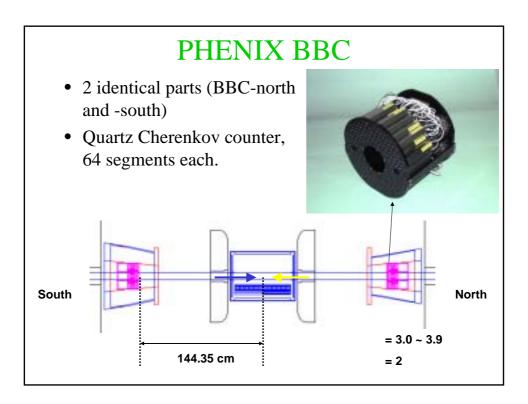
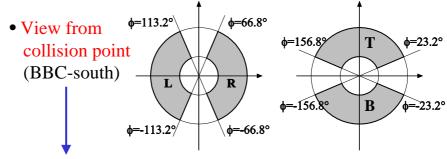
BBC asymmetry


K. Tanida (RIKEN) RSC meeting 12/20/02

Outline

- Introduction
- Event selection
- Bunch fitting method
- Results
- Discussion
- Summary and prospects

Introduction

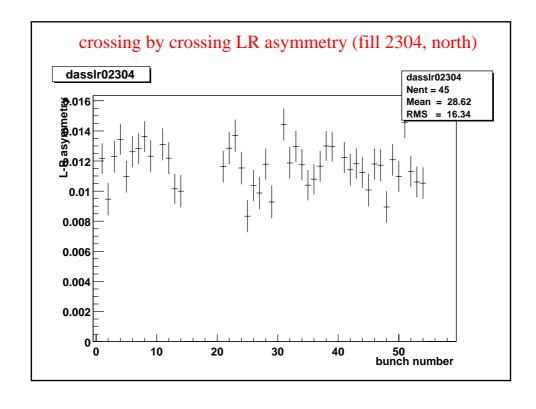

- FNAL E704: observed large single spin asymmetry (A_N) of pions in forward region with transversely polarized pp reaction at sqrt(s) = 20 GeV.
- BBC: most forward detector in PHENIX that can measure asymmetry.
 - \rightarrow Measure A_N of inclusive (charged) particles by BBC.
- STAR observed finite $A_N \sim 0.005$ in their preliminary analysis.

Event selection

- Data from 11 fills (2257, 2258, 2265, 2266, 2275, 2277, 2281, 2289, 2290, 2301, 2304) after 01/18/02 were analyzed.
 - earlier fills are severely contaminated by beam-gas backgrounds.
- Trigger: BBC LL1
- Beam gas contamination:
 - events in abort gaps $< 10^{-3}$ of normal bunch
 - three fills (2257, 2265, 2266) rejected
- Bad bunches:
 - unpol: 0, 20, 40
 - abort gaps: 15-19, 55-59other bad bunches: 10, 30

Definition of left-right

Flip left-right in BBC-north


- 66.8 deg \leftarrow maximize figure of merit (S²/N)
- Finite angle correction for cos dependence
 - -0.788

Inclusive and exclusive hit counting

- Left: n_L segments have hit Right: n_R segments
- Inclusive counting:

left: n_L counts, right n_R counts

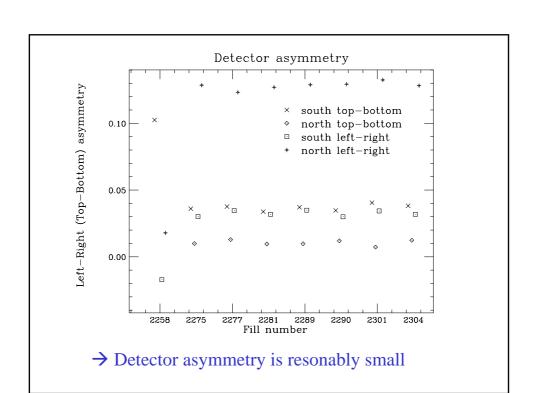
- sensitive for high-multiplicity events, e.g., jets.
- δN_L > sqrt(N_L) because # one particle can hit two segments # two particle correlation strong
- Exclusive counting: count one for left only if $n_I > 0$ and $n_R = 0$
 - favors low multiplicity events

Coupling of A_B and A_Y

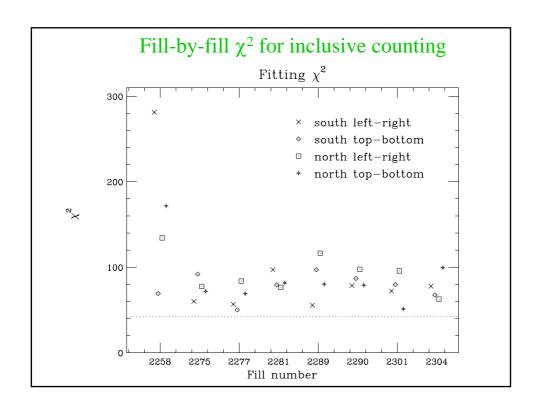
- *M* has off-diagonal elements (luminosity asymmetry)
 - \rightarrow A_B and A_Y couples
- Effects of off-diagonal elements (at leading order):

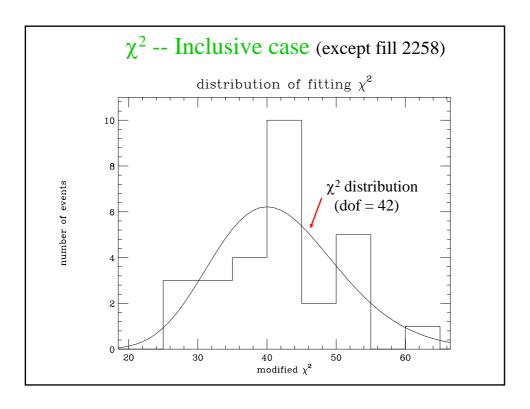
$$\begin{split} &\Delta D \sim -(A_{B} < P_{B} > + A_{Y} < P_{Y} >) / <1 > \\ &\Delta A_{B} \sim -(D < P_{B} > + A_{Y} < P_{B} P_{Y} >) / < P_{B}{}^{2} > \\ &\Delta A_{Y} \sim -(D < P_{Y} > + A_{B} < P_{B} P_{Y} >) / < P_{Y}{}^{2} > \end{split}$$

- second order
- sqrt formula does not cancel terms such as $A_R < P_R P_V >$
- MC simulations tell the fitting method gives correct answers, while the sqrt formula does not.

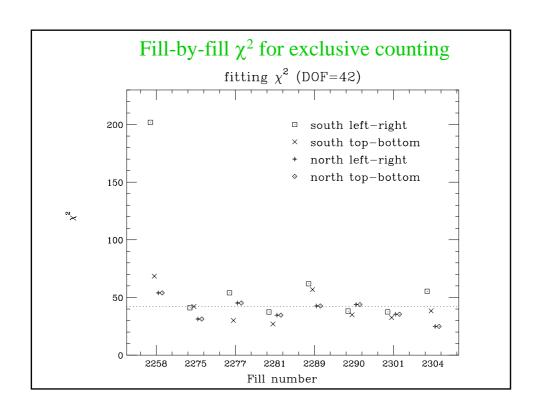

Statistical and systematic errors

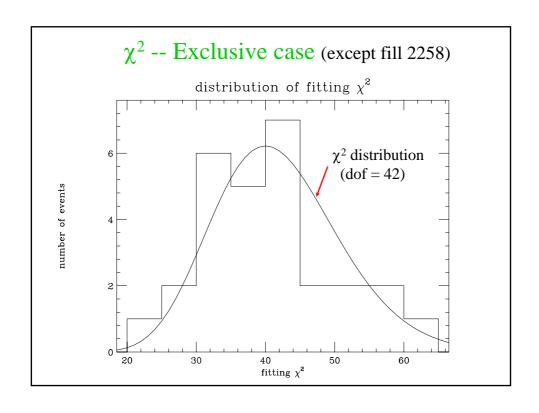
- If we neglect the off-diagonal elements of M, $\delta D = <1>^{-1/2}$, $\delta A_R = <P_R^2>^{-1/2}$, $\delta A_V = <P_V^2>^{-1/2}$
- sqrt formula gives approximately the same statistical error.
- Systematic effects: can be checked by fitting χ^2
- Bunch-by-bunch fluctuation of detector asymmetry.
 - independent gaussian of σ_d
 - \rightarrow D fluctuates by σ_d /sqrt(I) (I: number of bunches)
 - multiplying χ^2 /dof to fitting error gives approximately correct error estimation.
- Sqrt formula equally suffers from this effect, but it gives too small errors because χ^2 check and correction is impossible.

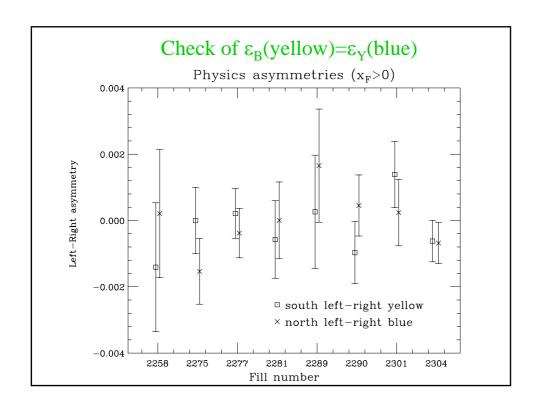

BBC analysis condition

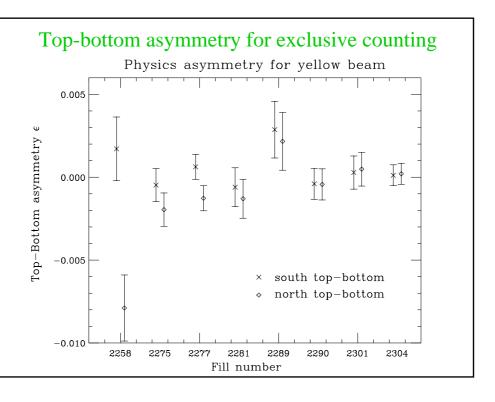

We used

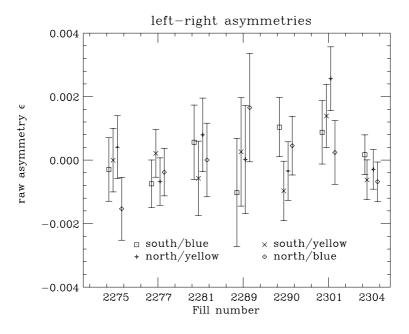
- Linear approximation.
 - very good approximation in this case.
- $P_R(i) = P_R S_R(i)$, $S_R(i) = +1$ (spin up) or -1 (down)
 - RHIC pol. doesn't give bunch-by-bunch polarization
 - average: P_B , $P_V \sim 0.2$
- Fitting parameter: $\varepsilon_B = A_B P_B$ instead of A_B
 - → avoid polarization measurement error




- 1. $\chi^2/dof(=42)$ should be near to 1
- All inclusive counting data are rejected
 - probably because δa_{LR} was too small
 - multiplying δa_{LR} by 1.37 makes χ^2 distribution reasonable (except for fill 2258).




- 1. $\chi^2/dof(=42)$ should be near to 1
- All inclusive counting data are rejected
 - probably because δa_{LR} was too small
 - multiplying δa_{LR} by 1.37 makes χ^2 distribution reasonable (except for fill 2258).
- only one bad fill (2258) for exclusive counting
 - χ^2 distribution -- OK for the other fills
 - → use only exclusive counting data hereafter


- 1. $\chi^2/dof(=42)$ should be near to 1
- All inclusive counting data are rejected
 - probably because δa_{LR} was too small
 - multiplying δa_{LR} by 1.37 makes χ^2 distribution reasonable (except for fill 2258).
- only one bad fill (2258) for exclusive counting
 - χ^2 distribution -- OK for the other fills
 - → use only exclusive counting data hereafter
- 2. $A_{y}(north) = A_{R}(south)$ and vice versa
- 3. Parity-violating top-bottom asymmetry should be 0

- 1. $\chi^2/dof(=42)$ should be near to 1
- All inclusive counting data are rejected
 - probably because δa_{LR} was too small
 - multiplying δa_{LR} by 1.37 makes χ^2 distribution reasonable (except for fill 2258).
- Only one bad fill (2258) for exclusive counting
 - χ^2 distribution -- OK for the other fills
 - → use only exclusive counting data hereafter
- 2. $A_{y}(north) = A_{R}(south)$ and vice versa
- 3. Parity-violating top-bottom asymmetry should be 0
 - OK within 3σ for exclusive data except fill 2258.
 - → fill 2258 is discarded.

Results

Averaged asymmetry

- Divide ε by raw asymmetry of RHIC pol.
 - \rightarrow A/A^{CNI} (A^{CNI}: effective analyzing power of RHIC pol.)

$$\begin{array}{cccccc} & A_B/A_B^{\,\rm CNI} & A_Y/A_Y^{\,\rm CNI} \\ \text{South LR} & 0.15 +- 0.22 & -0.09 +- 0.17 \\ & \text{TB} & -0.22 +- 0.23 & 0.06 +- 0.17 \\ \text{North LR} & -0.11 +- 0.22 & 0.06 +- 0.17 \\ & \text{TB} & -0.19 +- 0.23 & -0.16 +- 0.17 \end{array}$$

• Errors are statistical only, but include statistical error in polarization measurement.

Analyzing power

• Assume $A_B^{CNI} = A_Y^{CNI} = 0.0132$

- Errors are statistical only, but include statistical error in polarization measurement.
- Systematic error in polarization measurement does not affect the significance of the asymmetry.

Systematic errors

- polarization measurement error:
 - unknown yet, but does not change $A/\delta A$.
 - ε is free from this. So, we show both A and ε .
- bunch-by-bunch polarization fluctuation:
 - effect is negligibly small for $A \sim 0$.
- Other systematic errors:
 - no evidence seen $(\chi^2/\text{dof} \sim 1)$
 - probably negligible compared to statistical error.
 - → We don't assign any systematic error other than coming from polarization measurement.

Comparison with sqrt formula

- In the present case, bunch fitting method gave the same result as sqrt formula down to O(10⁻⁵)
- Systematic deviation of sqrt formula
 - $-\Delta A_{\rm B} \sim A_{\rm Y} < P_{\rm B} P_{\rm Y} > / < P_{\rm B}^2 >$
 - $A_{\rm V} \sim 10^{-3}$
 - $<P_{\rm R}P_{\rm Y}>/<P_{\rm R}^2> \sim 10^{-2}$
 - $\rightarrow \Delta A_{\rm B} \sim 10^{-5}$: small enough
- Systematic deviation of linear approximation.
 - $\Delta A_B/A_B$: D($A_BP_B+A_YP_Y$) ~ 10⁻⁴ i.e., ΔA_B ~ 10⁻³ x 10⁻⁴ = 10⁻⁷
 - → negligible

Discussion

- Our results are consistent with zero.
- E704 result
 - π^+ and π^- have opposite sign of A_N .
 - → cancellation in BBC measurement
 - asymmetry is seen at large x_f
 - <=> BBC can not measure x_f, probably small x_f events dominate
 - → not inconsistent with E704 result.
- STAR preliminary result: $\varepsilon \sim 0.001 \ (A_N \sim 0.005)$
 - pseudorapidity is larger (PHENIX: $3.0 < \eta < 3.9$, STAR $3.4 < \eta < 5.0$)

Summary and prospects

- A_N of inclusive charged particles in a forward region was studied with PHENIX BBC.
- A new method to calculate physics asymmetries was used.
- We saw no evidence of systematic error.
- Results were consistent with zero.
- Analysis is still ongoing for various conditions, e.g.,
 - select inner segments of BBC (most forward region)
 - event selection (e.g., ZDC coincidence -- in relation with LocalPol results)
 - Photon (π^0) selection using ADC information.