QCD-based Charge Symmetry Breaking (CSB) Interaction

Hiroyuki Sagawa RIKEN/University of Aizu

Kobe DFT meeting February 20-22, Kobe Japan

- 1. Introduction
- 2. QCD-based CSB and Okamoto-Nolen-Schiffer anomaly
- 3. CSB in HyperNuclei
- 4. Summary

Isospin is one of the most important symmetries which is unique for nuclear and elementary particle physics.

Concept of Isospin proposed by J. Heisenberg, 1932 and E. P. Wigner, 1937

Isospin conservation [H,T] = 0

$$[H,T] = [V_{C} + V_{CSB} + V_{CIB}, T]^{1} 0$$

Scattering Length $a_{(S=0)}^{pp} = -17.3 \pm 0.4 \text{fm},$ $a_{(S=0)}^{nn} = -18.7 \pm 0.6 \text{fm},$ $a_{(S=0)}^{pn} = -23.70 \pm 0.03 \text{fm}.$ Isospin Breaking Interactions (ISB)

charge symmetry breaking $V_{CSB} = V_{nn} - V_{pp}$

Charge independence breaking $V_{CIS} = (V_{nn} + V_{pp})/2 - V_{np}$

The difference between a_0^{pp} and a_0^{nn} is an evidence of CSB (charge s try breaking) nuclear force, while the difference between a_0^{pn} and the average $(a_0^{pp} + a_0^{nn})/2$ is due to CIB (charge invariance breaking) force. These negative

LQCD ⇔

ab initio no core shell model

Quark Effective theories (Nambu–Jona-Lasinio model) ⇔ BCS/HF in nuclear physics

QCD sum rule ⇔ Energy weighted sum rule for Giant resonances (RPA)

Based on a slide of T. Hatsuda

QCD
$$\mathcal{O}$$
 Lagrangian
L_{QCD} = $\overline{q}(i\mathcal{D}-m) q - \frac{1}{4}G_{\mu\nu}^{a}G^{a}_{\mu\nu}$

Operator product expansion with nucleon current

HADRON PROPERTIES FROM QCD SUM RULES

L.J. REINDERS*, H. RUBINSTEIN** and S. YAZAKI***

PHYSICS REPORTS (Review Section of Physics Letters) 127, No. 1 (1985) 1-97.

 $\eta_{\rm N} = \varepsilon_{abc}(u^a(x)C\gamma_\mu u^b(x))\gamma_5\gamma_\mu d^c(x),$

 $\Pi_{N}(p) = i \int d^{4}x e^{ipx} < T(\eta_{N}(x) \eta_{N}(0)) > = pA(p) + B(p)$

Operator product expansion (OPE) method

$$A(p) = \frac{1}{64\pi^2} p^4 \ln(-p^2) + \frac{1}{32\pi^2} < \frac{\alpha_s}{\pi} G^2 > \ln(-p^2) + \frac{2}{3} \frac{<\overline{q} q>^2}{p^2} + \cdots$$
$$B(p) = -\frac{1}{4\pi^2} < \overline{q} q > p^2 \ln(-p^2) + \cdots$$

Phenomenological hadron propagator

$$i\int d^{4}x \ e^{ipx} < T\left(\cdot \eta_{N}(x) \ \overline{\eta}_{N}(0) \right) > = \lambda_{N}^{2} \ \frac{p' + m_{N}}{p^{2} - m_{N}^{2}} + \text{ higher states} \qquad \eta_{N}(x) \equiv \lambda_{N} N(x)$$

Derivatives after Borel transformation

 m_N

$$F(<\bar{q}q>) \qquad m_{N} = \{-2(2\pi)^{2} < \bar{q}q>\}^{1/3} \sim 1 \text{GeV}$$

QCD-based CSB interaction

The in-medium chiral condensate has a general form in the leading order of Fermi motion corrections;

Goda and Jido

$$\frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_0} \simeq 1 + k_1 \frac{\rho}{\rho_0} + k_2 \left(\frac{\rho}{\rho_0}\right)^{5/3}, \qquad (2a)$$

$$k_1 = -\frac{\sigma_{\pi N} \rho_0}{f_\pi^2 m_\pi^2} < 0, \qquad k_2 = -k_1 \frac{3k_{\rm F0}^2}{10m_N^2} > 0,$$
 (2b)

where $\sigma_{\pi N}$ is the π -N sigma term, m_{π} (m_N) is the pion (nucleon) mass, and f_{π} is the pion decay constant. The

Partial restoration of Chiral condensation of quark pairs $\bar{q}q$

T. Nishi et al., Nature Physics, March 23, 2023 Pionic atom experiments

The mass difference between (Z+/-1,N)and (Z, N+/-1) with N=Z

where $\sigma_{\pi N}$ is the π -N sigma term, m_{π} (m_N) is the pion (nucleon) mass, and f_{π} is the pion decay constant. The

$$\tilde{s}_0 = -\frac{4}{3} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2}, \qquad \tilde{s}_1 + 3\tilde{s}_2 = \frac{1}{m_N^2} \frac{C_1 \sigma_{\pi N}}{f_\pi^2 m_\pi^2}.$$

The Skyrme-type CSB and CIB interactions

$$V_{\text{CSB}}(r) = \left[s_0 \left(1 + y_0 P_\sigma \right) \delta\left(r \right) \right. \\ \left. + \frac{s_1}{2} \left(1 + y_1 P_\sigma \right) \left(k^{\dagger 2} \delta\left(r \right) + \delta\left(r \right) k^2 \right) \right. \\ \left. + s_2 \left(1 + y_2 P_\sigma \right) k^{\dagger} \cdot \delta\left(r \right) k \right] \frac{\tau_{1z} + \tau_{2z}}{4} ,$$

$$\left. \frac{E}{A} \simeq \varepsilon_0 \left(\rho \right) + \varepsilon_1 \left(\rho \right) \beta + \varepsilon_2 \left(\rho \right) \beta^2 . \\ \left. \beta = \left(N - Z \right) / A \right] \right]$$

where we have defined the effective coupling strengths,

 $\tilde{s}_0 \equiv s_0 (1 - y_0), \quad \tilde{s}_1 \equiv s_1 (1 - y_1), \quad \tilde{s}_2 \equiv s_2 (1 + y_2).$

(8)

FIG. 2. Comparisons of the experimental ONS anomaly $\Delta E_{\text{Expt.}} - \Delta E_{\text{C}}$ (grey hatched bars) and the corresponding theoretical estimates in two EDFs (SGII and SAMi). The contribution from the QCD-based CSB interaction (CSBI) in Case I and the extra contributions are indicated by the red bars with error bars and the blue bars, respectively.

TABLE V. The breakdown of the mass difference of mirror nuclei ΔE into each contribution (Coulomb, Extra and CSB interaction (CSBI) for Case I with Skyrme EDF, SGII. Numbers are given in the unit of MeV.

Nuclei	¹⁷ F- ¹⁷ O	$^{15}\text{O-}^{15}\text{N}$	${\rm ^{41}Sc\text{-}^{41}Ca}$	39 Ca- 39 K
Orbital	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
$\Delta E_{\rm D}$ (Coulomb)	3.596	3.272	7.133	6.717
$\Delta E_{\rm E}$ (Coulomb)	-0.203	0.026	-0.267	0.260
\mathbf{Extra}	0.040	0.028	0.102	0.011
CSBI (Case I)	0.224	0.264	0.287	0.315
Sum (w/o CSBI)	3.432	3.326	6.965	6.985
Sum (w/ CSBI)	3.656	3.590	7.252	7.300
Expt. [29]	3.543	3.537	7.278	7.307

TABLE VI. The same as Table V, but with Skyrme EDF, SAMi.

Nuclei	¹⁷ F- ¹⁷ O	¹⁵ O- ¹⁵ N	${\rm ^{41}Sc\text{-}^{41}Ca}$	39 Ca- 39 K
Orbital	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
$\Delta E_{\rm D}$ (Coulomb)	3.506	3.242	7.025	6.697
$\Delta E_{\rm E}$ (Coulomb)	-0.193	0.022	-0.259	0.281
Extra	0.043	0.075	0.104	0.092
CSBI (Case I)	0.206	0.269	0.271	0.321
Sum (w/o CSBI)	3.356	3.339	6.870	7.070
Sum (w/ CSBI)	3.562	3.608	7.141	7.391
Expt. [29]	3.543	3.537	7.278	7.307

Summary

QCD sum rule approach is adopted to obtain EDF CSB parameters without introducing any free parameters; all QCD parameters are determined by experimental observables.

QCD-based CSB interactions are applied to solve ONS anomaly of A=16+/-1 and 40+/-1 mirror nuclei and cured all experimental observed values within the theoretical uncertainties.

Empirical evidence of CSB in hypernuclei is pointed out by RMF calculations.

Future perspectives

CIB interaction in nuclear medium QCD based $\Lambda - N$ CSB interaction for hypernuclei

CSB and CIB effects of Isobaric Analogue states CSB in Exotic nuclei near proton drip lines

Skyrme CSB,QCD-CSB

T. Naito, iTHEMS, RIKEN T. Hatsuda, iTHEMS, RIKEN Xavi Roca-Maza, INFN, University of Milano, Italy Gianluca Colo, INFN, University of Milano, Italy

<u>Hypernuclei</u>

E Hiyama, RIKEN/Tohoku University T.T. Sun, Zhengzhou University, China Y. Tanimura, OMEG, Soongsil University, Korea

Figure 5: The single- Λ binding energies B_{Λ} for the A = 48 hypernuclei, i.e., ${}^{48}_{\Lambda}$ Ti, ${}^{48}_{\Lambda}$ Sc, ${}^{48}_{\Lambda}$ Ca, ${}^{48}_{\Lambda}$ K with isospin T = 3/2, 5/2, 7/2, 9/2, obtained by the RMF model with and without ΛN CSB interaction.

J-PARK and Jefferson Labs Future experiments Charge symmetry breaking (CSB) interaction $V_{nn} \neq V_{pp}$

Charge Independence breaking (CIB) interaction $V_{np} \neq (V_{nn} + V_{pp})/2$

Hadrons: Nucleon and Pion mass difference $m_n-m_p=1.29$ MeV. $\pi^{\pm}-\pi^0=4.6$ MeV

Quarks: explicit chiral symmetry breaking $m_u \neq m_d$

Observables

Skyrme type ISB interactions

$$v_{\text{Sky}}^{\text{CSB}}(\vec{r}) = s_0 \left(1 + y_0 P_{\sigma}\right) \delta\left(\vec{r}\right) \frac{\tau_{z1} + \tau_{z2}}{4},$$
$$v_{\text{Sky}}^{|\text{CIB}}(\vec{r}) = u_0 \left(1 + z_0 P_{\sigma}\right) \delta\left(\vec{r}\right) \frac{\tau_{z1} \tau_{z2}}{2}.$$

Energy density functionals

$$\mathcal{E}_{\text{CSB}} = \frac{s_0(1 - y_0)}{8} \left(\rho_n^2 - \rho_p^2 \right),$$

$$\mathcal{E}_{\text{CIB}} = \frac{u_0}{8} \left[\left(1 - \frac{z_0}{2} \right) \left(\rho_n + \rho_p \right)^2 - 2(2 + z_0) \rho_n \rho_p \right]$$

Nolen-Schiffer anomaly Energy of IAS mass differences in isobar and isotriplet nuclei

$\widehat{}$	SGII 🗕			
Nuclei	${}^{17}\text{F-}{}^{17}\text{O}$	¹⁵ O- ¹⁵ N	41 Sc- 41 Ca	³⁹ Ca- ³⁹ K
Particle (hole)	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
Finite size	-0.053	-0.070	-0.066	-0.082
Center-of-mass	0.023	0.030	0.014	0.018
$\delta_{\rm NN}^1$	0.014	0.006	0.034	0.021
δ^2_{NN}	0.050	-0.136	0.134	-0.176
Spin-orbit	-0.065	0.080	-0.126	0.142
pn mass difference	0.034	0.024	0.040	0.031
δ_{pol}	0.018	0.073	0.036	0.020
Vacuum polarization	0.019	0.021	0.036	0.037
Sum	0.040	0.028	0.102	0.011

TABLE V. The breakdown of the mass difference of mirror nuclei ΔE into each contribution (Coulomb, Extra and CSB interaction (CSBI) for Case I with Skyrme EDF, SGII. Numbers are given in the unit of MeV.

Nuclei	$^{17}\text{F-}^{17}\text{O}$	$^{15}\text{O-}^{15}\text{N}$	41 Sc- 41 Ca	39 Ca- 39 K
Orbital	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
$\Delta E_{\rm D}$ (Coulomb)	3.596	3.272	7.133	6.717
$\Delta E_{\rm E}$ (Coulomb)	-0.203	0.026	-0.267	0.260
Extra	0.040	0.028	0.102	0.011
CSBI (Case I)	0.224	0.264	0.287	0.315
Sum (w/o CSBI)	3.432	3.326	6.965	6.985
Sum (w/ CSBI)	3.656	3.590	7.252	7.300
Expt. [29]	3.543	3.537	7.278	7.307

TABLE S.II. The same as Table S.I, but for SAMi EDF.

Nuclei	${}^{17}\text{F-}{}^{17}\text{O}$	¹⁵ O- ¹⁵ N	41 Sc- 41 Ca	${}^{39}\text{Ca-}{}^{39}\text{K}$
Particle (hole)	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
Finite size	-0.050	-0.068	-0.063	-0.080
Center-of-mass	0.021	0.029	0.014	0.018
δ^{1}_{NN}	0.014	0.007	0.031	0.021
δ^2_{NN}	0.047	-0.090	0.131	-0.098
Spin-orbit	-0.061	0.078	-0.121	0.140
pn mass difference	0.035	0.026	0.041	0.034
δ_{pol}	0.018	0.073	0.036	0.020
Vacuum polarization	0.019	0.020	0.035	0.037
Sum	0.043	0.075	0.104	0.092

bars with error bars and the blue bars, respectively.

TABLE VI. The same as Table V, but with Skyrme EDF, SAMi.

Nuclei	${}^{17}\text{F}-{}^{17}\text{O}$	¹⁵ O- ¹⁵ N	${\rm ^{41}Sc\text{-}^{41}Ca}$	39 Ca- 39 K
Orbital	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
$\Delta E_{\rm D}$ (Coulomb)	3.506	3.242	7.025	6.697
$\Delta E_{\rm E}$ (Coulomb)	-0.193	0.022	-0.259	0.281
Extra	0.043	0.075	0.104	0.092
CSBI (Case I)	0.206	0.269	0.271	0.321
Sum (w/o CSBI)	3.356	3.339	6.870	7.070
Sum (w/ CSBI)	3.562	3.608	7.141	7.391
Expt. [29]	3.543	3.537	7.278	7.307

TABLE IV. Contributions from the Skyrme CSB interactions to δ_{ONS} in Case I and Case II with theoretical uncertainties. The values are given in unit of keV. The core density and the wave function of valence orbit are calculated by HF model with Skyrme EDFs, SGII and SAMi. All the values are obtained self-consistently.

	Nuclei	¹⁷ F- ¹⁷ O	¹⁵ O- ¹⁵ N	41 Sc- 41 Ca	39 Ca- 39 K
	Orbital	$1d_{5/2}$	$(1p_{1/2})^{-1}$	$1f_{7/2}$	$(1d_{3/2})^{-1}$
	\tilde{s}_0	229^{+192}_{-125}	269^{+221}_{-148}	292^{+245}_{-160}	322_{-176}^{+264}
	$\tilde{s}_1 \ (\tilde{s}_2=0)$	$-5.0^{+2.8}_{-4.0}$	$-5.6^{+3.1}_{-4.5}$	$-6.6^{+3.7}_{-5.3}$	$-6.0^{+3.4}_{-4.9}$
SGII	$\tilde{s}_2 \ (\tilde{s}_1=0)$	$-6.4^{+3.5}_{-5.2}$	$-3.3^{+1.8}_{-2.7}$	$-5.3^{+2.9}_{-4.3}$	$-5.0^{+2.8}_{-4.1}$
	Case I	224^{+192}_{-125}	264^{+221}_{-148}	287^{+245}_{-160}	315^{+264}_{-176}
	Case II	225^{+192}_{-125}	266^{+221}_{-148}	289^{+245}_{-160}	316^{+264}_{-176}
SAMi	\tilde{s}_0	211^{+174}_{-115}	274^{+225}_{-152}	278^{+230}_{-151}	324_{-180}^{+269}
	$\tilde{s}_1 \ (\tilde{s}_2 = 0)$	$-5.2^{+2.9}_{-4.2}$	$-5.4^{+3.0}_{-4.4}$	$-7.3^{+4.0}_{-5.9}$	$-8.4^{+4.6}_{-6.6}$
	$\tilde{s}_2 \ (\tilde{s}_1=0)$	$-4.1^{+2.3}_{-3.3}$	$-3.2^{+1.8}_{-2.6}$	$-5.7^{+3.1}_{-4.6}$	$-5.2^{+2.9}_{-4.2}$
	Case I	206^{+174}_{-115}	269^{+225}_{-152}	271^{+230}_{-151}	321^{+269}_{-180}
	Case II	207^{+174}_{-115}	271^{+225}_{-152}	272^{+230}_{-151}	322^{+269}_{-180}

Hatsuda et al. (QCD sum rule; PRL66, 2851 (1991)) 290.+/-70.530.+/-140. 420.+/-110.570.+/-150.

M. Kimura et al.($\rho - \omega$ coupling in RM; PLB367, 5 (1996)) 70-290 keV

QCD-based CSB interaction HS, T. Naito, X. Roca-Maza and T. Hatsuda, PRC109, L011302 (2024)

- 1. QCD sum rule approach to evaluate mass difference of proton and neutron in nuclear medium
- 2. Partial restoration of Spontaneous symmetry breaking (SSB) in nuclear medium

The mass difference between neutron and proton is formulated in nuclear matter by the QCD sum rule approach in leading order of the quark mass difference and QED effect

$$\Delta_{np}(\rho) \simeq C_1 G(\rho) - C_2,$$
$$G(\rho) = \left(\frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_0}\right)^{1/3}.$$

IN VACUUM,

$$\Delta_{np}(0) = m_n - m_p \simeq 1.29$$
 MeV.

Here, $\langle \bar{q}q \rangle$ and $\langle \bar{q}q \rangle_0$ are, respectively, the isospin averaged in-medium and in-vacuum chiral condensate. The coefficient C_1 is proportional to the *u*-*d* quark mass difference δm^{-1} , through the isospin-breaking constant $\gamma \equiv \langle \bar{d}d \rangle_0 / \langle \bar{u}u \rangle_0 - 1$ as $C_1 = -a\gamma$ with a positive numerical constant *a* determined by the Borel QSR

T. Hatsuda, H. Høgaasen, and M. Prakash, QCD sum rules in medium and the Okamoto-Nolen-Schiffer anomaly, Phys. Rev. Lett. **66**, 2851 (1991).

method