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Functional renormalization group (FRG) for classical liquids

e FRG for classical scalar fields
 Path integral for classical DFT
e Modified FRG for classical liquids




Functional renormalization group (FRG) overview

- Wegner, Houghton, PRA (1973), Wilson, Kogut,, PR (1974)
FRG IS... Polchinski, NPB (1984), Wetterich, PLB (1993)

Technique to analyze many-body systems

* \ersatile tool: condensed matter, statistical phys., high-energy phys....
* Non-perturbative approach
* Phase transition, phase diagram, thermodynamic quantities, correlations, ...

Rigorous formulation of RG flow
e Derivation: path-integral formulation
* Functional differential equation

Wetterich eq. Wetterich, PLB (1993)
akRk
2
] P[] + Ky

Governing eq. for “free energy” (I will explain it later)

1
O] = —Tr

Let’s see the formulation in the classical case.



Classical scalar field theory & effective action

Let us consider scalar fields ¢(x) statistically fluctuating
following an action S[¢ ] (= Hamiltonian of the field SH[¢]).

(%qb(x)( V2 + mA(x) + %qb(x)“)

2. Action for classical DFT ¢b(x) = p(x) (discussed later)

E.g.) 1. Classical 454 theory: S[@] = J

The par.titi.on function.describes 7171 = | D¢ o—SIP1+ [, J@)(x)
the statistical properties:

Path integral
= Summation over the configuration space

(pecall Z e PH(5) in a spin system)

S1se - oSN



Classical scalar field theory & effective action

Let us consider scalar fields ¢(x) statistically fluctuating
following an action S[¢ ] (= Hamiltonian of the field SH[¢]).
E.g.) 1. Classical ¢* theory: S[¢] = J (%qb(x)( V? + mHp(x) + %qﬁ(x)“)

2. Action for classical DFT ¢b(x) = p(x) (discussed later)

The partition function describes

7171 = | Dpe S+, JxX)dx)
the statistical properties: /] ] pe

['[¢] = sup

Similarly, the effective action
I'[@] describes them. J

J J(x)p(x) —InZ[J ])

X

A Kkind of “free energy”

e It provides a variational principle for ¢ ({¢p) satisfies 61 [¢]/d¢p(x) = 0)
* |ts derivatives give the correlation functions.



Classical scalar field theory & effective action
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following an action S| ] (= Hamiltonian of the field SH[¢]).
E.g.) 1. Classical ¢* theory: S[¢] = J (%qb(x)( V? + mHp(x) + %gb(x)“)

2. Action for classical DFT ¢b(x) = p(x) (discussed later)

The partition func{ The Wetterich’s formalism of FRG is based on I['[¢]
the statistical prog Wetterich, PLB (1993)

Similarly, the effective action (

['[¢] = sup

I'[¢] describes them. J J J(x)p(x) — In Z[J]>

X

A Kkind of “free energy”

e It provides a variational principle for ¢ ({¢p) satisfies 61 [¢]/d¢p(x) = 0)
* |ts derivatives give the correlation functions.



Wetterich’s formalism of FRG

In RG, the fluctuations of ¢(x) are gradually taken from
high- to low-momentum components.

To implement this, we introduce a regulator term.

R (p) uppression o
Sk[¢] — S[¢] + Sreg,k[¢] " isnf'Esr’ed modei

Inclusion of
ultraviolet
modes

1
Sreg klP] = EJ PR (X — x)P(x)

/

X, X

RG scale k

The regulator R, is subjectto 1. lim RkUV(p) = 00

kyy— 00

2. lim R, (p) =0

kir—



Flow equation

Scale-dependent effective action

I, [¢] = sup (j Jx)p(x) —InZ,[J ]) Z[J] = | Dpe ] J0)dx)
J X y
This interpolates S[¢] and I [¢]:
For k — oo, [',[¢] = S[¢] + Stegrl®] klim R.(p) = oo

(saddle-point approx. in path int.)

Fork — 0, T,[¢] = T'[¢] + lim Ry(p) = 0

The flow equation for I';[¢] is derived as follows...



Derivation of flow eq.

~ |
akrk[¢] - ; aka[J su ,k]
Zk['] sup,k g

1 n
— D¢o,S
Zk :]sup,k] J ¢ k-reg,
N D'’ (x) ' (x")e KO T e Faups¥)d'(x)
0, R (x —Xx)
o ZilJ, sup,k]
52 In Zk[J sup,k]

oJ(x)oJ(x")

k[¢] € —Silol+ fx Jsup,k(x)¢(x)

1
2

0 R (x — x) + 0 Sreq il P]

2pt propagator

1
2

Jx,x

T[] 510 Z [Ty 4]

Because 5h0x) = Jap [Pl %) & 5700)

= ¢(x)

52 In Z[ Jsup,k] 521~—ak[ ¢] —1 Functional inverse
= (x,x")

We have = Alx. )AL x") = (¢ — x”
oJ(x)oJ(x") 5S¢ L/ (e, x)AT(x", x7) = o(x —x”)



Exact equation for RG flow

~ -1
_ 1 5T
AVIIE EJ 0.R,(x — x')< 9] ) (', %) + 0 Sy il B

x opog
Initial condition: I’ [¢] = S[¢] + S,q s [¢]
Solution: [olp] = T[]

Notation We use a different notation from the Wetterich’s one,
where the flow equation is written as

AN =1Tr[ A ]

2 [ TP[g] + Ry

with the effective average action I',[¢)] = |} L] — Sreg,k[gb].

Let us apply this formalism to classical liquids!



Classical liquids

Hamiltonian 6%2%4
o= Y 2 vty T
= I X r,
N - Y N\WAi T
N-body potential Vy({x;},) = Z v(x;, x;) + Z V33X, Xj, Xp) + -+

i<j i<j<k

Simple liquids

We only consider two-body interactions:  Vy({x;};) = Z v(|x; — X; 1)

A 1<J
—
% Short-range
repulsion
\/— -
Long-range

attraction



Density field

We consider grand canonical ensemble (GCE).

Density (=positions of particles) is the fundamental degree
of freedom.

N
P(x) = p(x) = < Z o(x — 5‘\3,)> N, %; are averaged following GCE.
i=1 =

CE

In quantum cases, Hohenberg-Kohn thm. is required for this statement.

“Density functional theory” naturally appears.

Let us find the action of density.



Partition function

Lue & Prausnitz, JCP (1998), Caillol, Mol. Phys. (2011)

To find the action, we consider the path integral of the
grand partition function

S|
Y _[ J o~ BHNE} AP} +BuN
|
N. Pis--- PN X1,

[1]

N=0 N
N
_ i ny [ B T oA =)y = 3 = )
|
N=0 N. X1seeosXN

N
Density to be averaged pN(x) — Z o(x — xl-)
i=1

ny = AeP* with de Broglie thermal wavelength A = \/ 2rfh’Im



[1]

n

N

XiseeosXN

(1 P =) (p) - 5 —x7) )

TEMS

pe

ni
—[ | BRI
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: xl,...,xN y

Ppe P (Hlex PN =26 = 86 = 07)

X

]

—

N
”_0' [ J@ e IAX(p()=py ()
’ XiseeesXN

X

]

Dpe —p < o POV —x') (p(x) — 6(x — x’)))

—

X Jgne (iBn@)p(x) + nge=#1®)

Lue & Prausnitz, JCP (1998)

N
0 [ —p (% [, o PNV — X)) (py(x) — 8(x — x’)))
e )
X

N Path wtegral
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Yy
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Action for classical liquids

H = J@p e o]

The action

STp] = Syeclp] + 2

; J pEWV(x —x)(px)) — 5(x —x"))

X, X

Sieel] = In (J Drje I 0+ noe‘iﬁ”“”)



Action for classical liquids

H = J@p e o]

The action

SIpl = Steelp] + gj p(X)v(x — x')(p(x) — 6(x — x))

Srecl] = In (j@ne )+ noe-fﬂ"<x>>>

Complicated!! &

Practically usable? I will come back to this point later.



Effective action

Grand partition function =[U] = | @pe_s[p]+ . BU)p(x)
w/ one-body ext. field U )
Grand potential QU] = -~ 'InZF[U]

A R A R A 2 T e e SOOIy - AL A ST RN - L o S - e e ",
»
g
[ J [ 4
—
—
—

This comprehensively describes the system.

Variational principle: 0F[p]/op(x) = pu
Thermodynamic quantities, correlations (derivatives)



Problem! Regulator & initial condition

1
Seealp] =5 | pEORE —x)p(x)

Jx.x
By choosing a regulator satisfying Rkuv — 00, we have the

initial condition FkUV[p] = Slp] + Sreg,kUV[p].

But the form of $|p] is complicated and does not look useful.

S[p] = In <[@7]€ fx (iﬂﬂ(x)p(x) +noe—iﬁ77(x))> 4 gJ' p(X)V(x _ x/) (p(x/) _ 5(x . x/))

How about discarding the condition R, — oo and
Introducing another type of flow?



Deformation of the two-body potential

quadratic
1 1
S[p] + Sieg 4lP] = Spreelp] + 5[ pE)Pv(x —x)(p(x) — 8(x —x')) + EJ PR (x — x")p(x’)

Both the interaction and regulator terms are quadratic. Therefore, the
regulator term can be regarded as the deformation of /v(x).

For more simplification,

1
S = — R v/ AN 5 L
we modify S, ;[p] as reglP] = 2 J PR (x — x)(px) — 6(x — X))

Then
1
S[p] + Sreg,k[p] — Sfree[p] + EJ p(x)ﬁvk(x o x,) (p(xl) o 5(x — x,))

XX

with f(x) = Ry(x) + pr(x)




Deformation of the two-body potential

We no longer consider the original RG flow. Thus we replace k with a
deformation parameter A € [0,1].

1
SU9) + Seg.dp) = Sielp] +5 | e =3)(pta) - 56 = )

XX

With the condition f/v,_(x) = fv(x), the flow corresponds to the
deformation from a reference system with [y, to the system of interest.

— Py o=z
Pro®) = frex) 1B by v, (x) = px)




The flow eq. is obtained in the B N YO
: 0,I;[p] = —[ 0,R;(x — x') (%, X) + 0)Se0 11 P]
same manner as the Wetterich eq. 2 ) 9

1:/1[,0] = pF,|p] (the free-energy density functional with v,). Thus,

~1 \
1 i
9,PF,lp] = EJ 0,pv,(x —x')| p(x)p(x’) + gp ;;p] (x,x) — p(x)o(x — x’)

/

Similar methods based on flow egs.

Hierarchical reference theory (HRT) Parola, Reatto, PRA (1985)
e Almost the same equation is derived.

e V;isdecomposed as V; = Vie,isive T Varta

« RG-like treatment of v, , (inclusion from high- to low-momentum components v, (p))
e Phase transition (phase coexistence curve, critical exponent...)

Density RG Iso, Kawana, PTEP (2019)
e Flow eq associated with the spacial scale transformation
Quantum version: FRG-DFT Polonyi, Sailer (2002), Schwenk, Polonyi (2004)

e 1D nucleons [TY, Yoshida, Kunihiro PRC (2019)], 3D electrons [TY, Naito PRR (2021)]




How to solve functional differential eq.?

( 5*PF[p]

-1
575 ) (x,x") — p(x)o(x — X')

1
0,PF)lp]l = 5[ 0,pv,(x —x)| p(x)p(x’) +

Initial condition: F,_qlp] = F..flp]

Solving functional differential eqs. is formidable!

Solution method?

e Conventional approximation: Taylor expansion
(Next section) TY, Haruyama, Sugino, PRE (2021)

e New approach: Machine learning
(Next to next section) TV, arXiv:2312.16038




Conventional approach: functional Taylor expansion
 Functional Taylor expansion & hierarchical eq.

e Approach for hard-core case
e Demonstration: 1D liquid

TY, Haruyama, Sugino, PRE (2021)




Functional Taylor expansion

Liquids are almost homogeneous. We expand F,[p] around p; .-
(

1 0
9,PF)lp] = EJ 0,pv,(x —x)| p(x)px’) + (

XX
\

\

~1
) (x,x") — p(x)o(x — x)

)

]
BE[p] = BF,[pyon] + deﬂF;D([phom],xxp(x) e g

D

Hierarchical eq. for I, poml, £ 51)[phom], F 52)[phom],

This should be truncated at some order to
facilitate numerical computations.



Hierarchical eq. for correlation functions

Filpnomls F ;1)[ph0m], F iz)[phom], ... are related to the free energy,

chemical potential, and distribution functions through variational eq.
& Ornstein-Zernike eq.

Hierarchical eq. for distribution functions

Oth order ai% =_F *;’m[ aﬂﬁvi(r)gf)(r)

r
Free energy e
h

1+ @(r) -1
Chemical potential Prom |, [827(r) = 1]

n( > 2)th order a,lgj”)(rl, e F ) = = Z 9, [ﬂvz(l’i - l'j)] 8;7’)(1‘1, T, )

: i<j
n-particle
distribution function +ng (), o, 1, )0 + phoma/lluAJ' [81("“)(1‘1, o, T, 1) = g (I, e l'n-1)]

r

n
_phomJ z 0, [ﬁvﬂ(l‘ — rl.)] g/%"‘ﬂ)(l‘, r,-,r,_)
r =1
2

ph / / /
- 20m [ 9, [ﬂvz(r —r )] [8;%2)(1', T, T, ) = 8;2)(1' —r )g/%”)(rl, " rn—l)]
r,r’




Hard-core divergence?

ﬂF Ao Phom |
N 2

/"t

0,pv,(r)g /%2)(1')

vr

At first glance, the repulsive core
leads to a divergence.

~
~

N—
-

Short-range
repulsion
> 7
Wge

attraction

In HRT, the repulsive core is treated as the reference in order

to avoid to treat it in the flow eq.

V) = Viet + Vatt,/l * a/lvﬂ — a/1Vatt,/'t

However, this divergence does not occur since gf)(r) IS

suppressed.



Cavity distribution function

In fact, the divergence is removed when we introduce
the cavity distribution function y;”)(r, T

Exact egs. for cavity distribution functions

No divergence!

aﬂﬂ]{;ﬂ = ’Dt;’m [ 0,1]”,1(1'))7;2)(1') (Only Mayer function f,(r,r’) = ¢ #""f) — 1 appears)
r

~Phom [ GFEWP®) =752 [0, i1 = 1) [e O D, 1) — y P 1) Method w/o
L+ phom [ [e P @yP(r) — 1] hard-core reference!

n—1
0,y (xy, 1)) = 03B <nyj”)(r1, ) +phomJ le AY vy r-1) POy e, 1) — O, ...,rn_l)])

r

1st 9,0, =

n—1

r

n—1 n—1 , ,
+ pl;)m J a/lf;l(r - r,) [e _ﬁzi ViET)=p Zi Vi) =pr 0= puyle )y/%n+2)(ra rla r]a ) rn—l) - yjz)(r - r,)yin)(rla T rn—l)]
r,r’

The repulsive reference is unnecessary.

We use the free-gas reference vy = 0.  pF[p] = J p(x)(ln (Ap(x)) — 1)

X



Truncation up to 2nd order

Oth order

:BFA Ph J
0,—= =220 | 5 £(r)vP(r
v > | ,H()y, ()

P 2Om ’ — — ! / ’
~Phom | RL@Y®) = [0, f(r = 1) [e PHOPUOENE, ) — yiP(r — 1)

0,pu; =
L+ prom [, [e 0y (r) — 1

0,3, 7(0)) = 3 | 29,700 + promy | | 7Ty ey, 1) - 317
A A A A
r

Approximation is needed

+ph0m 0/1 le _ﬁvj(rl_r)_ﬁ‘}ﬂ(r)] y/§3)(r7 rl)

r

2
+%?J 0,k = )| TP hohote B ) — v = 1)y 2y
r,r’




Truncation up to 2nd order

Kirkwood, JCP (1935)

i We close the hierarchy using
{ Kirkwood superposition approximation (KSA)

PF * Ignorance of mean many-body potential
6/1—'1 = Fhot * Exact for low densities
N

21 O ) & yPr)yPm)yP e —r))
YA, & yPyPa )y @)y @ — vy — vy, - 1)

p20m ’ — — ! / /

~Phom | RL@Y®) = [0, f(r = 1) [e PHOPUOENE, ) — yiP(r — 1)

L+ prom [, [e 0y (r) — 1

0,pu, =

0y, (1)) = 0,8\ 20,7000 + pom | |¢7HETITHOY ey, 1) — 3P (E))
A A A A

r

Approximation is needed
+Phom | 03 [P0 yO e, 1)

r

2
- J 0,k = )| TP hohote B ) — v = 1)y 2y
r,r’




1D solvable hard rod

Typical behavior of PDF (Ar)

Let us apply our method to the
derivation of the pair distribution
function (PDF) & free energy in a
1D solvable model.

Exclusion by surrounding particles

(shell structure)

Repulsive
core i
ol Yarnell, Katz, Wenzel, Koenig PRA (1973)
0 l é l Ii) l I15 1 l . 2|5 l

20

pair distribution function
g(r)

r (A)

Model Archer, Chacko, Evans, J. Chem. Phys. (2017)
-
o0 x| <o
o (Ix] <0
pv(x) = —zlo+o,—|x|) (6<|x|<o+0,)
0 (6+0,<|[x])
.
o 0, + o0 X
/ > In the case of o, < 0, thermodynamic
SO N quantities & pair correlation function are
Obtalned exaCtIy' Takahashi, Proc. Phys.-Math. Soc. Jpn. (1942)
Percus, J. Stat. Phys. (1982)
Brader, Evans, Physica A (2002)




Choice of evolution

Naive adiabatic connection cannot be used for hard core
f,(x) = e — 1 suddenly changes at A = 0

Instead, we introduce the evolution of hard-core diameter

pv(x)
A

o (|x]| <40)

hard _
& (x)_{O (Ao < |x|)

This is compatible with KSA.

PromO 1S the only dimensionless parameter
=» Small o corresponds to small p; -

At the beginning of the flow (small ), KSA is very accurate

The evolution of the attractive part is the adiabatic connection.



We calculate the free energy & pair distribution function.

* Runge-Kutta & numerical spatial integral

Benchmarks
- Exact result
* Integral-equation method A widely used method for classical liquids.
Ornstein-Zernike eq. (Schwinger-Dyson eq.) Closure (approximation)
g(x) =1+ c(x)+ ponX’c( Ix-xD[gx)-1] + g(x) = g(x, c(x)) !
N = St — 1) — SpF[p]
h ) O ) epe) |
Closure
Hypernetted chain (HNC) g(x) = exp [—pv(x) + g(x) — c(x) — 1]

e Based on 2nd order functional Taylor expansion for SF[p]
& gP(x,x") = Po Lo(x | x") (Percus’ test particle method)
Percus-Yevick equation (PY) g®X =exp [-pHr®)] [s(x) — c(x)]

e Linearization of HNC
e Exact for one-dimensional hard rod w/o attractive forces



Free energy for hard rod (z,6 = 0)

Excess free energy

100 1 — FRG /7
===+ HNC (hypernetted chain) ,//
= 0.759 ===-- Exact (=PY) P
P :
lgi, . Vertex expansion
. (VE) shows more
accurate result than
HNC

0.2 0.3 0.4 0.5 0.6
Phom®



Distribution functions for Hard rod (z,0 = 0)

Two-particle distribution function pnome = 0.55

PY)

c.f.)

1.5

=1.0
[

0.51

0.0

lower density py,,,0 = 0.4

Height of 1st peak

&

position of 2nd peak

are described by VE more
accurately than HNC

KSA + diameter evolution successfully describe hard part!



Free energy with attractive force (7,0 = 1, 0,/0 = (.9)

Excess free energy

pv(x)
A

PY deviates from exact
result due to the
attractive force

VE shows more

accurate result than
HNC and PY

0.9 1
........ exact ’
041 — FRG
----  HNC (hypernetted chain)
> ().3- PY (Percus-Yevick eq.) y
o
ey
D ().2
0.1
%.O 0.2 0.4



Distribution functions A ] Gp/a = (0.9)

Two-particle distribution function py,,6 = 0.55

c.f.) lower density p;,,c = 0.4

l - FRG : —— FRG
3 \ _____ HNC 2 \ ----- E\'\(IC
......... Eract
| PY T \
iy Exact 1 /‘"‘\M S
=2
> | U 1 2 3 4 5
x/o
1- L .
Height of 1st peak
Is described by VE more
0 . . . , accurately than HNC and PY
0 1 2 3 4 5
Difference from hard rod: T / o

Height of 1st peak increases
due to attractive force

VE accurately incorporates not only the hard part but also the attractive part!



New approach: Machine learning

 Physics-informed neural network for solving FRG
e Demonstration: 0D O(N) model

TY, arXiv:2312.16038



Taylor-expansion-based method and its limitations

Let us switch the notation to Wetterich’s original one.

1 52Fk -1 Fk[qg] — fk[¢] — Sreg,k[w]
2 OPOQ

Tr: trace w.r.t. coordinates
& internal DOF

We have applied the functional Taylor expansion to the flow equation.

But, there are limitations...

X The solution is applicable to limited configurations of ¢(x)
¢ (p(X) ~ (ptarget(-x)

e High cost for the analysis of complicated field configurations, such as crystal.

X Usually, improving the order of the truncation is not easy.
* Many coordinate (momentum) integrals

Other solution methods?



Another attempt: FDE as high-dim. PDE

FDE: Infinite-dimensional partial differential equation (PDE)
To realize numerical analysis, the input dimensions should be truncated.

Method 1) Introduction of finite spatial lattice
Q=@ atpen=m,...,ny),0<n <L, a=1,..., Npg (internal DOF)
Total DOF of ¢: Npop = LYNipor

- - - See, e.qg., Venturi, PR (2018),
Method 2) Basis function expansion Venturi, Dektor, Res. Math. Sci (2021)

NDOF
px,a) ~ Z pb(x,a) = @ - b(x, @) (b(x, a): orthonormal basis function)
i=1

(Npop + 1)-dim. PDE

[ — -1
I 5T, 1 1 0°T,
o, o] = ETr o.R, 5050 (@] + R, > I, (p) = Etr 0. R, 5000 (@) + R,

The original continuum theory is obtained for increasing Npgr-




Failure of computational grids

How can we solve (Npop + 1)-dim. PDE with large Ny

Taking computational grids for @ is infeasible.

# of grid points ~ exp(NDOF) if grids are assigned for each @, ,

Grid-based methods (finite-element method, Runge-Kutta, ...) can not be used.

c.f.) Some people attempt to use tensor decomposition to mitigate

computational complexity of representing the solution for linear
FDE, such as Hopf eq.

But only the results with Npop < 6 has been reported...

Venturi, PR (2018), Venturi, Dektor, Res. Math. Sci (2021)

Grid-free method for high-dim. PDE is required



Physics-informed neural network (PINN)

I.E. Lagaris, A. Likas, D. I. Fotiadis, IEEE Transactions on Neural Networks (1998)

M L- based g ri d —free d p proaCh - PI N N M. Raissi, P. Perdikaris, G. E. Karniadakis (2017)

M. Raissi, P. Perdikaris, G.E. Karniadakis, Journal of Computational Physics (2019)
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PINN’s capability of handling high-dim. PDEs

Advantage of PINN: Grid free = Applicable to high-dim. PDEs

Applications to high-dim. PDEs

® L. Guo, H. Wu, X. Yu, T. Zhou, Computer Methods in Applied Mechanics and Engineering (2022)

® D. He, S. Li, W. Shi, X. Gao, J. Zhang, J. Bian, L. Wang, T.-Y. Liu, In International Conference on Atrtificial
Intelligence and Statistics (2023)

J. Cen, X. Chen, M. Xu, Q. Zou, arXiv:2305.06863.

K. Tang, X. Wan, C. Yang, Journal of Computational Physics, 476 (2023)

Z. Hu, K.Shukla, G. E. Karniadakis, K. Kawaguchi, arXiv:2307.12306

Z. Hu, Z. Yang, Y. Wang, G. E. Karniadakis, K. Kawaguchi, arXiv:2311.15283 105 _d | m PDE
Z. Hu, Z. Shi, G. E. Karniadakis, K. Kawaguchi, arXiv:2312.14499 )

d
Hamilton-Jacobi-Bellman eq.  dwu(, t) + Au(z, t) Z

-2, xR tel0,T]

Black-Scholes-Barenblatt eq. wu; = ——02 Za: Ug,z, + 7(U — Za} U, ),

PDE 102 [ 10° 107 10° - |
HJB-Lin | 34min | 68min | 81min | 310min Moreover, the solution is obtained
BSB | 3lmin | 57min | 118min | 4Imin simultaneously for a domain of the

Table 1: This table presents the convergence time required by our SDGD for different PDEs. In the HIB-Lin equation,

as the dimensionality increases from 100 to 100,000, the dimensionality grows by a factor of 1000, while the time only 1 -t -t h -t h ' -t
increases by a factor of ten. This indicates that our method can withstand the curse of dimensionality. In the second I n p u S ra e r a. n O n e I n p u .
BSB equation, surprisingly, the high-dimensional case converges faster than the low-dimensional case, demonstrating

the so-called blessing of dimensionality and that our method can harness the blessing of dimensionality.



PINN for Wetterich equation

PINN allows us to solve the Wetterich equation with large Npgp!
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e The expectation is evaluated on a finite number of collocation points (k, @).
« &, is some probability distribution.



PINN for Wetterich equation

PINN allows us to solve the Wetterich equation with large Npgp!

The initial condition may be implemented
directly in NN.

Hereafter, we omit LHBC.

Lagaris, Likas, Fotiadis, IEEE Transactions on Neural Networks (1998)

e The expectation is evaluated on a finite number of collocation points (k, @).
« &, is some probability distribution.



O-dim. O(N) model

S@) = ~m?g® + S (@)
2 4!
* Npor =N
The Wetterich equation is an (N + 1)-dim. PDE.
We can investigate the scalability with Npgr by increasing /V.
* We do not reduce Wetterich eq. to 2-dim. PDE with k and p = ¢2/2

e Exact results and results by perturbative, large-/N expansions are
available. E.g., Keitel, Bartosch, JPA (2012)

e The perturbative region is given by g = Ng/m4 <1
« We calculate y(k, @) and self-energy o = ()?,,}/(k, Q).

. Regulator: R™ = ke, [ = In(kyy/k)

e Mass squared: mzlklzJV = 0.01 (< 1 to validate the UV saddle-point cond.)



Neural network for effective action

We replace the “nontrivial part” of the effective action with an NN.

F‘Z(Cﬂ) — S((”) n ASfree(k) + }’g(k,CO) Interaction-induced RG part

(“nontrivial part”)
Constant shift

associated with free part This satisfies yy(kyy, @) =0
5 1
0,AS oo (k) = %tr [akRk ( J j(fpreggo) N Rk) }

NN ansatz subject to }/H(kUV’ @) = 0 (hard implementation of the init. cond.)

Yolk, @) = NNgy(l, @) — NNp(0.0) 1= In(kyy/k)
NNy, @) |RG scale / &4& ;
e 3 hidden layers = .2

Field
* 256 units/layer Y _
* Differentiable softplus activation [/ — (|57 E NN,

3 hidden layers
NNG 256 units/layer

Softplus activation

y(l, @)
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[ ~ P, \
The matrix must be regular during the training.

In our experience, this is frequently broken with randomly chosen 6.

Pretraining with some approximate analytic
results remedies this problem

We use 1st-order perturbative result:

pre _ . A Ipt 2]
r=_E, (1L.9:0) 'L )

lNgjl



Other details of numerical procedure

( r , 1)
1 0°T
L,= E ol %p) — S a,R,< @) +RZ>

p~P, 0POoQ
I~ |\ - 1)

9P uniform distribution in [0,1,, 4] with [, 4 = 5

P, |||l is sampled following N(0,N/m?) (w/o sign)

n = @/||@|| is uniformly sampled

2

* Other choices such as N(0, m~21) fail to sample the neighborhoods of

@ = 0 due to curse of dimensionality

500 collocation points are used to evaluate the expectation.

Adam optimizer

Pytorch

The matrix inverse is evaluated by direct method

This may not be efficient but is easy to implement (torch.linalg.inv)

More efficient way: Hutchinson trace estimator (future work)

Hutchinson, Simul. Comp. (1990)



Code: https://github.com/TakeruYokota/PINNLFRG
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PINN-LFRG for OD O(N) model

Pytorch implementation of PINN-LFRG solver for the zero-dimensional O(N) model:

The renormalization-group-induced effective action of the effective action of OD O(N) model is represented by an
NN. The physics-informed neural network (PINN) is used to derive the solution of the Wetterich equation.

Usage




Computational time & convergence

We conduct computations for all the combinations of
N =1,10,100and g = 0.1,1,10 g = Ng/m*

e Learning rate (Wetterich): 10~ with exponential decay factor 0.99999
e Learning rate (pretraining): 10~

Learning curve & histories of physical quantities

(N =100 & g = 1 case)
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N=1and g =1 case

RG scale [ dependence at ¢ = 0

—— PINN-LFRG (our method) —
1 === Pretrained model 7

—n =

=== [Exact
— = Perturbation

0.3 1

0.4 -

0.2

¢ dependence at [ = [, 4

—-1.00 -0.75 —-0.50 —-0.25 0.00 0.25 0.50 0.75  1.00

me

e v(l, @) is simultaneously obtained for a domain of ¢ in our method

(PINN-LFRG).

PINN-LFRG shows accurate results compared to 1st-order
perturbation & leading-order large-N expansion



N =100 and g =1 case

RG scale [ dependence at ¢ = () @ dependence at [ = [, 4
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Except for y(/, 0), PINN-LFRG results are given by N = 100 lines
corresponding to the /N-direction in ¢ space.

PINN-LFRG shows comparable results with large-N expansion,
which should be accurate for N = 100.

O(N) symmetry is reproduced in PINN-LFRG.



Results at ¢ = 0 for different N and ¢

Relative error compared to exact results (minus indicates underestimation)

N 1 10 100
g 0.1 1 10 0.1 1 10 0.1 1 10 _
Perturb, (%) | 7 6.2 47 275 2.1 19 129 1.7 15 110 7 = ¥leng: 0)
erurb- 00 o 7.6 51 228 2.3 19 109 1.7 15 92 | N
y -65 -57 -40 -16 -14 -8.4 -1.9 -1.6 -0.95 — I 0
Large-N (%) | [ | g5 -56 -42 -16 -13 8.2 -1.9 1.5 -0.89 °TN az_;a"( end: 0)
v -2.0 -2.2 -2.8 -1.9 -2.1 -2.3 -1.9 -2.0 -2.3 -
PINN-LFRG (%) | o -0.17 0.12 0.76 0.16 0.46 0.42 -0.011 0.44 0.50 1 & 5
Ao 0 0 0 0.27 0.18 0.24 0.38 0.29 0.26 Ao =\IN;1 (6l 0) — 0)
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S 200 —&— Large-N (g =0.1)
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5 150 a0 e Even when 1/N and g are not small,
> Kerewewaa.,
00 It y PINN-LFRG shows accurate results.
5 507 NNs are promising approximations
= independent of the existence of a

w T T e small parameter.



Summary

| showed
a functional renormalization group (FRG) formalism for classical liquids.

|
FRG for classical DFT

e FRG for classical scalar fields
e Action for classical DFT
e Modified FRG for classical liquids

Two approaches for solving FRG
Functional Taylor expansion TY, Haruyama, Sugino, PRE (2021)
e Solution method with no need for a hard-core reference
* Demonstration in 1D liquids.

Physics-informed neural network solver TY, arXiv:2312.16038

* FRG eq: a kind of high-dimensional PDE
 PINN: a cutting-edge solver for high-D PDE
* Demonstration in the 0D scalar model

Outlook
e 3D liquids
e PINN for classical DFT







Kirkwood superposition approximation (KSA)

Free particle’s distribution in a potential U(x) X
° Wkx —x')

Mean force potential (MFP)
generated by the fixed
& surrounding particles

px) = poe U

Pair distribution
= particle distribution around a fixed particle

gPx,x") = pilp(x | x)) = e W)

N-particle distribution
= (particle distribution around N — 1 fixed particle) x (N — 1)-particle distribution

g(3)(x1,x2, X3) = po—l p(x; | x5, x3)g(2)(x2, X3) = o ~PWx,.05) p =W (=)

KSA = Superposition of MFPs
W(x,|x,,x3) =& W(x;|x,) + W(x;|x3) Removal of mean many-body forces

—} 8 (3)(x1,x2, X3) X g (2)(x1,x2)g (2)(352» X3)8 (2)(x3,x1)

4-body W(x; |x,, x3,x,) & Wixy |x;) + Wiy |x3) + Wx, | xy)

gV, %0, X3) = pi ' p(xy |9, X3, %008 D0, X3, X,) = e PHIXFIg O x5 )

— 8(2)(-‘71, xz)g(z)(xp x3)g(2)(x19 x4)g(2)(x2, x3)g(2)(x1, x4)g(2)(x3, x4)



Hypernetted chain

Percus’s test particle method e

n(x|x') = pog®(x, x)

i.e., gP(-,x’) is obtained as the density in the
presence of the external field U,.(x) = v(x — x’)

Variational eq.

SBF
4 [P0gP( -, x)] = Bu — v(x — x"))
op(x)

Functional Taylor expansion of the excess part around p(x) = pj

1
PFlp]l = [ p@)(In p(x)/py — 1) + BF[po] + J pup(x) — po) — 5[ c@x —x")(px) — po)(p(x’) — po)

X X x,x’

Closure PF[p] = PFieclp] + PF,[p]

From variational eq. & Taylor exp.,

g@ ) = exp [—ﬁv(x) +pof c(x — x")(g®(x, x") - 1)] P o2 (x) = exp [-prx) + gP(x) — c(x) — 1]
v OZ eq.



Machine learning for partial differential equations (PDE)

Recently, there have been many applications of machine learning to PDEs

e Physics-informed neural network (PINN) Applicable to various
types of PDEs

Psichogios, Ungar, AIChE (1992)

Lagaris, Likas, Fotiadis, IEEE Transactions on Neural Networks (1998)
Raissi, Perdikaris, Karniadakis (2017)

Raissi, Perdikaris, Karniadakis, Journal of Computational Physics (2019),...

 Rayleigh-Ritz variational method

E, Yu, Comm. Math. Stat. (2018)
Khoo, Lu, Ying, Res. Math. Sci. (2018),...

e Backward stochastic differential equation

E, Han, Jentzen, Comm. Math. Stat. (2017)
Han, Jetzen, E (2018)

Rassi (2018)

Beck, E, Jentzen, J. Nonlinear Science (2019),...



