DFT2024@RIKEN, Feb. 22nd, 2024

Anharmonic phonon theory in condensed matter physics with applications based on DFT

National Institute for Materials Science, Tsukuba, Japan

E-mail: TADANO.Terumasa@nims.go.jp

Terumasa Tadano

- 1. Introduction
- 2. History of anharmonic phonon theory
- 3. Perturbative expansion method and applications to thermal transport
- 4. Self-consistent phonon theory and applications to phase transition
- 5. Summary & outlook

Quantum description of lattice vibration

Interaction

What is phonon?

Phonon dispersion (1D)

Why/when is phonon important?

Thermal conductivity

Band-gap renormalization

Phonon-phonon cattering

Phonon-electron cattering

k'

q

Electron-phonon interaction

Superconductivity

PRL 105, 265501 (2010)

 LaH_{10}

Other phenomena include

- thermal expansion
- structural phase transition

Non-interacting picture

Hamiltonian of non-interacting phonon (harmonic approximation)

X Phonon is non-interacting → **infinite** lifetime → **infinite** thermal conductivity

X Phonon is temperature-independent \rightarrow **no** displacive structural phase transition

X Phonon is volume-independent \rightarrow **no** thermal expansion

$$\omega_q \left(\hat{b}_q^\dagger \hat{b}_q + \frac{1}{2} \right)$$

Non-interacting picture

Hamiltonian of non-interacting phonon (quasi-harmonic approximation) $\hat{H}_0 = \sum \hbar \omega_q (\mathbf{V}) \left(\hat{b}_q^{\dagger} \hat{b}_q + \frac{1}{2} \right)$

X Phonon is non-interacting → **infinite** lifetime → **infinite** thermal conductivity

X Phonon is temperature-independent \rightarrow **no** displacive structural phase transition

X Phonon is volume-dependent → **finite** thermal expansion

Many-body problem of phonons

Phonon Hamiltonian with interaction terms (anharmonicity)

$$\hat{H} = \sum_{q} \hbar \omega_q \left(\hat{b}_q^{\dagger} \hat{b}_q + \frac{1}{2} \right) + \hat{U}_3 + \hat{U}_4 + \cdots$$

✓ Phonon is interacting via anharmonicity

- → finite lifetime
- \rightarrow finite thermal conductivity
- $\checkmark Phonon is volume-dependent$ $\rightarrow finite thermal expansion$

 \checkmark Phonon is temperature-dependent \rightarrow explains structural phase transition

How to solve the many-body problem?

$$\hat{H} = \sum_{q} \hbar \omega_{q} \left(\hat{b}_{q}^{\dagger} \hat{b}_{q} + \right)$$

Perturbative expansion

•

Dyson equation

$$[G(\omega)]^{-1}$$

$$\hat{H} = \hat{H}_0 + \hat{U}_3 + \hat{U}_4 + \cdots$$

perturbation

Free energy expan

Variational approach (self-consistent phonon) •

$$\hat{H} = \hat{H}_0 + \hat{U}_3 + \hat{U}_4 + \cdots = \hat{\mathcal{H}}_0 + (\hat{H}_0 - \hat{\mathcal{H}}_0 + \hat{U}_3 + \hat{U}_4 + \cdots)$$

Monte Carlo or Molecular dynamics (if classical) •

$$+\frac{1}{2})+\hat{U}_{3}+\hat{U}_{4}+\cdots$$

$$[G(\omega)]^{-1} = [G_0(\omega)]^{-1} - \Sigma(\omega)$$

 $[G_q(\omega)]^{-1} = - + \underbrace{\downarrow}_{\Phi_s} + \underbrace{\downarrow}_{\Phi_s}$

Find a good one-body approximation based on the free-energy minimization

 $+ \cdots$ + •••

History of many-body phonon theory (and others)

Perturbation theory

$$\hat{H} = \sum_{q} \hbar \omega_q \left(\hat{b}_q^{\dagger} \hat{b}_q + \frac{1}{2} \right) + \hat{U}_3 + \hat{U}_4 + \cdots \qquad \qquad \hat{U}_n = \frac{1}{n!} \sum_{q} V(q_1; \dots; q_n) \hat{A}_{q_1} \cdots \hat{A}_{q_n} \qquad \hat{A}_q = \hat{b}_q + \hat{b}_{-q}^{\dagger}$$
perturbation H'

Dressed phonon Green's function

$$G_{q,q'}(\tau) = \left\langle T\tilde{A}_q(\tau)\tilde{A}_{q'}^{\dagger}(0)\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}\int_0^{\beta}d\beta_1\cdots\int_0^{\beta}d\beta_n\tilde{H}'(\beta_1)\cdots\tilde{H}'(\beta_n)\right\rangle_{0c}$$

$$G_0(\omega)]^{-1} - \Sigma(\omega)$$

Anharmonic self-energies

eigen-energy shift

linewidth (inverse scattering rate)

Phonon scattering by the three-phonon process

Linewidth

$$\Gamma_{q}(\omega) = \operatorname{Im}\left[\begin{array}{c} \mathbf{i}' & \mathbf{j}' \\ \mathbf{j}' & \mathbf{j}'' \end{array} \right]$$

$$= \frac{\pi}{2N} \sum_{q',q''} \frac{\hbar |\Phi_{3}(-q,q',q'')|^{2}}{8\omega_{q}\omega_{q'}\omega_{q''}} \Delta(-q+q'+q'') \\ \times \left[(n_{q'}+n_{q''}+1)\delta(\omega_{q}-\omega_{q'}-\omega_{q''}) \\ -2(n_{q'}-n_{q''})\delta(\omega_{q}-\omega_{q'}+\omega_{q''}) \right]$$

$$\tau_q = \frac{\hbar}{2\Gamma_q(\omega_q)}$$

Lifetime

Maradudin and Fein, Phys. Rev. 128, 2589 (1962).

Bubble self-energy

10x larger phonon-phonon scattering rate of heat-carrying acoustic phonons induced by low-energy rattling guest modes in BGG

<u>TT</u>, Y. Gohda, and S. Tsuneyuki, PRL **114**, 095501 (2015).

Boltzmann transport theory

$$\begin{split} \kappa^{\mu\nu}_{\rm ph} &= \frac{1}{N_q V} \sum_q c_q(T) v^{\mu}_q v^{\nu}_q \tau_q(T) \\ \\ \text{Lifetime} \quad \tau_q &= \frac{\hbar}{2\Gamma_q(\omega_q)} \end{split}$$

Prediction of thermal conductivity

Good agreement between theory and experiments

useful for computational discovery of novel thermal management materials

First theoretical prediction

Phys. Rev. Lett. 111, 025901 (2013)

4-phonon scattering

Experimental validation

Science **361**,575-578 (2018)

 $\mathbf{\wedge}$

Series expansion may not converge if the perturbation term H' is reasonably large. This can happen more likely for strongly anharmonic materials

٠

Limitation of the perturbation method

 $\mathbf{\Lambda}$

The non-interacting Hamiltonian H_0 is ill-defined in many cases (high-symmetry phases of solids).

Need to construct a better one-body starting point

Anharmonic renormalization solves imaginary phonon problem

Effective harmonic force constant at finite temperature

SrTiO₃ cubic (T > 105 K)

Self-consistent phonon theory:

Stochastic implementation : Errea et al., PRB 2014 Deterministic implementation: <u>TT</u> and S. Tsuneyuki, PRB 2015

Effective force constant from MD: Hellman et al., PRB 2011

Self-consistent phonon (SC1) theory

H: Exact Hamiltonian of the interacting phonon system with full anharmonicity. Density operator: $\hat{\rho}_H = \frac{\exp(-\beta \hat{H})}{\operatorname{tr}[\exp(-\beta \hat{H})]}$ Exact free energy: $F_H = \operatorname{tr}(\hat{\rho}_H \hat{H}) + \frac{1}{\beta} \operatorname{tr}(\hat{\rho}_H \ln \hat{\rho}_H)$ infeasible to calculate

Density operator: $\hat{\rho}_{\mathcal{H}_0} = \frac{\exp(-\beta \hat{\mathcal{H}}_0)}{\operatorname{tr}[\exp(-\beta \hat{\mathcal{H}}_0)]}$ Approximated free energy: $F_H(\hat{\mathcal{H}}_0) =$

Feynmann–Gibbs–Bogoliubov inequality: $F_H \leq F_H(\mathcal{H}_0)$

N. R. Werthamer, Phys. Rev. B 1, 572 (1970)

$$= \operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{H}) + \frac{1}{\beta}\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\ln\hat{\rho}_{\mathcal{H}_0}) \quad \begin{array}{l} \text{computation is} \\ \text{feasible} \end{array}$$

SC1 free energy and SC1 frequency

SC1 vibrational free energy

$$F_{H}(\hat{\mathcal{H}}_{0}) = \operatorname{tr}(\hat{\rho}_{\mathcal{H}_{0}}\hat{H}) + \frac{1}{\beta}\operatorname{tr}(\hat{\rho}_{\mathcal{H}_{0}}\ln\hat{\rho}_{\mathcal{H}_{0}})$$

$$\hat{H} = \hat{T} + \hat{U}_2 + \hat{U}_3 + \hat{U}_4 + \hat{U}_5 + \hat{U}_6 + \cdots$$
$$= \hat{\mathcal{H}}_0 + (\hat{U}_2 - \hat{\mathcal{U}}_2 + \hat{U}_3 + \hat{U}_4 + \hat{U}_5 + \hat{U}_6 + \cdots)$$

 $\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{\boldsymbol{H}}) = \operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{\mathcal{H}}_0) + \operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}(\hat{U}_2 - \hat{\mathcal{U}}_2))$ $+\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{U}_4)+\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{U}_6)+\cdots$

even-term anharmonicity

Feynmann–Gibbs–Bogoliubov inequality: $F_H \leq F_H(\hat{\mathcal{H}}_0)$

SC1 frequency

$$\nabla_{\Omega_q} F_H(\hat{\mathcal{H}}_0) = 0$$
force constants
$$\mathbf{\nabla}_{\Omega_q} F_H(\hat{\mathcal{H}}_0) = 0$$

$$\mathbf{P}_q^2 = \omega_q^2 + \frac{1}{2} \sum_{q'} \Phi_4(-q, q; -q', q') \alpha_{q'}$$

$$+ \frac{1}{8} \sum_{q'q''} \Phi_6(-q, q; -q', q'; -q'', q'') \alpha_{q'} \alpha_{q'$$

 $\alpha_q = \frac{\hbar(2n_q+1)}{2\Omega_q}$

mean-square displacement $lpha_{q^{\prime\prime}}$

The self-consistent phonon (SC1) equation is obtain

A diagrammatic representation of the SC1 theory:

$$\{G_q(\omega)\}^{-1} = \{G_q^0(\omega)\}^{-1} - \Sigma_q^{\mathrm{T}}[G] - \Sigma_q^{\mathrm{L}}[G]$$

Self-energy in perturbation theory

A diagrammatic view of SC1 theory

uned via
$$\nabla_{\Omega_q} F_H(\hat{\mathcal{H}}_0) = 0$$

"Hatree-Fock" theory for phonons

Force constant calculation: A brute-force approach

$$\Phi_{ij} = \frac{\partial^2 V}{\partial u_i \partial u_j} = -\frac{\partial F_j}{\partial u_i} \approx -\frac{[F_j(u_i = h) - F_j(u_i = -h)]}{2h}$$

$$\Phi_{ijk} = \frac{\partial^3 V}{\partial u_i \partial u_j \partial u_k} = -\frac{\partial F_k}{\partial u_i \partial u_j}$$

$$\approx -\frac{1}{4h^2} \left[F_k(u_i = h, u_j = h) - F_k(u_i = h, u_j = -h) - F_k(u_i = -h, u_j = -h) + F_k(u_i = -h, u_j = -h) \right]$$

2 patterns

4 patterns

Force constants from sparse modeling

$$V_{\text{ALM}} = V_2 + V_3 + V_4 + \cdots$$

$$= \frac{1}{2} \sum_{i,j} \Phi_{ij} u_i u_j + \frac{1}{3!} \sum_{i,j,k} \Phi_{ijk} u_i u_j u_k + \frac{1}{4!} \sum_{i,j,k,\ell} \Phi_i$$
parameters basis
$$= \mathbf{b} \cdot \mathbf{\Phi}$$

 $\mathbf{\Phi} = [\Phi_1, \Phi_2, \dots, \Phi_M]^T$ M: The number of independent parameters

$$oldsymbol{F}_{ ext{ALM}} = -rac{\partial V_{ ext{ALM}}}{\partial oldsymbol{u}} = -rac{\partial oldsymbol{b}^T}{\partial oldsymbol{u}} oldsymbol{\Phi} = Aoldsymbol{\Phi}$$

Shrinkage

$$\tilde{\boldsymbol{\Phi}} = \arg\min_{\boldsymbol{\Phi}} \|A\boldsymbol{\Phi} - \boldsymbol{F}^{\mathrm{DFT}}\|^2 + \alpha |\boldsymbol{\Phi}|^p$$

β2 p=1: LASSO

 $v_{ijk\ell}u_iu_ju_ku_\ell+\cdots$

✓ Adaptive LASSO gives more sparse solution $\checkmark 50$ structure snapshots is enough to reach convergence of F_{vib} within 1 meV/atom error

Temperature dependent phonon in cubic SrTiO₃

<u>TT</u> and S. Tsuneyuki, J. Phys. Soc. Jpn. 87, 041015 (2018)

Green line: SCP result@300K

Red circle: INS result@300 K

First-principles implementation of SCP (SC1)

How to update Φ (*effective* 2nd-order force constants)?

***** Stochastic methods

- SSCHA http://sscha.eu
- https://github.com/vanroeke/qscaild - QSCAILD
- https://hiphive.materialsmodeling.org - HiPhive
- https://phonopy.github.io/ - Phonopy

Stochastically displace atoms in a supercell and update Φ so as to minimize $\nabla_{\Phi} F_H(\hat{\mathcal{H}}_0)$

- **Pros.** Full anharmonicity (at the mean-field level)
 - No explicit computation of anharmonic force constants

Cons. • More expensive computationally

Force constant based approach (FC-SCP)

- ALAMODE https://alamode.readthedocs.io/

From $\nabla_{\Phi} F_H(\hat{\mathcal{H}}_0) = 0$, derive the self-consistent equation analytically. The Taylor series is truncated.

$$\langle \hat{H} - \hat{\mathcal{H}}_0 \rangle = \langle \hat{U}_0 - \hat{\mathcal{U}}_0 + \hat{U}_3 + \hat{U}_4 + \ldots \rangle_0 \approx \langle \hat{U}_0 - \hat{\mathcal{U}}_0 + \hat{U}_4 \rangle_0$$

Pros.

- More efficient particularly for scanning temperature
- Faster convergence

Cons.

- Omit higher-order anharmonicity
- Requires anharmonic force constants as input

Stochastic method (SSCHA)

I. Errea et al., Phys. Rev. B 89, 064302 (2014).

Consistency between two approaches

Force-constant based approach (FC-SCP)

TT and S. Tsuneyuki, Phys. Rev. B 92, 054301 (2015).

Another comparison on anharmonic solid

Soft phonon frequency

E. Fransson, P. Rosander, F. Eriksson, J. M. Rahm, <u>TT</u>, and P. Erhart, Commun. Phys. 6, 1 (2023).

H

Application to el-ph problem: band-gap renormalization

Allen–Heine–Cardona (AHC) theory

$$\Delta \epsilon_g(T) = \frac{1}{N_q} \sum_{\boldsymbol{q},\nu} \frac{a_{\boldsymbol{q}\nu;\boldsymbol{q}\nu}^{(2)}}{\omega_{\boldsymbol{q}\nu}} \left[\frac{1}{2} + n_{\boldsymbol{q}\nu}(T) \right]$$

Finite difference method using non-diagonal supercell

Monserrat, J Phys Condens Matter 30, 083001 (2018).

History of superconducting T_c record

https://kittaka.r.chuo-u.ac.jp/contents/others/tc-history/index.html

Somayazulu *et al.*,

Distortion and phonon instability in Fm3m-LaH₁₀

Fm3m-LaH₁₀ distorts into a lower-symmetry structure below ~250 GPa when atoms are treated as classical particles.

Stabilization of *Fm*3*m*-LaH₁₀ by anharmonic renormalization

Nature **578**, 66-69 (2020)

Classical particle (at absolute rest)

No anharmonic renormalization

Quantum fluctuation (> 10% of interatomic distance)

Large anharmonic renormalization

DFT for superconductors (SCDFT)

$$\Delta(\xi) = -\mathcal{Z}(\xi)\Delta(\xi) - \frac{1}{2}\int d\xi' N(\xi')\mathcal{K}(\xi,\xi') \frac{\tanh\left[\frac{\beta E(\xi)}{2}\right]}{E(\xi)}\Delta(\xi')$$

Marques *et al.*, PRB **72**, 024545 (2005). Sanna *et al.*, JPSJ **87**, 041012 (2018). Sanna et al., PRL 125, 057001 (2020).

Migdal–Eliashberg Theory

$$\begin{split} \Delta_{n\boldsymbol{k}}(\mathrm{i}\omega_{i}) &= -\frac{1}{N_{q}\beta}\sum_{\mu,m\boldsymbol{q}}\left\{V_{nm}^{\mathrm{ph}}(\boldsymbol{q},\mathrm{i}\omega_{\mu}) + V_{nm}^{\mathrm{c}}(\boldsymbol{q},\mathrm{i}\omega_{\mu})\right\} \\ &\times G_{m\boldsymbol{k}+\boldsymbol{q}}(\mathrm{i}\omega_{\mu}+\mathrm{i}\omega_{i})G_{m-\boldsymbol{k}-\boldsymbol{q}}(-\mathrm{i}\omega_{\mu}-\mathrm{i}\omega_{i})\Delta_{m\boldsymbol{q}}(\mathrm{i}\omega_{\mu}+\mathrm{i}\omega_{i}),\\ \Sigma_{n\boldsymbol{k}}(\mathrm{i}\omega_{i}) &= -\frac{1}{N_{q}\beta}\sum_{\mu,m\boldsymbol{q}}V_{nm}^{\mathrm{ph}}(\boldsymbol{q},\mathrm{i}\omega_{\mu})G_{m\boldsymbol{k}+\boldsymbol{q}}(\mathrm{i}\omega_{\mu}+\mathrm{i}\omega_{i}).\end{split}$$

Sano et al., PRB 93, 094525 (2016).

T_c calculated with renormalized phonon

Nature **578**, 66-69 (2020)

Phonon linewidth from first principles

SC1 is still one-body (infinite lifetime)

SC1 + Bubble gives finite line width

SrTiO₃: phonon linewidth & thermal conductivity

Phonon spectral function

$$A_q(\omega) = \frac{1}{\pi} \frac{4\Omega_q^2 \Gamma_q^{(B)}(\omega)}{\{\omega^2 - \Omega_q^2 - 2\Omega_q \Delta_q^{(B)}(\omega)\}^2 + \{2\Omega_q \Gamma_q^{(B)}(\omega)\}^2}$$

Boltzmann transport theory

Quasiparticle approximation

$$\Omega_{\boldsymbol{q}\nu}^2 = (\omega_{\boldsymbol{q}\nu}^{\mathrm{S}})^2 - 2\omega_{\boldsymbol{q}}^{\mathrm{S}}$$

SrTiO₃

Full-frequency dependence •

(often) inconvenient for el-ph calculation •

<u>TT</u> and W. Saidi, Phys. Rev. Lett. **129**, 185901 (2022)

 $\{\boldsymbol{G}_{\boldsymbol{q}}(\omega)\}^{-1} = \{\boldsymbol{G}_{\boldsymbol{q}}^{\mathbf{S}}(\omega)\}^{-1} - \boldsymbol{\Sigma}_{\boldsymbol{q}}^{\mathbf{B}}[\boldsymbol{G}^{\mathbf{S}}, \Phi_{3}^{\mathbf{S}}](\omega = \omega_{0})$ Quasiparticle (QP) approx. $\mathcal{S}_{\boldsymbol{\mu}\nu} \operatorname{Re}\Sigma^{\mathrm{B}}_{\boldsymbol{q}\nu}[G^{\mathrm{S}}, \Phi_{3}](\Omega_{\boldsymbol{q}\nu})$

- Better one-body approximation
- Dropped frequency dependence

Quasiparticle approximation

$$\Omega_{\boldsymbol{q}\nu}^2 = (\omega_{\boldsymbol{q}\nu}^{\mathrm{S}})^2 - 2\omega_{\boldsymbol{q}}^{\mathrm{S}}$$

SrTiO₃

Full-frequency dependence •

(often) inconvenient for el-ph calculation •

<u>TT</u> and W. Saidi, Phys. Rev. Lett. **129**, 185901 (2022)

 $\{\boldsymbol{G}_{\boldsymbol{q}}(\omega)\}^{-1} = \{\boldsymbol{G}_{\boldsymbol{q}}^{\mathbf{S}}(\omega)\}^{-1} - \boldsymbol{\Sigma}_{\boldsymbol{q}}^{\mathbf{B}}[\boldsymbol{G}^{\mathbf{S}}, \Phi_{3}^{\mathbf{S}}](\omega = \omega_{0})$ Quasiparticle (QP) approx. $\mathcal{S}_{\boldsymbol{\mu}\nu} \operatorname{Re}\Sigma^{\mathrm{B}}_{\boldsymbol{q}\nu}[G^{\mathrm{S}}, \Phi_{3}](\Omega_{\boldsymbol{q}\nu})$

- Better one-body approximation
- Dropped frequency dependence

GWA and SCP: A comparison

	GWA
starting (unperturbed) G ₀	Kohn–Sham (DFT)
Interaction	Screened Coulomb W
Self-energy	$\Sigma = i G W$
QP approx. ("one-shot")	$\epsilon_{n\boldsymbol{k}} = \epsilon_{n\boldsymbol{k}}^{\mathrm{KS}} + \mathrm{Re} \langle \varphi_{n\boldsymbol{k}}^{\mathrm{KS}} \Sigma^{\mathrm{GW}} (\epsilon_{n\boldsymbol{k}}) \rangle$
Beyond one-shot	QSGW, scGW

SCP

SC1 (Hartree–Fock for phonons)

$\begin{array}{c} \textit{Renormalized} \\ \text{anharmonicity } \Phi_3 \end{array}$

$$\Sigma = \Sigma^{\mathrm{B}}[G^{\mathrm{S}}, \Phi_3^{\mathrm{S}}]$$

$$\epsilon_{n\boldsymbol{k}}) - v^{\mathrm{xc}} |\varphi_{n\boldsymbol{k}}^{\mathrm{KS}}\rangle \qquad \Omega_{\boldsymbol{q}\nu}^2 = (\omega_{\boldsymbol{q}\nu}^{\mathrm{S}})^2 - 2\omega_{\boldsymbol{q}\nu}^{\mathrm{S}} \mathrm{Re}\Sigma_{\boldsymbol{q}\nu}^{\mathrm{B}} [G^{\mathrm{S}}, \Phi_3] (G^{\mathrm{S}})^2 + 2\omega_{\boldsymbol{q}\nu}^{\mathrm{S}} \mathrm{Re}\Sigma_{\boldsymbol{q}\nu}^{\mathrm{S}} \mathrm{RE}\Sigma_{\boldsymbol{q}$$

QS*GW*-like treatment, another approach (e.g., PRB **107**, 094303 (2023))

But, accurate prediction of Tc is challenging

 $\{\mathbf{G}_{\boldsymbol{q}}(\omega)\}^{-1} = \{\mathbf{G}_{\boldsymbol{q}}^{\mathbf{S}}(\omega)\}^{-1}$

500 K

$$^{-1} - \Sigma_q^{\mathrm{B}}[\boldsymbol{G}^{\mathrm{S}}, \Phi_3^{\mathrm{S}}](\omega = \omega_0)$$

Quasiparticle (QP) approx.

 $\Omega_{\boldsymbol{q}\nu}^2 = (\omega_{\boldsymbol{q}\nu}^{\mathrm{S}})^2 - 2\omega_{\boldsymbol{q}\nu}^{\mathrm{S}} \mathrm{Re}\Sigma_{\boldsymbol{q}\nu}^{\mathrm{B}} [G^{\mathrm{S}}, \Phi_3](\Omega_{\boldsymbol{q}\nu})$

Influence of lattice parameter

<u>TT</u> and W. Saidi, Phys. Rev. Lett. **129**, 185901 (2022)

Self-consistent phonon (SC1) theory

Able to compute renormalized phonons at finite temperatures

• Able to compute crystal structures at finite temperatures

R. Masuki, <u>TT</u> et al., Phys. Rev. B 106, 224104 (2022) R. Masuki, <u>TT</u> et al., Phys. Rev. B 107, 134119 (2023)

Ryota Masuki (Univ. Tokyo)

SC1 free energy and SC1 frequency

SC1 vibrational free energy

$$F_{H}(\hat{\mathcal{H}}_{0}) = \operatorname{tr}(\hat{\rho}_{\mathcal{H}_{0}}\hat{H}) + \frac{1}{\beta}\operatorname{tr}(\hat{\rho}_{\mathcal{H}_{0}}\ln\hat{\rho}_{\mathcal{H}_{0}})$$

$$\hat{H} = \hat{T} + \hat{U}_2 + \hat{U}_3 + \hat{U}_4 + \hat{U}_5 + \hat{U}_6 + \cdots$$
$$= \hat{\mathcal{H}}_0 + (\hat{U}_2 - \hat{\mathcal{U}}_2 + \hat{U}_3 + \hat{U}_4 + \hat{U}_5 + \hat{U}_6 + \cdots)$$

 $\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{\boldsymbol{H}}) = \operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{\mathcal{H}}_0) + \operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}(\hat{U}_2 - \hat{\mathcal{U}}_2))$ $+\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{U}_4)+\operatorname{tr}(\hat{\rho}_{\mathcal{H}_0}\hat{U}_6)+\cdots$

even-term anharmonicity

Feynmann–Gibbs–Bogoliubov inequality: $F_H \leq F_H(\hat{\mathcal{H}}_0)$

SC1 frequency

$$\nabla_{\Omega_q} F_H(\hat{\mathcal{H}}_0) = 0$$
force constants
$$\mathbf{\nabla}_{\Omega_q} F_H(\hat{\mathcal{H}}_0) = 0$$

$$\mathbf{P}_q^2 = \omega_q^2 + \frac{1}{2} \sum_{q'} \Phi_4(-q, q; -q', q') \alpha_{q'}$$

$$+ \frac{1}{8} \sum_{q'q''} \Phi_6(-q, q; -q', q'; -q'', q'') \alpha_{q'} \alpha_{q'$$

 $\alpha_q = \frac{\hbar(2n_q+1)}{2\Omega_q}$

mean-square displacement $lpha_{q^{\prime\prime}}$

Atomic force at finite temperature

SC1 free energy
$$F_{SC1} = \min_{\mathcal{H}_0} F_H(\hat{\mathcal{H}}_0)$$

 $\begin{array}{ll} \mbox{Atomic force} & {\pmb F}_{\alpha} = - \frac{\partial E_{\rm BO}}{\partial {\pmb R}_{\alpha}} & \frac{\partial F_{\rm SC1}}{\partial {\pmb R}_{\alpha}} \\ & \mbox{DFT force} & {\pmb {\rm SC1 correction}} \end{array}$

$$\frac{\partial F_{\rm SC1}}{\partial \boldsymbol{R}_{\alpha}} = \sum_{\nu} \sqrt{M_{\alpha}} \boldsymbol{e}(\alpha, 0\nu) \frac{\partial F_{\rm SC1}}{\partial q_{\nu}^{(0)}}$$
$$= \sum_{\nu} \sqrt{M_{\alpha}} \boldsymbol{e}(\alpha, 0\nu) \left[\frac{1}{2} \sum_{q} \Phi_{3}(-q; \alpha) \right]$$

See also stochastic implementation (SSCHA): Monacelli et al., Phys Rev B 98, 024106 (2018).

odd-term anharmonicity

DFT and SC1: A comparison

3.....

ASSO
$$\tilde{\Phi}_{ada-LASSO} = \arg \min_{\Phi} ||A\Phi - F^{DFT}||_2^2 + \lambda \sum_i w_i |\Phi_i|$$

F. Zhou, W. Nielson, Y. Xia, V. Ozoliņš, *PRL* 113, 185

"Renormalization" of force constants

R. Masuki, <u>TT</u> et al., Phys. Rev. B 106, 224104 (2022)

Strain tensor (variable) Cartesian coordinate

$$_{\mu_{1}'\nu_{1}'}R_{1\alpha_{1}'\nu_{1}'}'u_{\mu_{2}'\nu_{2}'}R_{2\alpha_{2}'\nu_{2}'}'+\cdots$$

How good is "renormalization"?

Thermal expansion of Si

purple: compute harmonic and anharmonic IFCs for **14 different lattice constants**

green: compute harmonic and anharmonic IFCs for *a*⁰ only. The IFCs at different lattice constants are estimated by "renormalization".

R. Masuki, <u>TT</u> et al., Phys. Rev. B 106, 224104 (2022)

Harmonic phonon of BaTiO₃

✓ Good agreement between the renormalization technique and full DFT calculation.

Application to consecutive transition in BaTiO₃

- VASP code for DFT (PAW) •
- PBEsol xc functional
- 2x2x2 supercell for force constant calculation •
- Truncate Taylor series at the fourth-order
- 80 training structures (80 static DFT calculations) •

https://alamode.readthedocs.io/

Cubic-to-Tetragonal transition

Start the calculation with small displacements along [001] •

- Succeeded in predicting structural phase transition with a temperature hysteresis
- \checkmark Predicted $T_{\rm c} \sim 600 \, {\rm K}$ Expt.: $T_{\rm c} \sim 393 \, {\rm K}$
 - Overestimate *T*^c due to slightly larger (+0.01 Å) lattice constant by PBEsol

Previous theoretical studies:

- MC, effective Hamiltonian (no ZPE, LDA): 297 K^[1]
- MC, effective Hamiltonian (ZPE, LDA) : 265 K^[2]
- MD, DFT-fitted model potentials (PBEsol): 160–170 K^[3]
 - Zhong, Vanderbilt, Rabe, PRL1994.
 - [2] Zhong, Vanderbilt, *PRB*1996.
 - [3] Qi, Liu, Grinberg, Rappe, PRB2016.

- Tetra.: small displacements along [001] •
- Ortho.: small displacements along [110] •
- Rhombo.: small displacements along [111] •

	our method [K]	experiment [K]
cubic-tetra	606	~390
tetra-ortho	509	~ 270
ortho-rhombo	411	~ 180

Successive phase transition

✓ Successive phase transition can be reproduced with the correct sequence

R. Masuki, TT et al., Phys. Rev. B **106**, 224104 (2022)

Lattice parameters and spontaneous polarization

✓ Able to compute finite-temperature structural parameters and spontaneous polarization

R. Masuki, <u>TT</u> et al., Phys. Rev. B 106, 224104 (2022)

Finite temperature + finite pressure

Comparison between SC1 and MD

SC1

- Lower computational costs •
- Finite-temperature structures can • be obtained deterministically
- Phonons can be obtained simultaneously
- Include zero-point motion •
- Approximate the atomic distribution by Gaussian assuming displacive transition
- Anharmonicity is included at the mean-field level

Cons.

Pros.

Molecular dynamics (MD)

- Full anharmonicity •
- Able to simulate orderdisorder transition

- High computational cost
- (usually) ignores the zeropoint motion

Summary & perspective

- Perturbative expansion has been successful in predicting phononphonon scattering rates and thermal conductivity of various solids. However, it may breakdown for strongly anharmonic solids.
- Variational approach (Self-consistent phonon) is a powerful tool for obtaining a **better one-body description** of phonon. It even enables us to calculate structures at finite temperatures.
- **Future directions** More application studies Transport properties near the phase transition Higher-order anharmonicity (5th, ...) Comparison to MD using machine-learning FF

