Limitations of time-dependent mean-field approximations to second-order nonlinear optical phenomena

Shunsuke A. Sato

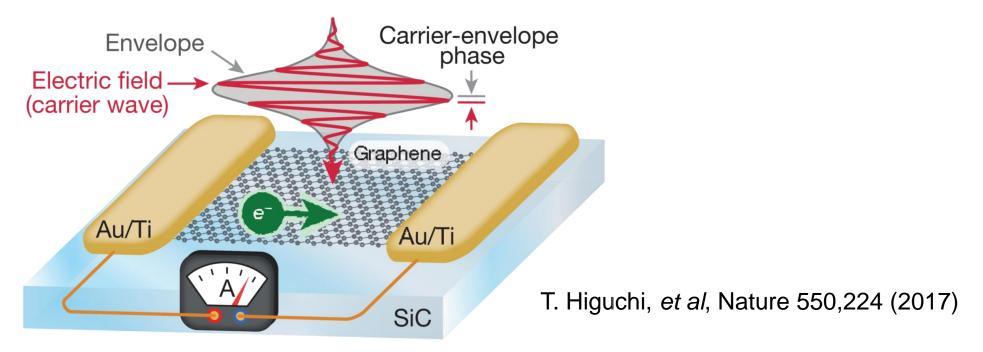
Center for Computational Sciences, University of Tsukuba

Introduction

Strong field physics (including attosecond physics)

Intense and short laser pulses induce nonlinear ultrafast phenomena in solids.

Opt-electronic device (PetaHertz electronics)



Our research aim

- To understand the microscopic mechanism of such strongly-nonlinear ultrafast phenomena in solids.
- For this aim, we employ the first-principles calculation based on time-dependent density functional theory (TDDFT).

Lowest order nonlinear current injection

Second-order nonlinear optical

Second-order nonlinear polarization (time-domain)

$$P^{(2)}(t) = \int_{-\infty}^{\infty} dt' \int_{-\infty}^{\infty} dt'' \chi^{(2)}(t - t', t - t'') E(t') E(t''),$$

Second-order nonlinear polarization (frequency domain)

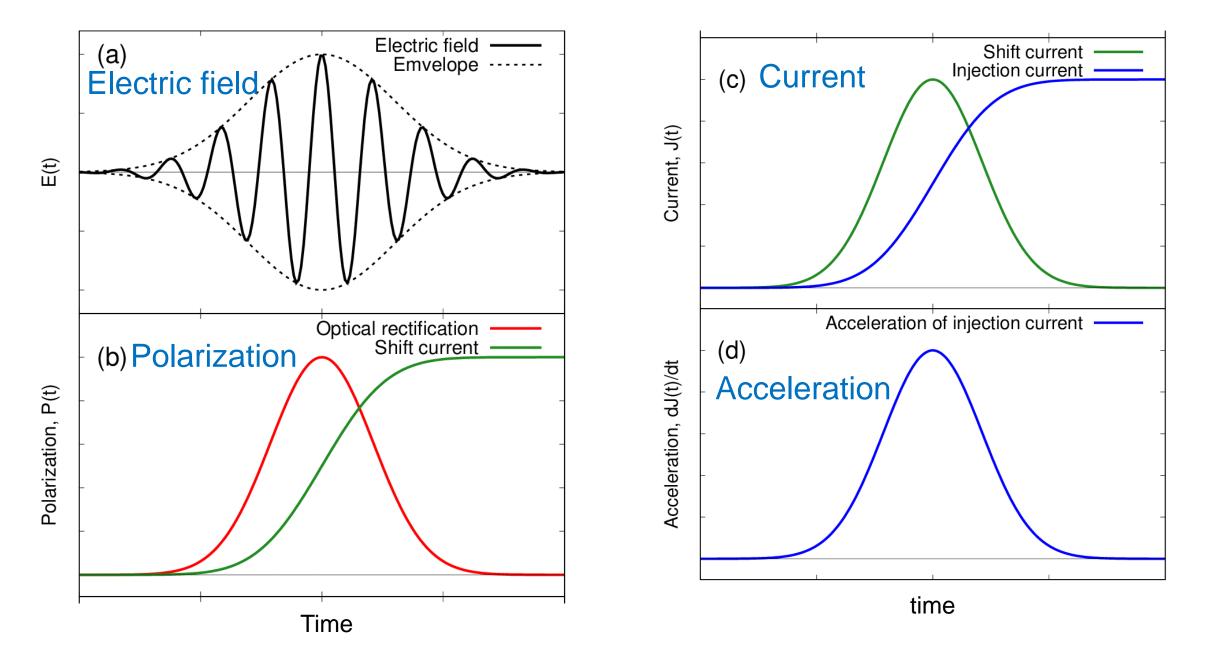
$$\tilde{P}^{(2)}(\omega_{\Sigma}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega' \tilde{\chi}^{(2)}(\omega_{\Sigma}; \omega', \omega_{\Sigma} - \omega') \tilde{E}(\omega') \tilde{E}(\omega_{\Sigma} - \omega'),$$

Second-order susceptibility (Low frequency response limit; $\omega_{\Sigma} = \omega' + \omega'' \rightarrow 0$) J. E. Sipe et al., PRB 61, 5337 (2000)

$$\tilde{\chi}(\omega_{\Sigma}, \omega', \omega'') = \tilde{\chi}_{\text{rec}}^{(2)}(\omega', \omega'') + \frac{\tilde{\sigma}_{\text{sft}}^{(2)}(\omega', \omega'')}{-i\omega_{\Sigma}} + \frac{\tilde{\eta}_{\text{inj}}^{(2)}(\omega', \omega'')}{(-i\omega_{\Sigma})^{2}},$$
Optical rectification
(#\$\mathcal{k}\$\

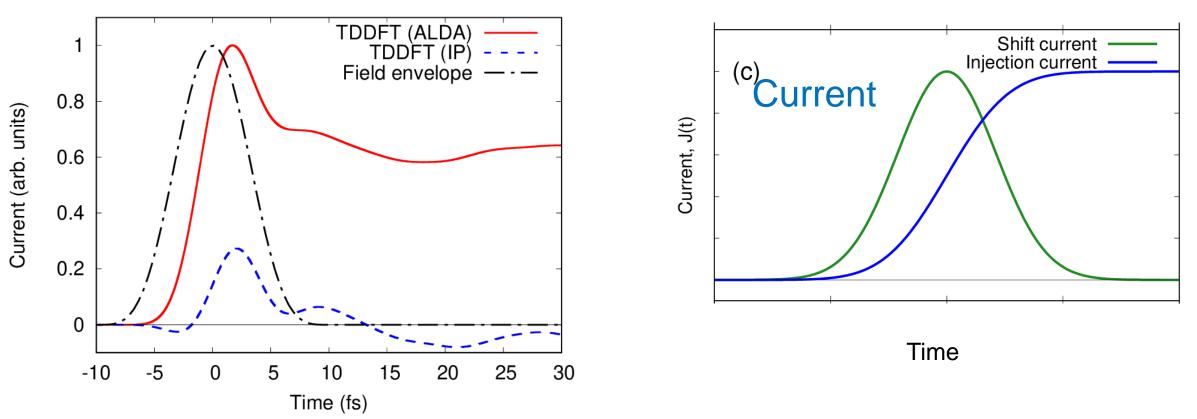
3/11

Second-order nonlinear optical response in time domain



Mean-field artifact?

Photo-induced current in BaTiO3 under linearly polarized light pulse



- TDDFT (mean-field) calculations shows the residual current even after the irradiation of linearly polarized light.
- The residual DC current is classified as the injection current, and it is usually observed under circular/elliptically
 polarized light
- The residual DC current indicates a breakdown of the time-reversal symmetry. Artifact?

Perturbation analysis (Exact many-body Schrödinger eq.)

Many-body Schrödinger eq.

$$i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle = \hat{H}(t)|\Psi(t)\rangle,$$

$$\hat{H}(t) = \sum_{i} \left[\frac{1}{2m_e} \left(\boldsymbol{p}_i + e\boldsymbol{A}(t) \right)^2 + v(\boldsymbol{r}_i) \right] + \frac{1}{2} \sum_{ij} w(\boldsymbol{r}_i - \boldsymbol{r}_j)$$

Perturbative expansion & eigen function expansion

$$|\tilde{\Psi}(t)\rangle = \exp\left[-\frac{i}{\hbar}E_0t - \frac{i}{\hbar}\int^t dt' E^{(1)}(t') - \frac{i}{\hbar}\int^t dt' E^{(2)}(t')\right]\left[|\Phi_0\rangle + |\delta\Psi^{(1)}(t)\rangle + |\delta\Psi^{(2)}(t)\rangle\right]$$

$$\begin{split} |\delta\Psi^{(1)}(t)\rangle &= \sum_{a\neq 0} C_a^{(1)}(t) e^{-i\Omega_a t} |\Phi_a\rangle, \\ |\delta\Psi^{(2)}(t)\rangle &= \sum_{a\neq 0} C_a^{(2)}(t) e^{-i\Omega_a t} |\Phi_a\rangle, \end{split}$$

DC current after the pulse ends (with exact many-body TDSE)

A(t) = 0 for $t > t_f$ We assume the laser-fields vanish after the time, t_f :

 $oldsymbol{J}_{
m dc}^{(2)}$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{t_f}^{t_f + T} dt \boldsymbol{J}^{(2)}(t)$$

$$= -\frac{e}{m_e} \sum_a |C_a^{(1)}(t_f)|^2 \langle \Phi_a | \boldsymbol{P} | \Phi_a \rangle$$

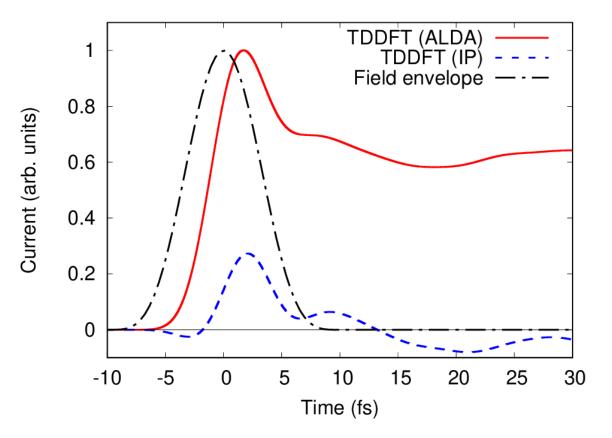
$$= -\frac{e}{m_e} \sum_a \left| \frac{e}{m_e} \frac{1}{i\hbar} \tilde{\boldsymbol{A}}(\Omega_a) \cdot \langle \Phi_a | \boldsymbol{P} | \Phi_0 \rangle \right|^2 \langle \Phi_a | \boldsymbol{P} | \Phi_a \rangle.$$
Time

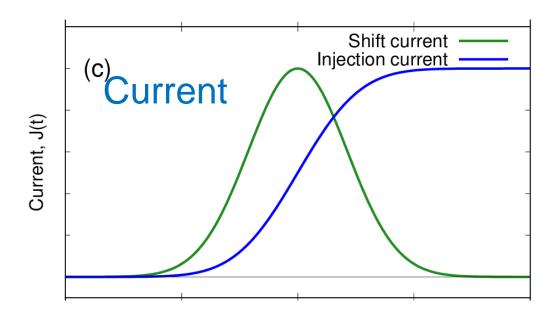
Assuming the Hermiteness of the problem, we can analytically prove that the residual current is ZERO under linearly polarized light.

=> Exact many-body Schrodinger equation forbids the injection current under linearly polarized light.

Shunsuke A. Sato, Angel Rubio, arXiv:2310.08875 [cond-mat.mtrl-sci]

Mean-field artifact

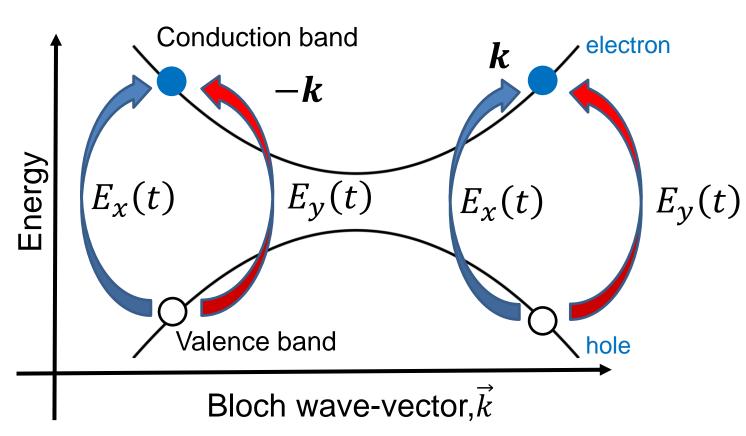




Injection current under circularly polarized light

Circularly polarized light

$$\boldsymbol{E}(t) = \boldsymbol{e}_{x} E_{x}(t) + \boldsymbol{e}_{y} E_{y}(t)$$



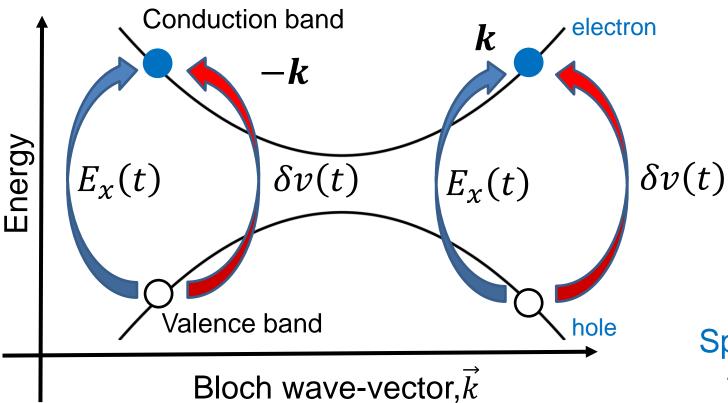
Mechanism of injection current

- 1. Circularly polarized light causes the quantum interference between two excitation paths.
- Due to the interference, different photo-carrier population can be created at *k* and -*k* points.
- 3. The population imbalance causes the residual current.

Injection current in the mean-field approximation

Linearly polarized light

 $\boldsymbol{E}(t) = \boldsymbol{e}_{\boldsymbol{x}} E_{\boldsymbol{x}}(t)$



Mechanism of injection current

- 1. An excitation path caused by the electric field is interfered with a self-excitation path via the induced field.
- 2. Due to the interference, different photo-carrier population can be created at k and -k points.
- 3. The population imbalance causes the residual current.

Spontaneous symmetry breaking?

The mean field spontaneously breaks the time-reversal symmetry of the system via the self-excitation path.

Conclusion

- We analyzed the shift-current (second-order nonlinear optical effect) for BaTiO3 from the TDDFT calculation, and we found the injection current induced by linearly polarized light.
- We analyzed the exact many-body Schrodinger equation with perturbation theory, and we found that the generation of the injection current by linearly polarized light is forbidden. Hence, the above findings are mean-field artifacts.
- Further analysis clarified that the unphysical injection current in the mean-field theories are generated by the quantum interference opened via the self-excitation path through the timedependent mean-field.

