21 Feb 2024

RIKEN Symposium "Fundamentals in Density Functional Theory" 20-22 Feb 2024, RIKEN Kobe Campus

Glass Transition Studied by Molecular Dynamics Simulations

K. SHIRAI^{1,2)}, K. Watanabe²⁾, H. Momida²⁾, and S. Hyun³⁾

¹ VNU Vietnam Japan University, Hanoi, Vietnam

- ² SANKEN, Osaka University, Ibaraki, Japan
- ³ Korea Institute of Ceramic Engineering and Technology, Jinju-si, Koria

Glasses are nonequilibrium states

Nature of Glass Transition

 $\Delta C_{\rm p}$ Kinetic origin?

Difficulties in calculating $\Delta C_{\rm p}$

1. Lack of standard theory of specific heat for liquid

$$\Delta C_p = C_p^{(l)} - C_p^{(g)}$$

2. Hysteresis of C-T curve in glass transition

 3. Large separation in the timescale between glass transition and MD simulations
 Glass transition time simulation time of FP-MD > 1 min 10 ps

Theory of specific heat

C_v: Classical limit

Specific heat of silica glass (experiment)

P. Richet, et al., Geochim. Cosmochim. Acta 46 2639 (1982)

H. Sudo, *Practical Manual for Amorphous Siliceous Materials*, ed H. Kawazoe (Tokyo: REALIZE, 1999), p. 83.

First-principles calculation of specific heat

Specific heat
$$C_x = \left(\frac{\partial U}{\partial T}\right)_x$$

Microscopic energy
 $E_{tot}(t) = E_{GS}(\{\mathbf{R}_j(t)\}) + \frac{1}{2} \sum_j M_j v_j(t)^2$
in thermodynamic equilibrium
Internal energy
 $U = \overline{E_{tot}(t)} = \overline{E_{GS}(\{\mathbf{R}_j(t)\})} \underbrace{\left(\frac{1}{2} \sum_j M_j v_j(t)^2\right)^2}_{\mathbf{R}_j(t) = \mathbf{R}_j + \mathbf{u}_j(t)}$
For solids, Harmonic approx.
 $\mathbf{R}_j(t) = \mathbf{R}_j + \mathbf{u}_j(t)$
in adiabatic MD
 $E_{st}(\{\mathbf{R}_j\}) + E_{ph}(T) + E_{te}(V)$
structural part phonon thermal expansion
(configurational)
 $C_p = C_{st} + C_{ph} + C_{te}$

Phonon contribution to specific heat

For solids

$$E_{\rm ph} = \sum_{k} \left(\bar{n}_{k} + \frac{1}{2} \right) \hbar \omega_{k}$$

$$C_{\rm ph}(T) = k_{\rm B} \int \left(\frac{\hbar \omega}{k_{\rm B}T} \right)^{2} \frac{e^{\hbar \omega/k_{\rm B}T}}{(e^{\hbar \omega/k_{\rm B}T} - 1)^{2}} g(\omega) d\omega$$

$$C_{p} = C_{\rm st} + C_{\rm ph} + C_{\rm te}$$

$$\int \int \int \int d\omega d\omega d\omega d\omega d\omega$$
structural part phonon thermal

Phonon DOS of quartz

For liquids

Is the phonon-picture realistic for liquids? \longrightarrow No!

expansion

$$U = E_{\rm tot}(t)$$

Effect of energy dissipation

Need of adiabatic MD simulation

Problem for liquids

Glass Transition of Glycerol

K. Shirai, K. Watanabe, and H. Momida, J. Phys.: Condens. Matters 34, 375902 (2022)

Glass Transition of Silica

K. Shirai, et al., J. Phys.: CM 35 505401 (2023)

Nature of Glass Transition

$$\Delta C_p \approx \Delta C_{\rm st}$$

For Silica glass more than 99% of $\Delta C_{\rm p}$ comes from $\Delta C_{\rm st}$

Almost all the part ΔC_p is determined by the structural change.

$$\Delta C_p(T_m - T_g) \approx L$$

essentially the structural transition

but the randomness breaks the latent heat into the excess specific heat.

Interpretation of Prigogine-Defay ratio

$$\Pi = \frac{\Delta C_p \Delta \kappa}{T V (\Delta \alpha)^2}$$

 $\Pi > 1$ There are more than one order parameters $N_{\text{at}} \{\mathbf{R}_j\}$

$$\Delta C_p = \Delta C_{\rm st} + \Delta C_{\rm ph} + \Delta C_{\rm te}$$

 $\Pi = \frac{\Delta C_p}{\Delta C_{\text{te}}} = \frac{(\text{Change in the total energy})}{(\text{Part of isotropic volume change})}$

 $\Pi > 1$ Structural transition

Summary

	Present results	Traditional view
Glass state	Equilibrium state $U = U(T, V, \{\bar{\mathbf{R}}_j\})$	Nonequilibrium state $U \neq U(T, V)$
ΔC _p	Thermodynamically well-defined quantity mostly determined by ΔE_{st} $\Pi > 1$	Kinetic parameter? due to order parameters
Glass transition	Structural transition	Kinetic transition

The present view for glass

The traditional view		Experimental fact				
Glass has hysteresis.			All solids have hysteresis.			
		→ NEQ				
		Present th	neory	$U = U(T, \{\bar{\mathbf{R}}_i\})$		
All the static states of a solid are equilibrium states						
		frozen glass				
within the time scale in which the solid maintains its current structure.						
Applications	(General theory of state variables	\rightarrow	arXiv:1812.08977		
		Thermodynamic method for glass	\longrightarrow	J. Phys. Commun. 4 , 085015 (2020) 5 , 015004 (2021)		
	J	Activation energy of GT		J. Phys. Commun. 5 095013 (2021)		
		FP-MD simulation of specific heat ju	ımp>	J. Phys.: CM 34 375902 (2022)		
		FP-MD study on the Prigogine-Defa	y ratio	J. Phys.: CM 35 505401 (2023)		
		The third law		arXiv.2207 11421		

History-dependent properties

Nonequilibrium!

 $U \neq U(T, P)$

but

 $U = U(T, P, \{history\})$

• Memory effect

The Kovacs effect

- Aging phenomena
 - Rejuvenation

$U = \bar{E}(T, P, \{\bar{\mathbf{R}}_j\})$

K.S, J. Phys. Commun. **4**, 085015 (2020) J. Phys. Commun. **5**, 015004 (2021)

Memory and rejuvenation in polymethyl methacrylate

K. Fukao and A. Sakamoto, Phys. Rev. E **71**, 041803 (2005)

Acad. Sci. U.S.A. **113** 11806 (2016)