Neutron Stars as a Laboratory for the Nuclear Symmetry Energy

Andrew W. Steiner
Institute for Nuclear Theory
University of Washington (Seattle)

HST observation of 4U1820

January 28, 2012

With: Edward F. Brown (Michigan State Univ.), Stefano Gandolfi (Los Alamos), James M. Lattimer (Stony Brook Univ.)

Outline

- Fundamental questions about neutron stars
 - What are their masses and radii?
 - What are they made of?
 - These fundamental neutron star questions are connected to fundamental nuclear physics questions. What is the nuclear symmetry energy?
- Mass, radius, and the equation of state
- Neutron star composition and the QCD phase diagram
- Nuclear symmetry energy and lead radii
- Accreting neutron stars and X-ray bursts
- Results on Masses, Radii, and the EOS
- Constraints on the Symmetry Energy from Neutron Stars
- How the Symmetry Energy Affects Deep Crustal Heating

M vs. R and the EOS of Dense Matter

As of 5 years ago:

- Accurate mass measurements from double pulsars (e.g. Hulse-Taylor pulsar)
- · Limited radius information for a few sources (e.g. Rutledge et al.)
- · A few limited constraints from pulsar spins and pulsar glitches

Now:

- 10-15 percent measurements of M and R for the same object
- A 2 solar mass neutron star (Demorest et al. 2010)

A NEUTRON STAR: SURFACE and INTERIOR CRUST: CORE: Homogeneous Neutron Matter Superfluid **ATMOSPHERE ENVELOPE** CRUST **OUTER CORE** INNER CORE Magneti field Polar cap Cone of open magnetic **Neutron Superfluid** Neutron Superfluid 4 **Neutron Vortex** Proton Superconductor **Neutron Vortex** Magnetic Flux Tube

Neutron Star Composition

- Crust is a lattice of neutron-rich nuclei
- Composition of the crust depends on the history
- Outer core is homogeneous nucleonic matter
- Inner core may contain phase transitions:

$$[\Lambda,\Sigma,\Xi],[\pi,K],[u,d,s]$$

Figure by Dany Page

The QCD Phase Diagram

Rüster, et al. (2005)

- Neutron stars probe the high-density, low-temperature part of the QCD phase diagram
- . This region is otherwise inaccessible from theory or experiment

The Nuclear Symmetry Energy

- . The symmetry energy is the energy cost to create an isospin asymmetry
- . The origin of the 'valley of stability'
- . One of the largest uncertainties in the nucleon-nucleon interaction
- . S is the value at the nuclear saturation density $S = S(n_0)$
- . L is the derivative, $L=3n_0S'(n_0)$

Connections to the Symmetry Energy

Connections to the Symmetry Energy

Symmetry Energy in Intermediate-Energy Heavy Ion Collisions

- Determinations of the symmetry energy in heavy-ion collisions have shown much promise
- Much work is focused on determining the derivative, L
- Growing evidence that L is small, but some results suggest otherwise
- One of the principal difficulties seems to lie in the understanding of the systematic uncertainties in the models which connect observables to L
- Frontiers(?)
 - Observables which are easier to interpret
 - Probe higher density, where there is more uncertainty
 - Calibrating current models (chiral effective theory?!)
 - Syntheses of data from heavy-ion collisions, low-temperature observables, and astrophysical observables

The Neutron Skin Thickness of Lead

- Nuclei like Pb have N > Z, and thus $R_n > R_p$
- The quantity $R_n R_p$ is related to L as are neutron star radii
- PREX measured $R_n R_p$

Jefferson Lab's Hall A

Steiner et al. (2005), based on Horowitz and Piekarewicz (2001)

Connection to nuclear three-body forces

- \cdot Red = no three-body
- Blue, Green = adjusted three-body interactions
- Black = Urbana IX
- Strong correlation between S and L

- Gandolfi et al. (2012)
- Build up a many-body system from effective two- and three-body nucleon-nucleon interactions
- Three-body forces are also related to neutron star radii
- $E = a \left(\frac{n}{n_0} \right)^{\alpha} + b \left(\frac{n}{n_0} \right)^{\beta}$ is a convenient parameterization

Accreting Neutron Stars: LMXBs

- From a main-sequence (normal) star or a white dwarf
- Overflowing the Roche lobe
- Most often accrete a mix of hydrogen and helium, sometimes heavier elements
- At high enough density, light elements are unstable to thermonuclear explosions

Mass Measurements and QLMXBs

- . Mass measurements: Demorest et al. (2010) find a neutron stars with mass $1.97 \pm 0.04~{
 m M}_{\odot}$
- Quiescent LMXBs in globular clusters:
 - . H atmosphere
 - Known distance
 - Small magnetic field
 - . Measure radius:

$$F \propto T_{
m eff}^4 igg(rac{R_\infty}{D}igg)^2$$

[i.e. Rutledge et al. (1999)]

Photospheric Radius Expansion Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2}\,\sqrt{1-2eta(r_{\,ph})}$$

Normalization during the tail of the burst:

$$A\equivrac{F_{\infty}}{\sigma T_{bb,\infty}^4}=f_c^{-4}igg(rac{R}{D}igg)^2(1-2eta)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Photospheric Radius Expansion Bursts

- X-ray bursts sufficiently strong to blow off the outer layers - radiate at the Eddington limit
- Flux peaks, then temperature reaches a maximum, "touchdown"

$$F_{TD} = rac{GMc}{\kappa D^2}\,\sqrt{1-2eta(r_{\,ph})}$$

Normalization during the tail of the burst:

$$A \equiv rac{F_{\infty}}{\sigma T_{bb,\infty}^4} = f_c^{-4} igg(rac{R}{D}igg)^2 (1-2eta)^{-1}$$

- If we have the distance, two constraints for mass and radius
- Dimensionless parameter

$$lpha \equiv rac{F_{TD} \kappa D}{\sqrt{A} \, c^3 f_c^2}$$

Statistical Approach

- Well-suited to this underconstrained problem: 7-8 EOS parameters, 7-8 data points
- Bayes theorem:

$$P[\mathcal{M}_i|D] = \frac{P[D|\mathcal{M}_i]P[M_i]}{\sum_{j}P[D|\mathcal{M}_j]P[\mathcal{M}_j]}$$

- Different prior distributions produce different results
- Conditional probability is provided by the data

$$P[D|\mathcal{M}] = \prod_{i \in n_{ ext{datasets}}} \mathcal{D}_i(M,R)|_{M=M_i,R=R(M_i)}$$

the analog of the likelihood function

In Bayesian analysis, marginal estimation is often employed:

$$P[p_j|D](p_j) = rac{1}{V} \int dp_1 \dots dp_{j-1} dp_{j+1} \dots dp_{N(p)} P[M|D]$$

Mass and Radius Results

- Choose the largest range which encloses several choices in model assumptions and prior distributions
- Range of radii for a 1.4 solar mass star: 10.4 and 12.9 km

EOS results

Steiner, Lattimer, and Brown, in prep.

- $P(\varepsilon)$ determined to within 30-50%
- $P(n_B)$ determined to within a factor of 3
- Neutron skin thickness of lead $\delta R < 0.20~\mathrm{fm}$

Constraints on three-body force parameters

- Values of a and α are unconstrained, but constraints on b and β
- This means that neutron star radii are constraining nuclear three-body forces

Symmetry Energy Results

• Strong constraints on the derivative of the symmetry energy

· Almost no constraint on S

Steiner and Gandolfi (2012)

Accreted Neutron Star Crusts

- In a cold neutron star, surface is usually taken to be \sim ⁵⁶Fe
- Nuclei become larger and more neutron rich with increasing density
- Accretion luminosity (~ 200 MeV) outshines nuclear processes
- H and He is accreted and becomes unstable X-ray burst
- X-ray burst ashes undergo nuclear reactions as they are driven towards higher densities: deep crustal heating

Nuclear Reactions and a Multicomponent model

- Electron captures, neutron emissions, and pycnonuclear fusions
- · Electron capture is often immediately followed by neutron emission
- Steiner (2012) is the first multi-component model of the accreted crust
- Use quasi-statistical equilibrium instead of a full reaction network
- The multi-component model is important because it resolves reaction pathways that are impossible in single-component model
- 2 ⁴⁰Mg nuclei 2 ²²C nuclei and 36 neutrons -
 - 1 ⁴⁴Mg nucleus and 36 neutrons 1 ⁴⁴Mg nucleus and 40 neutrons

Symmetry Energy and Deep Crustal Heating

- Nuclear symmetry energy is important in determining the amount of deep crustal heating!
- Nuclear masses of neutron rich nuclei are determined by the symmetry energy
- Use a liquid droplet model matches experimental masses within 1.2 MeV yet based on nucleon-nucleon interactions with different symmetry energies
- Skyrme models SLy4 and Gs
- Begin with an initial composition of X-ray burst ashes
- Find that SLy4 gives 2.4 MeV per nucleon while Gs gives 4.8 MeV per nucleon

Summary

- Current mass and radius measurements, modulo some systematic uncertainties, can quantitatively constrain the equation of state
- Several currently used EOSs are ruled out
- Current results imply all neutron stars have radii between 10.4 and 12.9 km
- That the neutron skin thickness of lead is less than 0.2 fm and that L is 45-55 MeV
- Symmetry energy can also affect the amount of heating in accreting neutron star crusts

Other Things to Ask Me About

- How the Carbon fusion rate can be modified to explain X-ray superbursts on accreting neutron stars
- How Bayesian MCMC can be applied to fitting nuclear structure data
- How magnetars (highly magnetized neutron stars) are giving us more information about neutron star crusts