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Outline of the Talk

1. The Hohenberg–Kohn theory: The v-representation problem and mathematical
problem of the original proof

2. In Levy–Lieb universal functional, the v-representation problem is settled
3. Other universal functionals: Lieb’s functional and its grand-canonical version
4. Validity of Local Density Approximation in DFT

References:
Lieb, Density functionals for Coulomb systems, 1983
Lewin–Lieb–Seiringer, Universal functionals in density functional theory, 2020.
The local density approximation in DFT, 2019 (include most of the talk)
Helgaker–Teale, Lieb variation principle in DFT, 2022
Lammert, In search of the Hohenberg–Kohn theorem, 2018
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Density Functional Theory
Notation: x = (r, σ), with r ∈ Rd and σ ∈ {1, . . . , q}. q = 2 for electrons. Write∫

dx :=
q∑

σ=1

∫
Rd
dr

For N fermions ψ(X) = ψ(x1, . . . ,xN), we define single-particle density ρψ by

ρψ(r) := N
q∑

σ1....,σN=1

∫
Rd

· · ·
∫
Rd

|ψ(r, σ1, r2, σ2, . . . , rN , σN)|2 dr2 · · · drN

The Hamiltonian we will consider is
H(v) := T + V +W,

T := −
N∑
j=1

∆rj

2
, V =

N∑
j=1

v(rj), W :=
∑

1≤i<j≤N
w(ri − rj).

EN(v) := inf
〈ψ|ψ〉=1

〈ψ|H(v)|ψ〉 = Ground State Energy
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The Hohenberg–Kohn Theorem
Define VN := {v : H(v) has a ground state}. ρ is v-representable ⇔ ρψ comes from a
ground state ψ for v ∈ VN . Here

AN := {ρ : v-representable densities}
For ρ ∈ AN , define the Hohenberg–Kohn functional as

FHK(ρ) := EN(v) −
∫
Rd
ρψ(r)v(r) dr

Theorem 1 (Hohenberg–Kohn)
Assume v1, v2 ∈ VN and there are two ground states ψ1 and ψ2 s.t. ρψ1 = ρψ2 . Then
v1 = v2 + constant, i.e., v is a unique functional of ρ ∈ AN . Moreover, the HK
variational principle holds:

EN(v) = min
{
FHK(ρ) +

∫
vρ : ρ ∈ AN

}
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Original Proof of HK Theorem
Proof: “The proof proceeds by reductio ad absurdum” [Hohenberg–Kohn, 1964].
Assume v1 6= v2 + constant and ρψ1 = ρψ2 = ρ.
(A): “Now clearly ψ1 cannot be equal to ψ2 since they satisfy different Schödinger
equations” [HK]. Also ψ2 is not a ground state for H(v1).
Applying the Rayleigh-Ritz variational principle,

EN(v1) < 〈ψ2|H(v1)|ψ2〉 = EN(v2) +
∫

(v1 − v2)ρ.

Likewise EN(v2) < EN(v1) +
∫
(v2 − v1)ρ. These lead to the contradiction

EN(v1) < EN(v1).
Proof of (A): If ψ1 = ψ2,

(EN(v1) − EN(v2))ψ1 = (H(v1) −H(v2))ψ1 = (v1 − v2)ψ1.

Hence if (B): ψ does not vanish almost everywhere, then v1 = v2 + C.
This contradicts the assumption.
The condition (B) guaranteed by the unique continuation principle (UCP). 5 / 21



Mathematical Problem of Hohenberg–Kohn Theorem
HK approach is not satisfactory from a mathematical point of view since:

AN and VN are unknown sets (v-representability problem)
The proof requires v1ψ = v2ψ implies v1 = v2 (unique continuation principle)

Denote |A| := the volume (Lebesgue measure) of set A.

Definition (Unique Continuation Principle)
The potential v and w satisfy the unique continuation principle (UCP) if H(v)ψ = 0 for
some ψ and |{ψ = 0}| > 0, then ψ ≡ 0.

Notation: Lp := {f :
∫
Rd f(x)pdx < ∞} and f ∈ Lp + L∞ if f = g + h with g ∈ Lp

and h is bounded.
Theorem 2 (UCP for Lp potential [Garrigue, 2018])
Any v, w s.t. and v, w ∈ Lp + L∞ with p > max(2, 2d/3) satisfy UCP.

E.g. Coulomb Hamiltonian satisfies UCP. (proved in 2018!) 6 / 21



Hohenberg–Kohn Theorem via UCP

Theorem 3 (New HK Theorem)
Assume vi, w ∈ Lp + L∞ and (vi, w) satisfy UCP. If there are G.S. ψi s.t. ρψ1 = ρψ2 ,
then v1 = v2 + constant.

Proof.
〈ψ1|H(v1)|ψ1〉 = 〈ψ1|H(v2)|ψ1〉 +

∫
ρψ1(v1 − v2) ≥ 〈ψ2|H(v2)|ψ2〉 +

∫
ρψ1(v1 − v2)

≥ 〈ψ1|H(v1)|ψ1〉
Hence ψ1 is a g.s. for H(v2) and

(H(v1) −H(v2))ψ1 =
N∑
j=1

(v1(rj) − v2(rj))ψ1 = 0.

UCP implies |{ψ1 = 0}| = 0, so that for a.e. r1, . . . , rN∑
j

(v1(rj) − v2(rj)) = 0, ∴ v1 = v2 + C. (C = (E(v1) − E(v2))/N)
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Summary of HK Theorem via UCP

Usually, HK theorem has the v-representablity problem.
The proof relies on the unique continuation principle.
For many-body Coulomb potential, UCP was proved for the first time in 2018

Consider w ∈ Lp + L∞. Define the new set of v-representable densities:

Rw := {ρψ : ψ ground state of H(v) for some (v, w) satisfying UCP}

Then HK theorem says that any ρ ∈ Rw arises from a unique potential v.
However, the set Rw is still essentially unknown.
It is an important problem to determine how large Rw is.
In other words, to generalize UCP to more general potentials v.
Mathematically, the Levy–Lieb universal functional is more accessible.
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The Levy–Lieb Universal Functional
Consider d ≥ 3 and v, w ∈ Ld/2 + L∞. Levy–Lieb gave the following two-step
minimization:

EN(v) = inf
{
FLL[ρ] +

∫
Rd
v(r)ρ(r) dr :

∫
ρ = N

}

FLL[ρ] = inf
〈ψ|ψ〉=1,
ρψ=ρ

1
2

N∑
j=1

∫
|∇jψ(X)|2 dX +

∑
1≤j<k≤N

∫
|ψ(X)|2w(rj − rk) dX


FLL[ρ] is independent of v, so it is a universal functional of ρ.
This requires to identify the N -representable densities. Note

Theorem 4 (Hoffmann-Ostenhof Inequality)
N∑
j=1

∫
|∇jψ(X)|2 dX ≥

∫
Rd

|∇√
ρψ(r)|2 dr.

This will give the optimal restriction √
ρ ∈ H1 := {f ∈ L2 : ∇f ∈ L2}. 9 / 21



N -Representability

Theorem 5 (Representablity of the one-particle density)
Assume √

ρ ∈ H1 and
∫
ρ = N . Then there is ψ ∈ H1 s.t. ρ = ρψ.

Proof: For q ≥ N (e.g. He), just take

ψ(X) =
N∏
j=1

√
ρ(rj)
N

det(δj(σk))1≤j,k≤N√
N !

For q < N , take a Slater determinant

ψ(X) = det(φj(xk))1≤j,k≤N√
N !

, φj(x) =
√
ρ(r)
N

exp(iθj(r))δ0(σ)

where θj are chosen to φj orthonormal, e.g. (not so good for computation)

θj(r) = 2ijπ
N

∫ r1

−∞
dt
∫
Rd−1

ρ(t, r′)dr′.
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v-representablity for Levy–Lieb Functional
Collectively, the set of N -representable densities IN is

IN = {ρ ∈ L1 ∩ L3 : ρ ≥ 0,
∫
ρ = N,∇√

ρ ∈ H1}

Then for v, w ∈ Ld/2 + L∞, we have

EN(v) = inf
ρ∈IN

{
FLL[ρ] +

∫
Rd
v(r)ρ(r) dr

}
, FLL[ρ] = inf

〈ψ|ψ〉=1,
ρψ=ρ

(· · · )

Since IN is explicitly known, v-representablity problem has been settled.
Note

AN︸︷︷︸
not convex set

⊂ IN︸︷︷︸
convex set

⊂ L1 ∩ L3︸ ︷︷ ︸
vector space

.

Since v 7→ EN(v) is concave, we can see EN(v) is the Legendre transform of FLL on IN
Remark: The harmonic oscillator potential is not in Ld/2 + L∞.
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Lieb’s Universal Functional
However, FLL is not convex. We use the convex hull

FL := ConvIN (FLL) := sup{f(ρ) : f convex, f(ρ′) ≤ FLL[ρ′], ∀ρ′ ∈ IN},

which is the Legendre transform of EN(v).
Let Γ be a mixed state obeying

Γ =
∑
j

αj |ψj〉 〈ψj| , αj ≥ 0,
∑
j

αj = 1

and ρΓ := ∑
j αjρψj . Then we can write

FL[ρ] = inf {Tr (ΓH(v = 0)) : Γ ≥ 0,Tr(Γ) = 1, ρΓ = ρ}

Theorem 6 (Variational Principle for FL and FLL)
For ρ ∈ IN , the infima of FL and FLL are attained, i.e., inf = min.
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Duality Between FL and EN(v)
Explicitly,

FL[ρ] = min

∑
j

αjFLL : ρ =
∑
j

αjρj,
∑
j

αj = 1, ρ ∈ IN


EN(v) = inf {Tr (ΓH(v)) : Γ ≥ 0,Tr(Γ) = 1, ρΓ = ρ}

= inf
ρ∈IN

{
FL[ρ] +

∫
Rd
v(r)ρ(r) dr

}
.

Then we have the duality principle

FL[ρ] := sup
{
EN(v) −

∫
Rd
v(r)ρ(r) dr : v ∈ Ld/2 + L∞

}
= sup

{
−
∫
Rd
v(r)ρ(r) dr : v ∈ Ld/2 + L∞, H(v) ≥ 0

}
.

In this sense, FL is more natural than FLL. However, this supremum is not attained for
most densities (e.g. for v with UCP and ρ vanishes on a set). 13 / 21



Grand-Canonical Universal Functional
The grand-canonical (GC) universal functional is

FGC[ρ] := inf

∑
n≥1

Tr (H(0)Γn) :
∑
n≥1

Tr(Γn) ≤ 1,
∑
n≥1

ρΓn = ρ


Then the infimum is attained and we have

FGC[ρ] = min

∑
j

αjFL[ρj] : ρ =
∑
j

αjρj,
∑
j

αj = 1, ρj ∈ Ij


= min

∑
j

βjFLL[ρj] : ρ =
∑
j

βjρj,
∑
j

βj = 1,
∫
ρj ∈ N


Hence the GC functional is also a convex hull of FLL.
For FGC, ρj have an arbitrary number of particles.
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Duality of FGC

The Legendre transform of FGC is

EGC
λ (v) := inf

ρ∈Iλ

{
FGC[ρ] +

∫
vρ
}

= inf∑
n
αn=1∑

n
nαn=λ

∑
n

αnEn(v)

For λ = N ∈ N, we have EGC
N (v) ≤ EN(v). If n 7→ En(v) is convex, i.e.,

En(v) − En−1(v) ≤ En+1(v) − En(v), n ≥ 1

then EGC
N (v) = EN(v) holds true.

Such a convexity for the Coulomb potential is still open.

Theorem 7 (Lewin–Lieb–Seiringer ’21)
For any √

ρ ∈ H1 there are √
ρn ∈ H1 s.t.

∫
ρn ∈ N and FGC[ρ] = limn→∞ FL[ρn]
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The Kohn–Sham Theory
The Kohn–Sham (KS) theory provides a good representation of the kinetic energy TN :

TS[ρ] := min {〈ψ|TN |ψ〉 : ψ is a Slater determinant, ρψ = ρ} , TN := −
N∑
j=1

∆rj

2
.

Then we have for Φ = (φ1, . . . , φN)

EN(v) = inf
φj :ONS

1
2

N∑
j=1

∫
|∇φj(x)|2 dx +

∫
Rd
v(r)ρΦ(r) dr

+1
2

∫∫
drdr′w(r − r′)ρΦ(r)ρΦ(r′) + Exc[ρΦ]

}
,

Exc[ρ] := FLL[ρ] − TS[ρ] − 1
2

∫∫
drdr′w(r − r′)ρΦ(r)ρΦ(r′).

In principle, the exchange term Exc[ρ] requires to study both FLL[ρ] and TS[ρ].
16 / 21



The Local Density Approximation
From now on, we consider w(r) = |r|−1 in d = 3 and

FL,LL,GC[ρ] ≈ 1
2

∫∫
R3×R3

ρ(r)ρ(r′)
|r − r′|

drdr′

︸ ︷︷ ︸
non local

+
∫
R3
f(ρ(r)) dr︸ ︷︷ ︸

local

=: D[ρ] + ELDA[ρ].

Theorem 8 (Validity of LDA, Lewin–Lieb–Seiringer ’20)
There is a C = C(q) > 0 s.t. for any ε > 0 and ρ

|FGC[ρ] −D[ρ] − ELDA[ρ]|

≤ ε
∫

(ρ+ ρ2) + C
(

1 + 1
ε

) ∫
R3

|∇√
ρ(r)|2dr + C

ε

∫
R3

|∇√
ρ(r)|4dr.

with f like f(ρ) =

c1ρ
4/3 + o(ρ4/3) (ρ → 0+)

c2ρ
5/3 − c3ρ

4/3 + o(ρ4/3) (ρ → ∞)
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Remark on Theorem

It is expected that same result for FLL and FL

Error term is not optimal.
Maybe it should only involve ρ5/3, ρ4/3, |∇√

ρ|2, |∇ρ1/3|2 or |∇ρ|.
For ρN(r) = ρ(N−1/3r) we obtain

FGC[ρN ] = N5/3D[ρ] +NELDA[f ] +O
(
N

11
12
)

Extended to short-range potentials [Mietzsch ’20].
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The Kinetic Energy Functional
Consider

T [ρ] := min {〈ψ|TN |ψ〉 : 〈ψ|ψ〉 = 1, ρψ = ρ} = Fw=0
LL [ρ].

For one-particle density matrix with kernel γψ

γψ(x,y) = N
∫
ψ(x,X)ψ(y,X) dX, ργψ(x) := γψ(x,x)

we have 〈ψ|TN |ψ〉 = Tr
[(

−∆
2

)
γψ

]
. The set of N -representable density matrix is

RDN :=
{
γ = γ† : 0 ≤ γ ≤ 1, Tr (−∆γ) < ∞, Tr(γ) = N

}
,

TGC[ρ] := min
{

Tr
[(

−∆
2

)
γ

]
: 0 ≤ γ = γ† ≤ 1, Tr(−∆γ) < ∞, ργ = ρ

}
Note

∫
ρ ∈ R, and, if

∫
ρ ∈ N, then TGC[ρ] = F 0

L[ρ].
Also TGC[ρ] ≤ T [ρ] ≤ TS[ρ] holds, and Exc[ρ] = FL[ρ] − TGC[ρ] −D[ρ].

19 / 21



The Extended Kohn–Sham Model
Finally, we define the extended Kohn–Sham model as

EEKS
N (v) := inf

γ∈RDN

{
Tr
(

−1
2

∆γ
)

+
∫
ργv +D[ργ] + Exc(ργ)

}
Then EEKS

N (v) = EN(v). Consider the Kohn–Sham LDA as

EKSLDA
λ (v) := inf

γ∈RDλ

{
Tr
(

−1
2

∆γ
)

+
∫
ργv +D[ργ] + ELDA(ργ)

}
, λ ∈ R.

Theorem 9 (Anantharaman–Cancés, ’09)
For Coulomb system, if λ ≤ Z = total nuclear charge, EKSLDA

λ (v) has a minimizer γ0
obeying the Kohn–Sham equation(

−∆
2

+ v + ργ0 ∗ |r|−1 + f ′(ργ0)
)
φi = eiφi.
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Summary

The Hohenberg–Kohn Theory is not satisfactory from a mathematical point of view
Indeed, v-representability problem exists
Mathematically, HK theory needs the unique continuation principle which is not yet
completely understood
The Levy–Lieb functional is a universal functional of densities, and
v-representability problem is settled, but not convex.
The convex hull of LL functional are Lieb’s universal functional and
grand-canonical functional
For GC functional, the local density approximation is justified in a sense.
There are some mathematical results for Kohn–Sham theory (e.g. Goto 2022, etc)

Thank you for coming to my talk
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