

Available X-ray energies at the SPring-8 Beamlines

SPring. 8

5

SPring-8でのX線ビームの特徴と測定条件

- 数keV ~ 数100keVの範囲で10¹¹ ~ 10¹³Xrays/sec以上の強度のビームが得られる
- 回折・散乱実験では、一般的に強い反射強度から微弱 な反射に至る広いダイナミックレンジでの係数率の測定 が要求される
- 単一素子の検出器が10⁶Xrays/sec以上の強度を受けることが要求される事がある
- 基本的にX線のみのself trigger modeでの測定になり、
 シンプルがゆえに過酷な環境での計測は一般的に困難

- 高速時間分割測定 (m秒、µ秒オーダー)
- エネルギー分解能を有する2次元検出器開発

Position Sensitive Detectors developed by Detector Team

SPring.

MCCDX

YAP

Pixel

MSGC

nStrip-Ge

n§trip

Multiple CCD X-ray Detector

- 理研構造生物学 ビームライン (BL45XU)における蛋白質結晶解析実験ステーション
- 蛋白質回折画像の高速読出し
- 主たる仕様

SPring 8

- X線蛍光スクリーン: 200mm×200mm
- FOT+CCDモジュール:[4×4]2次元配列
- 画素数総数:4608×4968
- 画像縮小率:25%
- 冷却温度:0
- 検出器パラメーターの精査と評価
 - 画像歪、検出感度の一様性、多重 X線画像の統 合及び整合

• CCD型X線検出器の導入に関する指針の確立

Two-dimensional MicroStrip Gas Chamber

- 理研構造生物学 ビームライン (BL45XU)におけるX線小角散乱実験ステーション
- 実時間 /線画像検出装置
- 主たる性能

- 有効検出面積:102.4mm × 102.4mm
- 電極構造
 - キャビラリープレート
 - 陽極/陰極/背面にマイクロストリップ
 各512本、200ミクロンピッチ
- 充填ガス:キセノン+エタン混合ガス
- 位置分解能:10 ミクロン
- 検出効率約10%@12keV
- データ収集系:WME+CPLD(10MHz)
- 実用段階
 - 筋肉及び蛋白質構造解析実験
 - 結晶構造解析

A High Energy X-ray Imager (YAP imager) with a [128x128] matrix of YAlO₃:Ce crystals

Katsuya Hirota, Hidenori Toyokawa, Masayo Suzuki, Togo Kudo SPring-8

SPring.

Masaharu Nomachi, YorihiroSugaya Osaka University

> Masaru Yosoi kyoto University

Alexander Gorin, Igor Manouilov, Andrei Riazantsuev IHEP,Russia

> Kei-ichi kuroda CERN

Mechanism of YAP Imager

YAP: YAIO3:Ce High density: 5.37 g/cm³ Fast decay time: 25 nsec High light yield: 40% relative to NaI(Tl) High attenuation: 80% (100keV X-ray)

Excellent properties for high energy X-ray detection!

The size of each YAP crystal is 1x1x 6 mm³. Aluminized Mylars are inserted between the crystal elements for optical isolation. The scintillating photos are divided into top and bottom sides, and propagated into wavelength-shifting fibers, then transported to photo-multiplier.

Basic idea is upon a prototype of a 16 x 16 matrix with CsI developed by Dr. Kuroda group at CERN. K. Kuroda *et al.*, NIM A430(1999)311

4 × 4 Multi-anode Photomultiplier

Hamamatsu H6568Mod

SPring.

12 stage $4 \times 4 \text{ mm}^2$
420 nm
3.3×10^{6}
1:3
1%

This phototube has not only 16 anode signal output, but also one common dynode signal out.

High energy X-ray diffraction of crystal and liquid Zn

- We measured a transition from crystal Zn to liquid Zn and inverse transition at BL04B2(Bending BL).
- X-ray energy was 113.4 keV
- Sample was Zn powder

- Zn was stuffed in a glassy carbon cell, and headed up to 550 degree Celsius.
- Melting point of Zn is 419.47 deg. C.
- YAP imager was placed about 60 cm from the sample.
- The covered scattering angles of 2q are about 0.2 ~ 10 degree (scattering vector of Q = 0.2 ~ 10 Angstrom⁻¹).
- 2q resolution is about 0.1 degree with one pixel.

Transition from crystal to liquid Zn

SPring 8

(436.0 deg.)

(439.3 deg.)

419.47 deg.?

(436.7 deg.)

(438.6 deg.)

(440.5 deg.)

Transition from liquid to solid Zn

SPring 8

(441.0 deg.)

(427.3 deg.)

(428.7 deg.)

(426.3 deg.)

(428.1 deg.)

(56.8 deg.)

20

A 128-channel Microstrip Germanium Detector for Compton Scattering Experiments

M. Suzuki, H. Toyokawa, M. Itou, Y. Sakurai, N. Hiraoka SPring-8

SPring

A. Koizumi, N. Sakai Univesity of Hyogo

Schematic of Microstrip Germanium Detector

VA32c+TA32cg Mounted on 128 channel Microstrip Germanium Detector

High Resolution Compton Scattering Spectrometer

SLSとの国際協力によるピクセル検出器

豊川秀訓, 鈴木昌世 JASRI Detector Team, SPring-8, Japan

Ch. Brönnimann, E.F. Eikenberry, B. Henrich, B. Schmitt, G. Hülsen, R. Dinapli, M. Naef, H. Rickert *SLS Detector Group, Villigen-PSI, Switzerland*

R. Horisberger, S. Streuli, et. al. High Energy Physics Detector Group, Villigen-PSI, Switzerland

Principle of pixel detectors in hybrid design

- Pixel detector consists of a monolithic silicon sensor bump-bonded to CMOS readout chips.
- •Due to the small size of the pixels and the interconnection bumps, the capacitance per pixel is very low (~ 100 fF), which permits low power, low noise amplifiers.

SPring 8-

SLS06 pixel chip with single photon counting electronics

Pixel:

- Low noise analog block (ENC tot = 70 e⁻)
- Shaping time t_{sh} ~ 5 μs
- 15 bit pseudo random counter
- Individual threshold adjustment

Chip:

- Radiation tolerant DMILL technology
- \bullet 44 x 78 pixels, 217 x 217 $\mu m2$
- pixels are XY-addressable
- The analog output can be monitored
- Read-out time of the whole chip:

6.7 ms (at 10 MHz)

•Low threshold variation

Things to improve:

- 4.3 % defective pixels
- Digital part too slow (<10kHz/ pixel)
- Delicate biasing of the preamp

Single Module Detector @ SPring-8

PIXEL:

SPring.

 $217 \times 217 \,\mu\text{m}^2$ Preamplifier and shaper Threshold discriminator with 4-bit trim 15-bit counter

CHIP:

CMOS 0.8 µm DMILL rad-hard Designed at PSI 44 × 78 pixels, 9.9 × 18.3 mm2 Read out at 10 MHz

MODULE:

Fully depleted diode array $81 \times 36.6 \text{ mm}2 \times 300 \text{ }\mu\text{m}, 57,462 \text{ pixels}$ Indium bump-bonded to 16 chips Chips read out in parallel (6.7 ms)

PILATUS Module Type II (readout electronics bended)

- Flexprint 6/2 from Dyconex
- Modules can be overlapped
- 80 x 35 mm² continuous sensitive area
- 2 x 8 readout chips
- Power consumption: 7V/1.5 A -> 10.5 W
- Fabrication of 21 Modules: Mai 03- Sept 03

PILATUS 1M Detector (Nov 2003)

- Largest pixel detector array for SR
- 6 banks a 3 modules, 1120 x 967 pixels
- Area: 21 x 24 cm²

- 288 chips->~300x10⁶ transistors
- Readout time: 6.7ms
- up to 10 frames/ s (soon)
- Active area: 85%

Test measurements of weak super lattice diffraction with the pixel detector at the SPRing-8 BL46XU

Incident X-ray:18keV

Sample :[(GaAs)7/(AlAs)3] × 100

Pilatus-I(SLS06) (SLS08) Pilatus-II

	SLS06	Pilatus-II
Process	DMILL Rad. Hard. 0.8µm	UMC Rad. Hard. 0.25µm
Pixel size	217µm x 217 µm	172μm x 172 μm
N of PIxel	44 x 78	60 x 97
Analogue amp-out shape	~ 5 µs	< 100 ns
Threshold adjustment	4 bit DAC	6 bit DAC
Counter	15 bit pseudo-random	20 bit bainary
Digital clock	10 MHz	100 MHz
Readout time	6.7 ms	2.4 ms
Yield of chip / wafer	~ 30 %	?
Defect pixel / good chip	~ 5 %	?

Comparison PILATUS I – PILATUS II Chip

Calibrate Readback PILATUS I (3432 pixels, 5% defects)

SPring. 8

Calibrate Readback PILATUS II (Vcal= 0.5V, 5820 pixels, 0 defects)

Micro-strip detector system

Silicon sensor with 1280 strips 8 mm long, 50 µm pitch, 300 µm thick

Read out chip:

SPring.

128 channels low noise preamp: noise: 230 e⁻ 18 bit counter Readout Time: 250 μs Count rate: 1 Mhz per channel

High-resolution energy resolving imaging system using CCD camera ~ X-ray color imaging ~

Keywords:

x-ray fluorescence (XRF) imaging microscope, single photon counting with CCD camera.

Akihisa Takeuchi JASRI / SPring-8, Japan

X-ray fluorescence (XRF) microimaging systems

Single photon counting method of CCD camera

Image acquisition:

Energy analysis:

= elemental mapping imaging

Only when one or less photon is incident to a pixel, photon energy can be analyzed with CCD camera. (Single photon counting measurement) n [electrons] = $\frac{E [eV]}{3.65}$ E (eV) : photon energy n: number of electrons Energy resolution: ~150 eV.

Experimental conditions:

Exposure condition: ~10⁻¹ photons / pixel.

<u> $10^2 - 10^3$ images</u> for an elemental mapping image with reasonable quality.

Only the pixels which satisfy the single event condition are chosen.

Problem of photon counting measurement

Long measurement time = Low duty rate

Low frame rate = long readout time (3-4 sec/frame). Low counting rate (long exposure) = slow shutter speed

e.g. XRF photon counting imaging experiment of Cu mesh and Fe foil •Total time for measurement: <u>~1400sec</u>.
Genuine exposure time: 1sec × 300 = <u>300 sec</u> <u>~1100 sec wasting time due to the readout time (3-4 sec × 300).</u>

> Intensity of the incident x-ray : detuned to ~1/20 of full power (ID detune) because short exposure is not available due to the slow shutter speed (about 0.5-1 sec needed for operational stability) count rate cannot be so high.

If these problems were solved,

required acquisition time (with full power x-ray) would be only 10 sec order.

Photon counting の限界を超えた強度測定

Dispersive XAFS を例に

高輝度放射光を用いた XAFS法

(財)高輝度光科学研究センター宇留賀朋哉2005.4.6

透過法 XAFSの 測定

 目的元素の吸収端 (K端、L端)の近傍で X線のエネルギーを変えながら 入射X線強度 10と透過X線強度 11を測定

BL01B1の外観図

X線の吸収スペクHレ

I1=I0exp(-μt)
 μ:試料の吸収係数
 t: 試料の厚さ

μt=-ln(l1/l0)の変化 X線吸収スペクトレ

- Cu K端 (8.984 keV)
- Sample: Cu foil

Cu K-edge XAFS
透過法

XAFS (ザフス)とは?

- X-ray Absorption Fine Structure X線吸収スペクトレの微細構造
- 吸収端から離れた領域 (50-1500 eV)
 EXAFS (イグザフス)

 吸収端の近傍 (-50-50 eV) XANES <u>(ゼーンズ、ザ</u>ーネ

EXAFSから得られる情報

- 目的原子の周リの局所構造
 - 原子間距離
 - 配位数
 - (近接原子種)
 - モデル構造の判定
- 振動因子
- 留意点
 - これらの全てについて情報が得られる訳ではない
 - 多くの場合、第一近接の原子についての情報のみ

XANESから得られる情報

- 目的元素の電子状態
 - 価数
 - (近接原子種)
- 複数の化学種の組成比
- 局所構造
 - 多重散乱計算第一原理計算

XAFSの 測定 方法の 色々

- 基本的な測定手法
 - 透過法
 - ■X線吸収量を直接測定
 - 原理的に補正不要

- 透過法で測定できない系
 (薄膜試料、希薄試料など)
 - 蛍光法
 - 電子収量法

原則
 ■ 透過法で測定できる試料は、
 透過法で測定

Fe K-edge XAFS by Hou et al.
 1 wt% Fe₃O₄ / polycarbon

Ge-SSDによる蛍光法XAFS

■ 特徴

- エネルギー分解能をもつ
 一光子計測
 より蛍光強度の
 微弱な系に適用
- 取り扱いは簡便でない

 GeSbTe薄膜からの 蛍光X線と散乱X線

高輝度光科学研究センター 加藤和男

Target of XAFS beamline at SPring-8

BL01B1	BM	3.8-113 keV	Wide energy range	Conventional XAFS
		10*0.2 mm	High energy resolution	Thin/dilute sample
BL19B2	BM	4.5-113 keV	XAFS, Diffraction	Multipurpose BL
		10*0.2 mm	Topography	for industrial use
BL28B2	BM	5-40 keV	White beam	<u>Time resolved XAFS</u>
			Energy-dispersive	
BL37XU	U	5-37 keV	High photon density	Site-specific XAFS
			Low divergence	Ultra thin/dilute sample
BL39XU	U	5-37 keV	Polarized beam	Polarized XAFS (XMCD)
		2*1 mm		

Design goal of DXAFS station

Energy range	5-40 keV
photon flux	109-1011 photons/sec
Energy resolution E/E	2 × 10 ⁻⁴
Focused beam size	
vertical (FWHM)	< 0.2mm
horizontal (FWHM)	< 0.2mm
Raito of higher harmonics contaminant to first harmonic	<10-4
Minimum time resolution	tens of milliseconds
入射光flux :10 ⁹ -10 ¹¹ photons/s PSDチャンネル数 :10 ³ として 10 ⁶ × 10 ³ /(10 ⁹ -10 ¹¹) = 10 ⁰ -10 ⁻² se	ec

Position Sensitive Detector (PSD)

Specification of the CCD

CCD-type	浜松ホトニクス	C4880-80-24	
pixel size	9.9 x 9.9µm		
dimensions	494(V) x 656(H) pixel		
read out time 36msec / Full Flame ~ 6ms / subarray (70(V) × 656(F			

Pdホイル(Pd K端 24.3keV)のCCD透過像

Dispersive XAFS (BL28B2)との比較

■ エネルギー分解能 QXAFS: 高分解能

■ 時間分解能 QXAFS: 1~2桁遅い

- Pd K端XAFS @24.3 keV
 - 試料 Pd箔
 - QXAFS: Si(111)
 - DXAFS: Si(422)

■ QXAFS: 蛍光法に利用

現状の検出器の利点・問題点

利点

·高空間分解能

・リアルタイムで光学調整ができる ・窒素冷却が不要など使用勝手が いい。

問題点

・検出効率(が悪い、低い)

比較的変換効率がよいGd₂O₂S:Tbで1/3程度

(25keV付近)

・視野が狭い。

測定できるエネルギー領域が

素子サイズ (W)~6.5mm

蛍光体の大きさ: 13mm

・Gd₂O₂S:Tbの場合、蛍光の消滅(減衰?)時間が3ms 程度であるため、これ以上の高時間分解能測定できない。

消滅時間が短い蛍光体の場合は検出効率が低下する 可能性がある。

・エネルギー分解能を持っていない

- MSGC, YAP Imagerは、X,Y方向へのプロジェクションの同時計測により位置を決める為にSPring-8のような大強度X線下では利用に制限がある
 - ピクセル毎に独立した回路を有する形式が望ましい SLSとの国際協力
- Microstrip-Ge検出器は、古いタイプのASIC (DE社VA32cg-TA32)を用いている為に処理能力が遅い
- CCD検出器を用いたcolor imagingは許容強度、読み出し速度
 共に課題がある

エネルギー計測型ASICを搭載したピクセル検出器の開発

- DXAFSのような高強度下での測定
- Charge integration type ASIC搭載検出器の開発