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Outline

. Fundamental questions about neutron stars

- What are their masses and radii?

- What are they made of?

- These fundamental neutron star questions are connected
to fundamental nuclear physics questions.
What is the nuclear symmetry energy?

. Mass, radius, and the equation of state

. Neutron star composition and the QCD phase diagram
. Nuclear symmetry energy and lead radii

. Accreting neutron stars and X-ray bursts

. Results on Masses, Radii, and the EOS
. Constraints on the Symmetry Energy from Neutron Stars

. How the Symmetry Energy Affects Deep Crustal Heating



M vs. R and the EOS of Dense Matter
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As of 5 years ago:
. Accurate mass measurements from double pulsars (e.g. Hulse-Taylor pulsar)
. Limited radius information for a few sources (e.g. Rutledge et al.)
. A few limited constraints from pulsar spins and pulsar glitches

Now:

. 10-15 percent measurements of M and R for the same object
. A 2 solar mass neutron star (Demorest et al. 2010)
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Neutron Star
Composition

. Crust 1s a lattice of

neutron-rich nuclei

. Composition of the crust

depends on the history

. Outer core is homogeneous

nucleonic matter

. Inner core may contain

phase transitions:
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The QCD Phase Diagram
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. Neutron stars probe the high-density, low-temperature part of
the QCD phase diagram

. This region 1s otherwise 1naccessible from theory or experiment



The Nuclear Symmetry Energy
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. The symmetry energy 1s the energy cost to create an 1sospin asymmetry
. The origin of the 'valley of stability'
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. One of the largest uncertainties in the nucleon-nucleon interaction
. S is the value at the nuclear saturation density S = S(n)

. Lis the derivative, L = 3n¢S’(ng)
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Connections to the Symmetry Energy
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Connections to the Symmetry Energy
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Symmetry Energy in Intermediate-Energy Heavy Ion Collisions

. Determinations of the symmetry energy in heavy-ion collisions have shown much
promise

. Much work 1s focused on determining the derivative, L

. Growing evidence that L is small, but some results suggest otherwise

. One of the principal difficulties seems to lie in the understanding of the systematic
uncertainties in the models which connect observables to L

. Frontiers(?)

» Observables which are easier to interpret

» Probe higher density, where there i1s more uncertainty

» Calibrating current models (chiral effective theory?!)

- Syntheses of data from heavy-ion collisions, low-temperature observables, and astrophysical
observables



The Neutron Skin Thickness of Lead

- Nuclei like Pb have N > Z,and thus R, > R,
- The quantity R,, — R, is related to L as are neutron star radii
- PREX measured R,, — R,
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Connection to nuclear three-body forces
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Gandolfi et al. (2012)

. Build up a many-body system from effective two- and
three-body nucleon-nucleon interactions
. Three-body forces are also related to neutron star radii

o B
E=a (ﬂ%’:} ) + h( ﬂ%) 18 a convenient parameterization

. Red = no three-body

. Blue, Green = adjusted
three-body interactions

. Black = Urbana IX

. Strong correlation between S
and L



Accreting Neutron Stars: LMXBs
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Mass Measurements and QLMXBs

. Mass measurements:
Demorest et al. (2010) find a
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Photospheric Radius Expansion Bursts

. X-ray bursts sufficiently strong to blow off the
outer layers - radiate at the Eddington limit

. Flux peaks, then temperature reaches a
maximum, "touchdown"

. Normalization during the tail of the burst:
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and radius
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Photospheric Radius Expansion Bursts

. X-ray bursts sufficiently strong to blow off the
outer layers - radiate at the Eddington limit

. Flux peaks, then temperature reaches a
maximum, "touchdown"
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Statistical Approach

. Well-suited to this underconstrained problem: 7-8 EOS parameters, 7-8 data points

. Bayes theorem:

P D|M;]| P M|
>~ ;PIDIM ;] PIM ]

. Different prior distributions produce different results

PIM;|D] =

. Conditional probability is provided by the data

HDIM] — H Pi(M? R)IM:MT;,RZR(M{;)

ren datasets

the analog of the likelihood function
. In Bayesian analysis, marginal estimation is often employed:

1
P[Pj|D](Pj) = ?,f dpy ... dp; 1 dpj g ... dPN(p)P[MD]



Mass and Radius Results
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. Choose the largest range which encloses several choices in model assumptions
and prior distributions
. Range of radii for a 1.4 solar mass star: 10.4 and 12.9 km



EOS results
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. P(e) determined to within 30-50%
. P(n g) determined to within a factor of 3
. Neutron skin thickness of lead R < 0.20 fm



Constraints on three-body force parameters
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Symmetry Energy Results
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Accreted Neutron Star Crusts

. In a cold neutron star, surface i1s usually taken to be ~ bFe

. Nuclei become larger and more neutron rich with increasing density

. Accretion luminosity (~ 200 MeV) outshines nuclear processes

. H and He is accreted and becomes unstable - X-ray burst

. X-ray burst ashes undergo nuclear reactions as they are driven towards higher densities:
deep crustal heating
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Nuclear Reactions and a Multicomponent model

. Electron captures, neutron emissions, and pycnonuclear fusions

. Electron capture is often immediately followed by neutron emission

. Steiner (2012) 1s the first multi-component model of the accreted crust

. Use quasi-statistical equilibrium instead of a full reaction network

. The multi-component model is important because it resolves reaction pathways that are impossible
in single-component model

. 2 Mg nuclei - 2 #2C nuclei and 36 neutrons -
1 MMg nucleus and 36 neutrons - 1 ‘M g nucleus and 40 neutrons
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Symmetry Energy and Deep Crustal Heating

. Nuclear symmetry energy is important in determining the amount of deep crustal
heating!

. Nuclear masses of neutron rich nuclei are determined by the symmetry energy

. Use a liquid droplet model matches experimental masses within 1.2 MeV yet based on
nucleon-nucleon interactions with different symmetry energies

. Skyrme models SLy4 and Gs
. Begin with an initial composition of X-ray burst ashes

. Find that SLy4 gives 2.4 MeV per nucleon while Gs gives 4.8 MeV per nucleon



Summary

. Current mass and radius measurements, modulo some systematic uncertainties, can quantitatively
constrain the equation of state

. Several currently used EOSs are ruled out
. Current results imply all neutron stars have radii between 10.4 and 12.9 km

. That the neutron skin thickness of lead is less than 0.2 fm and that L 1s 45-55 MeV

. Symmetry energy can also affect the amount of heating in accreting neutron star crusts

Other Things to Ask Me About

. How the Carbon fusion rate can be modified to explain X-ray superbursts on accreting neutron stars
. How Bayesian MCMC can be applied to fitting nuclear structure data

. How magnetars (highly magnetized neutron stars) are giving us more information about neutron star
crusts



