w/o vdW(eV)	w/ vdW(eV)	w/ vdW+ SOC (eV)	w/o vdW (eV)	w/ vdW (eV)	w/ vdW + SOC (eV)	
	fcc hollow	-0.91	-1.43	-1.43	-0.92	-1.33	-1.34	
	hcp hollow	-0.90	-1.42	-1.43	-0.90	-1.33	-1.34	
	bridge site	-0.85	-1.37	-1.40	-0.85	-1.29	-1.30	
	top site	-0.60	-1.20	-1.26	-0.62	-1.11	-1.14	

Adsorption on Au(211)

One M adsort on Au surfa $\downarrow E_{ad} = M/Au(21)$ $-(0.5M_2 + Au(21))$ $\uparrow Isolated M Clean Surfa$

> where M is the adsor (iodine or astatine

rbed ace		I adsorption energy (eV)	At adsorpt energy (e ^v
1)	Edge top	-1.18	-1.19
(11)) n Au ace rbate e)	Edge bridge	-1.63	-1.63
	Mid hollow	-1.38	-1.47
	Terrace top	-1.12	-1.22

Astatine diffusion energetics from position 1 to position 5

	hollow sites [eV]
Au(111)	-1.57
Ag(111)	-1.63
Cu(111)	-1.73
Pt(111)	-1.95

PERIODIC TABLE OF ELEMENTS **Electron Configuration**

							18		
PubChem						2 4.00260			
									Не
				13	14	15	16	17	1s ²
ass, u				5 10.81	6 12.011	7 14.007	8 15.999	9 18.9984	10 20.180
				В	С	Ν	0	F	Ne
 C ('				Boron [He]2s ² 2p ¹	Carbon [He]2s ² 2p ²	Nitrogen [He]2s ² 2p ³	Oxygen [He]2s ² 2p ⁴	Fluorine [He]2s ² 2p ⁵	Neon [He]2s ² 2p ⁶
Configuration			13 26.981	14 28.085	15 30.973	16 32.07	17 35.45	18 39.9	
				AI	Si	Р	S	CI	Ar
				Aluminum	Silicon	Phosphorus	Sulfur [Ne13s ² 3p ⁴	Chlorine	Argon
9	10	11	12	71 60 722		77 74 02150		DE 70.00	76 92 90
Co	20 38.093	29 03.55 Cu	7 n	Go.123	52 72.03	Λς	54 70.97	Dr	50 85.80
Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
Ar]4s ² 3d ⁷	[Ar]4s ² 3d ⁸	[Ar]4s ¹ 3d ¹⁰	[Ar]4s ² 3d ¹⁰	[Ar]4s ² 3d ¹⁰ 4p ¹	[Ar]4s ² 3d ¹⁰ 4p ²	[Ar]4s ² 3d ¹⁰ 4p ³	[Ar]4s ² 3d ¹⁰ 4p ⁴	[Ar]4s ² 3d ¹⁰ 4p ⁵	[Ar]4s ² 3d ¹⁰ 4p ⁶
102.9055	46 106.42	47 107.868	48 112.41	49 114.818	50 118.71	51 121.760	52 127.6	53 126.9045	54 131.29
Rh	Pd	Ag	Cd	Indium	Sn	Sb	Tellurium	lodine	Xe
Kr]5s ¹ 4d ⁸	[Ku 4d ¹⁰	[Kr]5s ¹ 4d ¹⁰	[K 15s ² 4d ¹⁰	[Kr]5s ² 4d ¹⁰ 5p ¹	[Kr]5s ² 4d ¹⁰ 5p ²	[Kr]5s ² 4d ¹⁰ 5p ³	[Kr]5s ² 4d ¹⁰ 5p ⁴	[Kr]5s ² 4d ¹⁰ 5p ⁵	[Kr]5s ² 4d ¹⁰ 5p ⁶
192.22	78 195.08	79 196.96	80 200.59	81 204.383	82 207	83 208.98	84 208.98	85 209.98	86 222.01
Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
lridium e]6s ² 4f ¹⁴ 5d ⁷	Platinum [Xe]6s14f ¹⁴ 5d ⁹	Gold [Xe]6s ¹ 4f ¹⁴ 5d ¹⁰	Mercury [Xe ¹ /s ² 4f ¹⁴ 5d ¹⁰	Thallium [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹	Lead [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ²	Bismuth [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	Polonium [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	Astatine [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵	Radon [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶
9 277.1	110 282.1.	111 282.1.	112 286.1	113 286.1	114 290.1	115 290.1	116 293.2	117 294.2	118 295.2
Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
eitnerium n]7s ² 5f ¹⁴ 6d ⁷	Darmstadtium [Rn]7s ² 5f ¹⁴ 6d ⁸	Roentgenium [Rn]7s ² 5f ¹⁴ 6d ⁹	Copernicium [Rn]7s ² 5f ¹⁴ 6d ¹⁰	Nihonium [Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ¹	Flerovium [Rn]7s ² 7p ² 5f ¹⁴ 6d ¹⁰	Moscovium [Rn]7s ² 7p ³ 5f ¹⁴ 6d ¹⁰	Livermorium [Rn]7s ² 7p ⁴ 5f ¹⁴ 6d ¹⁰	Tennessine [Rn]7s ² 7p ⁵ 5f ¹⁴ 6d ¹⁰	Oganesson [Rn]7s ² 7p ⁶ 5f ¹⁴ 6d ¹⁰
150.4	63 151 964	6/ 157.2	65 158 92	66 162 500	67 164 93	68 167 26	60 168 93	70 173.05	71 174 9668
Sm	Fu	Gd	Th	Dv	Но	Fr	Tm	Yh	
amarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
244.00						100.057	101 050		102 200
D	95 243.06	96 247.07	9/ 247.07 DI-	98 251.07	99 252.0830	E 100 257.0		102 259.1	103 266.1
PU	Americium	Curium	DK Berkelium	CT Californium	ES Einsteinium	Fermium	Mendelevium	INO Nobelium	Lawrencium
Rn]7s ² 5f ⁶	[Rn]7s ² 5f ⁷	[Rn]7s ² 5f ⁷ 6d ¹	[Rn]7s ² 5f ⁹	[Rn]7s ² 5f ¹⁰	[Rn]7s ² 5f ¹¹	[Rn]5f ¹² 7s ²	[Rn]7s ² 5f ¹³	[Rn]7s ² 5f ¹⁴	[Rn]7s ² 5f ¹⁴ 6d ¹

National Center for Biotechnology Information (2024). Periodic Table of Elements.

Current results

- •Hybridization of astatine 6p and gold 5d and 6s upon adsorption
- A more uneven surface allows for stronger adsorption of astatine
- •Other biocompatible/noble metals can be potentially useful as astatine carriers

Calculations were performed in the computer clusters of NIT Akashi College and YITP Kyoto University

Challenges and future works

- biocompatible may be used as alternatives
- •Things to be considered

 - •Effect of astatine decay
- •Corroboration with experiments will be useful in understanding the accuracy of the simulation

•Other materials such as oxides (e.g. Ti and TiO₂) that are

•Actual operating conditions (temperature, pressure, etc.)

Computational Materials Design: DFT Application in Nuclear Medicine

Jeffrey Tanudji Institute of Radiation Sciences Osaka University

2025/03/25

Production of 211At

Energy

28 MeV

50-60 MeV

42 MeV

 Production energy cannot exceed 28 MeV due to possibility of creating ²¹⁰At, which decays into toxic ²¹⁰Po

Use of gold nanoparticle

- Many shapes and sizes of AuNP can be created by
 - Reducing HClAu₄ with reducing agents such as sodium citrate or sodium borohydride
- Add anti-coagulant to stop AuNPs from aggregating • Attaching AuNP with targeting compounds
- Label AuNP with ²¹¹At

Radiotherapy material

Adsorption effects

Post radiotherapy

Goal

Adsorption characteristics of decay remnant to gold

Effect of radiation to original system

To design optimized carriers for radiotherapy

Adsorption on nanoparticle

Model diagram of a 5 nm AuNP

Model diagram of a 1 nm AuNP

