Orbital Free DFT in nuclear physics

K. Hagino (Kyoto University) Gianluca Colo (U. of Milano) Norihiro Hizawa (Kyoto University)

- 1. Introduction 1: Orbital-based DFT in nuclear physics
- 2. Introduction 2: Orbital-free DFT in nuclear physics
- 3. Comparisons between nuclear and electronic systems
- 4. Applications of machine learning to OF-DFT
- 5. Summary
- G. Colo and K. Hagino, PTEP 2023, 103D01 (2023).
- N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

Second Workshop on Fundamentals in Density Functional Theory (DFT2024), RIKEN Kobe, 2024.2.20-22.

Introduction 1: Orbital-based DFT in nuclear physics

Density Functional Theory

$$E = E[\rho] = \int d\boldsymbol{r} \mathcal{E}[\rho(\boldsymbol{r})]$$

Kohn-Sham scheme ("orbital-based" DFT)

$$E = \int d\mathbf{r} \left(\frac{\hbar^2}{2m} \tau(\mathbf{r}) + \mathcal{E}_{\text{int}}[\rho(\mathbf{r})] \right)$$

$$au(\mathbf{r}) = \sum_{i} |\nabla \varphi_i(\mathbf{r})|^2, \quad
ho(\mathbf{r}) = \sum_{i} |\varphi_i(\mathbf{r})|^2$$

$$\rightarrow \left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{\delta\mathcal{E}_{\text{int}}}{\delta\rho}\right)\varphi_i(r) = \epsilon_i\varphi_i(r)$$

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956). D. Vautherin and D.M. Brink, PRC5, 626 (1972).

for N=Z nuclei (with $x_2=0$)

$$\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{16} (3t_1 + 5t_2) \rho(\boldsymbol{r}) \tau(\boldsymbol{r}) + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla} \rho(\boldsymbol{r}))^2 - \frac{3}{4} W_0 \rho(\boldsymbol{r}) \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r})$$

$$\tau(r) = \sum_{i} |\nabla \varphi_{i}(r)|^{2}$$
 kinetic energy density
 $\rho(r) = \sum_{i} |\varphi_{i}(r)|^{2}$ particle number density
 $J(r) = -i \sum_{i} \varphi_{i}^{*}(r) (\nabla \times \sigma) \varphi_{i}(r)$ spin-orbit density

Skyrme energy functional

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956). D. Vautherin and D.M. Brink, PRC5, 626 (1972).

$$\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{16} (3t_1 + 5t_2) \rho(\boldsymbol{r}) \tau(\boldsymbol{r}) \\ + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla}\rho(\boldsymbol{r}))^2 - \frac{3}{4} W_0 \rho(\boldsymbol{r}) \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r})$$

cf. Skyrme interaction (for t_0 , t_3 , and W_0 parts):

$$v(r,r') = t_0 \delta(r-r') + \frac{1}{6} t_3 \delta(r-r') \rho^{\alpha}(r)$$

short-range attraction repulsion to avoid collapse $+iW_0(\sigma_1 + \sigma_2) \cdot k \times \delta(r - r')k$

spin-orbit interaction

Skyrme energy functional

$$\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{16} (3t_1 + 5t_2) \rho(\boldsymbol{r}) \tau(\boldsymbol{r}) \\ + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla}\rho(\boldsymbol{r}))^2 - \frac{3}{4} W_0 \rho(\boldsymbol{r}) \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r})$$

$$\rightarrow \left[-\boldsymbol{\nabla} \cdot \frac{\hbar^2}{2m^*(\boldsymbol{r})} \boldsymbol{\nabla} + V(\boldsymbol{r}) + \boldsymbol{W}(\boldsymbol{r}) \cdot (-i)(\boldsymbol{\nabla} \times \boldsymbol{\sigma}) \right] \varphi_i = e_i \varphi_i$$

$$\begin{aligned} \frac{\hbar^2}{2m^*(\mathbf{r})} &= \frac{\hbar^2}{2m} + \frac{1}{16}(3t_1 + 5t_2)\rho \\ V(\mathbf{r}) &= \frac{3}{4}t_0\rho + \frac{\alpha + 2}{16}t_3\rho^{\alpha + 1} + \frac{1}{16}(3t_1 + 5t_2)\tau \\ &\quad -\frac{1}{32}(9t_1 - 5t_2)\nabla^2\rho - \frac{3}{4}W_0\nabla\cdot\mathbf{J} \\ \mathbf{W}(\mathbf{r}) &= \frac{3}{4}W_0\nabla\rho \end{aligned}$$

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956). D. Vautherin and D.M. Brink, PRC5, 626 (1972).

for N=Z nuclei (with $x_2=0$)

$$\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{16} (3t_1 + 5t_2) \rho(\boldsymbol{r}) \tau(\boldsymbol{r}) \\ + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla}\rho(\boldsymbol{r}))^2 - \frac{3}{4} W_0 \rho(\boldsymbol{r}) \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r})$$

10 parameters \leftarrow fitting to experimental data:

B.E. and $r_{\rm rms}$: ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁵⁶Ni, ⁹⁰Zr, ²⁰⁸Pb,.... infinite nuclear matter: E/A, $\rho_{\rm eq}$,....

Parameter sets:

SIII, SkM*, SGII, SLy4,.....

T.H.R. Skyrme, Phil. Mag. 1, 1043 (1956). D. Vautherin and D.M. Brink, PRC5, 626 (1972).

for N=Z nuclei (with $x_2=0$)

$$\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{16} (3t_1 + 5t_2) \rho(\boldsymbol{r}) \tau(\boldsymbol{r}) \\ + \frac{1}{64} (9t_1 - 5t_2) (\boldsymbol{\nabla}\rho(\boldsymbol{r}))^2 - \frac{3}{4} W_0 \rho(\boldsymbol{r}) \boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{r})$$

- ✓ a more complicated form for $N \neq Z$
- ✓ Coulomb: direct + Slater approximation for exchange
- \checkmark an additional pairing functional for Bogoliubov-de-Gennes
- ✓ nuclear systems → self-bound systems

◆ deformed density for open shell nuclei

a global calculations: deformation and two-neutron separation energy

M.V. Stoitsov et al., PRC68('03)054312

deformation of hypernuclei

 ^{28}Si

6

4

2

-4

-6

-6

-4

-2

(III) 0 d-2

 $^{28}\text{Si} = 14 \text{ protons} + 14 \text{ neutrons}$ 29 _ASi = 14 protons + 14 neutrons $+\Lambda$ particle

> n = (udd)p = (uud) $\Lambda = (uds)$

> > 0.2

0.18

0.16 0.14

0.1201

0.08 0.06

0.04

0.02

6

4

2

0

z (fm)

-2

2

0

z (fm)

-4

-6

-6

0.05

0

6

4

Introduction 2: Orbital-free DFT in nuclear physics

$$E = \int d\mathbf{r} \left(\frac{\hbar^2}{2m} \tau(\mathbf{r}) + \mathcal{E}[\rho(\mathbf{r})] \right)$$

Kohn-Sham scheme ("orbital-based" DFT)

$$au(\mathbf{r}) = \sum_{i} |\nabla \varphi_{i}(\mathbf{r})|^{2}, \quad \rho(\mathbf{r}) = \sum_{i} |\varphi_{i}(\mathbf{r})|^{2}$$

 $\rightarrow \left(-\frac{\hbar^{2}}{2m} \nabla^{2} + \frac{\delta \mathcal{E}}{\delta \rho}\right) \varphi_{i}(\mathbf{r}) = \epsilon_{i} \varphi_{i}(\mathbf{r})$

A simpler approach: orbital-free DFT M. Levy, J.P. Perdew, and V. Sahni, PRA30 ('84) 2745

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(r) \end{pmatrix} \sqrt{\rho(r)} = \mu \sqrt{\rho(r)}$$
(note) $\rho(r) = N |\varphi(r)|^2 \to \varphi(r) \propto \sqrt{\rho(r)}$

Density Functional Theory

Kohn-Sham scheme ("orbital-based" DFT)

$$au(\mathbf{r}) = \sum_{i} |\nabla \varphi_i(\mathbf{r})|^2, \quad \rho(\mathbf{r}) = \sum_{i} |\varphi_i(\mathbf{r})|^2$$

interacting many-fermion systems \rightarrow a mapping to non-interacting many-<u>Fermion</u> systems

A simpler approach: orbital-free DFT M. Levy, J.P. Perdew, and V. Sahni, PRA30 ('84) 2745

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(r) \end{pmatrix} \sqrt{\rho(r)} = \mu \sqrt{\rho(r)}$$
(note) $\rho(r) = N |\varphi(r)|^2 \to \varphi(r) \propto \sqrt{\rho(r)}$

interacting many-fermion systems \rightarrow a mapping to non-interacting many-<u>Boson</u> systems

the extended Thomas-Fermi approximation

$$\tau_{\mathsf{TF}}(r) = \alpha \rho^{5/3} + \frac{\beta}{4} \frac{(\nabla \rho)^2}{\rho} \qquad \alpha = \frac{3}{5} (3\pi^2)^{2/3}, \quad \beta = \frac{1}{9}$$

$$\frac{\delta}{\delta\rho} \left(E - \mu \int \rho(\mathbf{r}) d\mathbf{r} \right) = 0$$

$$\rightarrow \frac{\hbar^2}{2m} \left(\frac{5}{3} \alpha \rho^{2/3} + \frac{\beta}{4} \frac{(\nabla \rho)^2}{\rho^2} - \frac{\beta}{2} \frac{\nabla^2 \rho}{\rho} \right) + \frac{\delta \mathcal{E}}{\delta \rho} - \mu = 0$$

$$= -\frac{\beta}{\sqrt{\rho}} \nabla^2 \sqrt{\rho}$$

$$\rightarrow \left(-\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{\beta}\frac{\delta\mathcal{E}}{\delta\rho} + \frac{5\alpha}{3\beta}\frac{\hbar^2}{2m}\rho(r)^{2/3}\right)\sqrt{\rho(r)} = \frac{\mu}{\beta}\sqrt{\rho(r)}$$

 $V_{\rm eff}$

the extended Thomas-Fermi approximation

$$\tau_{\mathsf{TF}}(\mathbf{r}) = \alpha \rho^{5/3} + \frac{\beta}{4} \frac{(\nabla \rho)^2}{\rho} \qquad \alpha = \frac{3}{5} (3\pi^2)^{2/3}, \quad \beta = \frac{1}{9}$$

$$\frac{\delta}{\delta \rho} \left(E - \mu \int \rho(\mathbf{r}) d\mathbf{r} \right) = 0$$

$$\rightarrow \left(-\frac{\hbar^2}{2m} \nabla^2 + \frac{1}{\beta} \frac{\delta \mathcal{E}}{\delta \rho} + \frac{5\alpha}{3\beta} \frac{\hbar^2}{2m} \rho(\mathbf{r})^{2/3} \right) \sqrt{\rho(\mathbf{r})} = \frac{\mu}{\beta} \sqrt{\rho(\mathbf{r})}$$

$$V_{\text{eff}}$$
electron systems: $\beta \rightarrow \text{a free parameter}$
popular choices: $\beta = 1/9, 1/5, 1$

semi-classical original Weizsacker

empirical fit

V.V. Karasiev and S.B. Trickey, CPC183 ('12) 2519, table 3 A long history of a method based on the Extended TF approximation

M. Brack et al., Phys. Rep. 123 (1985) 275

cf. ETF-SI (Strutinsky Integral) mass formula, A.K. Dutta et al., Nucl. Phys. A458, 77 (1986)

 \rightarrow the extended TF: E_{tot} is reasonable, but a wrong tail in ρ

A long history of a method based on the Extended TF approximation M. Brack et al., Phys. Rep. 123 (1985) 275

 \rightarrow the extended TF: E_{tot} is reasonable, but a wrong tail in ρ

H. Krivine and J. Treiner, Phys. Lett. 88B, 212 (1979):

$$\tau_{\mathsf{TF}}(r) = \alpha \rho^{5/3} + \frac{\beta}{4} \frac{(\nabla \rho)^2}{\rho}$$

good *E* and ρ by adjusting α and $\beta \rightarrow$ but a strong system dependence "a dilemma between *E* and ρ "

Nuclear systems:

the extended TF: E_{tot} is reasonable, but a wrong tail in ρ

M. Brack et al., Phys. Rep. 123 (1985) 275

Our Questions: G. Colo and K. Hagino, PTEP 2023, 103D01 (2023)

How does this statement hold for beta = 1/9, 1/5, and 1, which have been often employed in electronic systems?
 Is there any way to cure this problem?

- > To what extent is the OF-DFT useful for nuclear systems?
- > Does the tail matter in electron systems?
- What are similarities and differences between nuclear and electron systems?

A simple potential model

$$E = \int d\mathbf{r} \left(\frac{\hbar^2}{2m} \tau(\mathbf{r}) + V(\mathbf{r})\rho(\mathbf{r}) \right) = \sum_i \epsilon_i$$

V(r): a Woods-Saxon potential (with no ls) or a pure Coulomb potential

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\varphi_i(\mathbf{r}) = \epsilon_i\varphi_i(\mathbf{r})$$

A simple potential model

$$E = \int d\mathbf{r} \left(\frac{\hbar^2}{2m} \tau(\mathbf{r}) + V(\mathbf{r})\rho(\mathbf{r}) \right) = \sum_i \epsilon_i$$
$$\left(-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right) \varphi_i(\mathbf{r}) = \epsilon_i \varphi_i(\mathbf{r})$$

Exact:
$$E_{\text{exact}} = \sum_{i} \epsilon_{i}, \quad \rho_{\text{exact}}(r) = \sum_{i} |\varphi_{i}(r)|^{2}$$

OF-DFT: $\tau_{\text{TF}}(r) = \alpha \rho^{5/3} + \frac{\beta}{4} \frac{(\nabla \rho)^{2}}{\rho}$
 $\left(-\frac{\hbar^{2}}{2m} \nabla^{2} + \frac{1}{\beta} \frac{\delta \mathcal{E}}{\delta \rho} + \frac{5\alpha}{3\beta} \frac{\hbar^{2}}{2m} \rho(r)^{2/3}\right) \sqrt{\rho(r)} = \frac{\mu}{\beta} \sqrt{\rho(r)} \rightarrow \rho_{\text{OF-DFT}}$
 $\rightarrow E = \int dr \left(\frac{\hbar^{2}}{2m} \tau[\rho(r)] + V(r)\rho(r)\right)$

(a) Nuclear System

$$V(r) = -\frac{V_0}{1 + \exp[(r - R_0)/a]}$$
$$V_0 = 50 \text{ MeV}, R_0 = 1.2 \text{ x } 16^{1/3} \text{ fm}, a = 0.65 \text{ fm}$$

neutrons only with N=8

 $e(1s_{1/2}) = -32.6$ MeV, $e(1p_{3/2}) = e(1p_{1/2}) = -16.8$ MeV

	E _{tot} (MeV)	Rms radius (fm)
exact	-142.27	2.575
OF-DFT ($\beta = 1/9$)	-140.85	2.500
OF-DFT ($\beta = 1/5$)	-135.19	2.562
OF-DFT ($\beta = 1$)	-96.31	3.12

	E _{tot} (MeV)	Rms radius (fm)
exact	-142.27	2.575
$\beta = 1/9$	-140.85	2.500
$\beta = 1/5$	-135.19	2.562
$\beta = 1$	-96.31	3.12

✓ the choice of β=1 is not good
✓ the choice of β=1/5 and 1/9 are both reasonable

 $E_{tot} \rightarrow \beta = 1/9$ is better $r \rightarrow \beta = 1/5$ is slightly better

(b) Coulomb systems

$$V(r) = -\frac{10e^2}{r}$$

10 electrons

e(1S) = -50.0 (Ha), (2P) = e(2S) = -12.5 (Ha)

	E _{tot} (Ha)	Rms radius (a.u.)
exact	-200.0	0.27
OF-DFT ($\beta = 1/9$)	-208.6	0.30
OF-DFT ($\beta = 1/5$)	-196.1	0.318
OF-DFT ($\beta = 1$)	-141.49	0.482

	E _{tot} (Ha)	Rms radius (a.u.)
exact	-200.0	0.27
OF-DFT ($\beta = 1/9$)	-208.6	0.30
OF-DFT ($\beta = 1/5$)	-196.1	0.318
OF-DFT ($\beta = 1$)	-141.49	0.482

- ✓ the choice of β=1 is not good
 ✓ the choice of β=1/5 and 1/9 are both reasonable
 - ▶ the dependence on β is mild← the long range int.
 - the tail problem appears only at very large r

nuclear systems \rightarrow a <u>saturation</u> property

(the density at the central part: not large) \rightarrow the tail problem is more relevant

G. Colo and K. Hagino, PTEP 2023, 103D01 (2023)

Remark 1: shell corrections?

(Extended) Thomas-Fermi: semi-classical approximation \rightarrow basically no shell effect

shell corrections?

OF-DFT + 1 more iteration with KS cf. O. Bohigas et al., PLB64, 381 (1976).

 $\begin{array}{ll} OF\text{-}DFT & \rightarrow \text{convergence: } \rho \\ & \rightarrow \text{solve KS-eq. only one time with this density} \end{array}$

the simplified Skyrme interaction (the t_0 and t_3 terms only)

$$v_{NN}(\boldsymbol{r},\boldsymbol{r}') = \left[t_0 + \frac{t_3}{6}\rho\left(\frac{\boldsymbol{r}+\boldsymbol{r}'}{2}\right)^{\alpha}\right]\delta(\boldsymbol{r}-\boldsymbol{r}')$$

$$\rightarrow E = \int d\boldsymbol{r} \left[\frac{\hbar^2}{2m} \tau(\boldsymbol{r}) + \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} \right]$$

(Z=N, no Coulomb)

parameters: Agrawal, Shlomo, Sanzhur, PRC67 (2003) 034314

shell corrections?

OF-DFT + 1 more iteration with KS

cf. O. Bohigas et al., PLB64, 381 (1976).

the simplified Skyrme interaction (the t_0 and t_3 terms only)

$$E = \int d\mathbf{r} \, \left[\frac{\hbar^2}{2m} \tau(\mathbf{r}) + \frac{3}{8} t_0 \rho(\mathbf{r})^2 + \frac{t_3}{16} \rho(\mathbf{r})^{\alpha+2} \right]$$

¹⁶ O	E _{tot} (MeV)	Rms radius (fm)
exact	-187.6	2.364
OF-DFT ($\beta = 1/9$)	-201.2	2.253
OF-DFT ($\beta = 1/5$)	-180.4	2.296
OF-DFT+corr. ($\beta = 1/9$)	-186.6	2.317
OF-DFT+corr. ($\beta = 1/5$)	-187.2	2.339

 $\beta = 1/9$ and 1/5 lead to similar results after the correction.

shell corrections?

Remark 2: a spin-orbit potential

an ls interaction: an important ingredient of nuclear magic numbers

$$V(r) + V_{ls}(r)l \cdot s$$

https://www.secretsofuniverse.in/magic-numbers-in-physics/

Remark 2: a spin-orbit potential

OF-DFT with spin-orbit

$$\epsilon_{ls} = -\frac{3}{4} W_0 \rho \boldsymbol{\nabla} \cdot \boldsymbol{J} \to -\frac{2m}{\hbar^2} \left(\frac{3}{4} W_0\right)^2 \rho(\boldsymbol{\nabla}\rho)^2$$

B. Grammaticos and A. Voros, Ann. of Phys. 129, 153 (1980).A. Bulgac et al., PRC97, 044313 (2018).

◆ A test with a simplified Skyrme functional

a standard value: $W_0 = 120-130 \text{ MeV fm}^5 \rightarrow \text{no convergence}$

a test with $W_0 = 50 \text{ MeV fm}^5$

¹⁶ O	E _{tot} (MeV)	Rms radius (fm)
exact (KS)	-187.99	2.362
OF-DFT ($\beta = 1/9$)	no convergence	no convergence
OF-DFT ($\beta = 1/5$)	-186.37	2.262

* a simple OF-DFT (without KS correction)

the spin-orbit interaction seems to restore shell effects to some extent K. Hagino and G. Colo, in preparation

- "Nuclear energy density functionals from machine learning" X.H. Wu, Z.X. Ren, and P.W. Zhao, PRC105, L031303 (2022).
- "Analysis of a Skyrme energy density functional with deep learning" N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

 "Nuclear energy density functionals from machine learning" X.H. Wu, Z.X. Ren, and P.W. Zhao, PRC105, L031303 (2022).

Kohn-Sham eq. with a single-particle random potential

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + v_{\text{rand}}(r)\right)\varphi_i(r) = \epsilon_i\varphi_i(r)$$

- ✓ systems: ⁴He, ¹⁶O, ⁴⁰Ca without Coulomb
- ✓ 30,000 (= 3 x 10,000) training sets → $E_{kin}[\rho_i]$ (see the right figure)

machine learning (Kernel Ridge Regression)

$$E_{\text{kin}}[\rho] = \sum_{m=1}^{30,000} w_i K(\rho_i, \rho)$$

$$K(\rho_i,\rho) = \exp\left[-||\rho_i(\mathbf{r}) - \rho(\mathbf{r})||^2/(2A_iA\sigma^2)\right]$$

 "Nuclear energy density functionals from machine learning" X.H. Wu, Z.X. Ren, and P.W. Zhao, PRC105, L031303 (2022).

machine learning (Kernel Ridge Regression)

$$E_{\mathsf{kin}}[\rho] = \sum_{m=1}^{30,000} w_i K(\rho_i, \rho) \qquad K(\rho_i, \rho) = \exp\left[-||\rho_i(\mathbf{r}) - \rho(\mathbf{r})||^2 / (2A_i A \sigma^2)\right]$$

a loss function to determine the hyper parameters

$$L(\boldsymbol{w}) = \sum_{i=1}^{m} (E_{\text{kin}}^{\text{ML}}[\rho_i] - E_{\text{kin}}[\rho_i])^2 + \lambda ||\boldsymbol{w}||^2$$

 σ , $\lambda \rightarrow$ minimization with 3,000 (=3x1,000) validation sets

✓ test sets: 3,000 (=3x1,000)

Test with $E[\rho] = E_{kin}^{ML}[\rho] + E_{int}[\rho]$ \rightarrow Skyrme functional (ρ -terms only) $\mathcal{E}_{\text{int}} = \frac{3}{8} t_0 \rho(\boldsymbol{r})^2 + \frac{t_3}{16} \rho(\boldsymbol{r})^{\alpha+2} + \frac{1}{64} (9t_1 - 5t_2 - 4t_2x_2) (\boldsymbol{\nabla}\rho(\boldsymbol{r}))^2$ $\rho_{n+1} = \rho_n - \epsilon \frac{\delta E_{\text{tot}}[\rho]}{\delta \rho}$ training with more nuclei 24 20 ······ Trial 6 $-150A^{-1/3}$ Density [fm⁻¹] ML 18 ⁴He - KS E_{kin}/A [MeV] $20A^{-1/3}$ 16 0 ΔE_{kin}/A [MeV] ETF 14 16_O Training 12 ML KS 20 40 60 80 100 120 n 10 20 40 60 80 120 0 100 8 2 6 0 Mass number r [fm]

 "Analysis of a Skyrme energy density functional with deep learning" N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

Towards a mapping from a full Skyrme EDF to OF-DFT

$$E_{\rm Sk} = E[\tau, \rho, \nabla \rho, \nabla^2 \rho, J]$$
$$E_{\rm pair} = E[\rho_{\rm pair}]$$

One needs to construct: $E_{\text{SkHFB}-\text{OFDFT}} = E[\rho]$ Deep Learning?

> Skyrme Kohn-Sham with random external potentials training $E=E_{sk} + E_{ext}(i) \rightarrow \{\rho_i, E_i,\} \rightarrow E[\rho]$

N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023) Editor's suggestion.

N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

A similar work for multi-electron systems:

K. Ryczko, D.A. Strubbe, and I. Tamblyn, PRA100, 022512 (2019).

 \rightarrow application to a nuclear system (Hizawa, Hagino, Yoshida)

 $E_{\text{int}} = E_{\text{Sk}}[\tau, \rho, J] + E[\rho_{\text{pair}}]$

red: nuclear systems

N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

Skyrme EDF + random external potentials

- 24 Mg with SLy4 + DDDI (BCS)
- axial symmetry, no Coulomb
- Kohn-Sham with 2D mesh

 $\rightarrow \rho_{ij} = \rho(r_i, z_j)$ *i*: 1-10, *j*: 1-20 \rightarrow 200 mesh points

• external potentials

 \checkmark an axial harmonic oscillator

 \checkmark a spatially random potential + smearing

$$\bigvee_{k}^{(\text{ext})} \rightarrow \{\rho^{(k)}, E_k\}$$

$$k = 1 - 250,000 \qquad \left[\begin{array}{c} 90\% \text{ for training data} \\ 10\% \text{ for test data} \end{array} \right]$$

N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023).

performance for the test data (the total binding energy)

 $E_{\rm DL}[\rho]$ which reproduced the original $E_{\rm KS}$ within 0.04 MeV

N. Hizawa, K. Hagino, and K. Yoshida, PRC108, 034311 (2023) Editor's suggestion.

HO external potentials: MAE = 0.0165 MeV MAE = 0.0105 MeV MAE = 0.0233 MeV (note) MAE for $E_{tot} = 0.0433 \text{ MeV}$ (RND), 0.0051 MeV (SHO)

* MEA = Mean Absolute Error

from external potential to p

Summary 1: conventional OF-DFT

- OF-DFT: reasonable approximation both for Coul. and Nucl. systems
 OF-DFT: simpler than KS. cf. an application to ¹⁸⁰⁰Sn
- ➢ OF-DFT + Extended Thomas-Fermi
 - ✓ reasonably good, but may have a problem in ρ (in the tail region)
 ✓ a prescription: to modify the coefficients in ETF
- > OF-DFT + 1 KS iteration
 - ✓ good both for E_{gs} and ρ
 - \checkmark weak dependence on the coefficients in ETF
- Spin-orbit interaction
 - \checkmark seems to restore (a part of) shell effects

Future challenges

full Skyrme functionaldeformation property

Summary 2: Machine/Deep learning for OF-DFT

- \succ Machine Learning for E_{kin}
 - \checkmark an accurate and a global (hopefully) functional
- Deep Learning for Skyrme functional
 - ✓ a mapping from $E_{sk}[\rho,\tau,J,\rho_{pair}]$ to $E_{OF-DFT}[\rho]$
 - ✓ { ρ_i , E_i ,} with random external fields
 - ✓ for ²⁴Mg with SLy4 → successful within 0.04 MeV

a promising tool

Future challenges

a global functional
deformation property (fission barrier,...)

