9月25日13:30-仁科記念棟、仁科ホール

光格子時計が拓く新たな 時間計測

東京大学大学院工学系研究科 ERATO 創造時空間プロジェクト、科学技術振興機構 理化学研究所 量子計測研究室 香取秀俊

Quantum Metrology(量子計測)

Study of <u>measurement</u> at <u>quantum limited</u> performance

Time / Frequency

Currently, NOT on temperature, weight, (voltage),... lack of quantum references NOT limited by technical noises:

- Noise from electronics circuit, detectors, ...
- Thermal noise

Time/frequency measurement is NOT limited by frequency counters but is limited by the quantum system itself (and their design).

Electron shelving technique

1原子の電子状態を量子効率100%で観測する Quantum Metrologyのエッセンス! これに代わる手法をぜひ見つけたい!

VOLUME 56, NUMBER 26

PHYSICAL REVIEW LETTERS

30 JUNE 1986

Shelved Optical Electron Amplifier: Observation of Quantum Jumps

Warren Nagourney, Jon Sandberg, and Hans Dehmelt Department of Physics, University of Washington, Seattle, Washington 98195 (Received 5 May 1986)

We demonstrate here the direct observation of quantum jumps between the $6^2S_{1/2}$ state and the $5^2D_{5/2}$ state of an individual laser-cooled Ba⁺ ion contained in a radio-frequency trap. The state detection and cooling are performed by two lasers which cause $6^2S_{1/2}-6^2P_{1/2}-5^2D_{3/2}$ transitions. In-coherent excitation to the $5^2D_{5/2}$ state (via the $6^2P_{3/2}$ level) causes the fluorescence from the $6^2P_{1/2}$ state to be suppressed for the > 30-sec lifetime of that state, after which the fluorescence reappears. The resulting "telegraph signal" provides a direct monitor of the atomic state.

双極子遷移の典型的な光子散 乱レートは10⁸/s、検出の立体 角を10⁻⁴としても10個/msの光 子を計測可能。検出器の量子 効率PMT>10%、PD~50-99%

S

FIG. 1. Level structure of Ba⁺. The shelf level is the $5^2D_{5/2}$ state. The laser excitation is shown by the bold lines; the lamp excitation is indicated by the light solid line while the subsequent decay into the shelf level is indicated by the dashed line.

FIG. 2. A typical trace of the 493-nm fluorescence from the $6^2P_{1/2}$ level showing the quantum jumps after the hollow cathode lamp is turned on. The atom is definitely known to be in the shelf level during the low fluorescence periods.

精密計測の鉄則:

「測定値を時間・周波数の測定に置き換えること」

時間・周波数は物理計測の中で最も正確に計測 可能な物理量

- □ 1秒の定義の精度:15桁、国際原子時
- □ 長さ計測;光速度一定、時間計測へ
- □ 電圧計測;ジョセフソン効果、周波数計測へ
- K_J = 2e / h=483597.9(GHz/V);ジョセフソン定数
- □ 光格子時計のアイディア
 - ー 摂動を与えるプロトコルを周波数で定義する

内容

- 原子時計の実現:2状態間のエネルギー差を 正確に測る
- 原子時計の安定度は量子射影ノイズで原理
 的に制限される
- ・光格子時計の発明、「魔法波長」の発見
- ・量子限界で動作する光格子時計の実現
- ・ (原子時計の)時間比較でわかること
- いま進めている研究(おまけ程度・さらっと)

原子時計研究はなぜ面白い?

- 原子時計の精度
 - 科学計測の中で桁違いの精度を誇る
 →精密計測・原子分光技術のベンチマークテスト
 スーパーカー、スパコン、スパーコライダー、…、スパクロ…
- 量子のルールだけで性能を競う(測定器の雑音を混 入させないエ夫) – Electron shelving –
- 極限的な精度で物理の根幹に迫る
- 工学的もにきっと役立つ
 - GPS、電波時計、高速ネットワーク同期…
 - 新しい工学ニーズの発掘:50年前にGPSのカーナビ応用 を考えるような斬新な発想が必要

どうやって時間を認識するか?

- 周期Tの現象を見出す:地球の自転、振り子、原子の振動...
- 繰り返しの回数nを数える:経過時間 t=n·T=n/v
- ・周期がδT揺らぐと、経過時間もδt=n・δTだけ狂う

→ 時計の精度: δt/t= δT/T= δv/v

- 時計精度δt/tは、振り子の周波数精度δv/vで読み替える
- δt/t=1秒/300億年、ならδv/v=δt/t=10⁻¹⁸が必要

→18桁の時計・分光精度を目指す

Building Atomic Clocks

- Believe in the constancy of fundamental constant. (Is this true?)
- Measure local oscillator frequency referencing the atomic transition
 - Excitation linewidth $\gamma \approx 1/T$ (Fourier limit for *T* interaction)
 - Data averaging for better statistics with N atoms
 - Uncertainty in frequency estimation (QPN): $\langle \delta v \rangle = \langle \Delta N \rangle / |d(Np_B)/dv| \le \frac{1}{\sqrt{Np_B}}$
- Servo control of flywheel oscillator (laser)

量子揺らぎとの戦い 原子によるレーザー周波数の最善の測定

いい原子時計を作る戦略

原子の振り子の相対的な周波数揺らぎ $\Delta v / v_0$ が指標 \rightarrow 測定の不確かさ $\Delta v \approx 10^{-3} \sim 10^{-5}$ が同程度なら、周波数 v_0 が高いほど有利。 光原子時計 ($v_0 \approx 10^{15}$ Hz) はマイクロ波のCs時計($v_0 \approx 10^{10}$ Hz)より圧倒的 に有利。ただし、ドップラー効果 $v_D = \frac{u}{c}v_0$ は例外! \rightarrow ラムディッケ束縛が重要

正確さ(Accuracy)

- 原子固有の遷移周波数からのずれの小ささ(ドップラー・シフト、電磁場の影響をなくす…)
- 原子時計の設計=電磁場がゼロの 環境整備

安定度(Stability)

- どれだけ早く、ターゲットに収束できるか?
- 量子雑音が分光精度δν=γ/νNを制限
- 原子時計の安定度: δv/v₀ ≈ (γ/VN)/v₀
 - — 延べ測定原子数Nの平方根でし
 か向上しない
 こんな時計を作りた

安定だが正 確でない v₀

11

い!(正確で安定)

原子のスペクトル

メスバウワー分光と同じ条件を作り出している

4

「正確さ」の観点ではポールトラップ中の単一イオンが理想的

For decades, singly trapped-ions (atoms) in **Paul** traps ("50-) have been considered to be the prime candidate for future optical atomic clocks as proposed by **Dehmelt** and others ("82)

Al+ ion optical clock with uncertainty of 7.0 \times 10⁻¹⁸ (NIST group 2009.12)

見えなかった時間領域に光をあてる!

発想の転換:電磁場のエンジニアリング

- 伝統的な摂動除去の原則
 単一イオン時計の量子限界に到達
- エンジニアリングした電磁場を印加して、正確で安定な時計を目指す
 - 格子の振動基底状態に原子を凍結
 - 電磁場の影響を18桁制御可能か?
 - "光格子時計"の概念の提案

Katori 2001・FMS: 魔法波長のレーザー で原子をトラップすると、原子には摂動が 見えない

⇒原子間相互作用を排除:単一原子時計100万台と等価

強い電磁場を加えながら、正確な時計が作れるのか? 半世紀の原子時計の歴史への挑戦!

light intensity is maximum: **OPTICAL LATTICE** "array of atoms"

光双極子トラップで加わる光シフトを取り除く

光シフトを打ち消す魔法周波数

 周波数だけで、遷移周波数 への摂動を制御

周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,v_{ac}}{\mathrm{d}\,v_L} = -1 \times 10^{-9}$$

18桁精度の実現には、魔法周波数を9桁で決め、プロトコルとして共有

H. Katori, in The 6th Symposium on Frequency Standards and Metrology P. Gill, Ed. (World Scientific, 2002), pp. 323-330; Katori, Takamoto, Pal'chikov & Ovisannikov, Phys. Rev. Lett. 91,173005(2003).

光シフトを打ち消す魔法周波数

魔法波長の実証

M. Takamoto & H. Katori, Phys. Rev. Lett. 91, 223001(2003).

- 周波数だけで、遷移周波数 への摂動を制御
- 周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,v_{ac}}{\mathrm{d}\,v_L} = -1 \times 10^{-9}$$

18桁精度の実現には、魔法周波数を9桁で決め、プロトコルとして共有

光シフトを打ち消す魔法周波数

 周波数だけで、遷移周波数 への摂動を制御

周波数は9-12桁まで容易
 に制御可能

$$\frac{\mathrm{d}\,\boldsymbol{\nu}_{ac}}{\mathrm{d}\,\boldsymbol{\nu}_L} = -1 \times 10^{-9}$$

● 18桁精度の実現には、魔 法周波数を9桁で決め、プ ロトコルとして共有

世界3極での光格子時計の実現と 「秒の二次表現」の採択(2006.10)

国際度量衡委員会 (2009.10)勧告値 f_{875r} = 429 228 004 229 873.7 Hz 相対的不確かさ 1 x 10⁻¹⁵ →SI秒の不確かさと等価。 逆に言えば、SI秒の定義のせいで、これ以上の情報を共有することが 不可能。光格子時計は世界のCs原子時計を監視するスパクロに!

光格子時計の最適設計:光格子の幾何学と量子統計 ●フェルミ粒子を用いる「偏極1次元光格子時計」 ●ボース粒子を用いる「3次元光格子時計」

Probe

- 1次元のパンケーキ型・光格子ポテンシャ ルに複数個のフェルミ粒子を束縛
 - パウリの排他律による原子衝突の抑制
- 3次元の格子ポテンシャルにボース粒子 を1個づつ配置 - ボソンのバンチング阻止

2台の時計比較でSI秒の限界を超える

T. Akatsuka, M. Takamoto, & H.K., Nat. Phys. 2008

2台の光格子時計(⁸⁷Sr-⁸⁸Sr)の同期比較 ーレーザーノイズを相殺して量子限界に迫る一

重力が強いと時間はゆっくり進む

アインシュタインの一般性相対論の予言
 ハーバードタワー実験(1960年): Δh=22.6m で2x10⁻¹⁵を検証
 単一イオン時計(2010年): Δh=30 cm で3x10⁻¹⁷を検証(1日積算)
 24 SEPTEMBER 2010 VOL 329 SCIENCE
 Optical Clocks and Relativity

C. W. Chou,* D. B. Hume, T. Rosenband, D. J. Wineland

Physical effects that may contribute to a flicker floor $@1 \times 10^{-17}$

Contributor	Parameter to be controlled	⁸⁷ Sr atoms in 1D lattice	⁸⁸ Sr atoms in 3D lattice
Lattice scalar light shift	Lattice laser frequency	$\Delta f = 4 \text{ MHz}$ (<i>I</i> = 13 kW/cm ²)	$\Delta f = 6 \text{ MHz}$ (<i>I</i> = 7.9 kW/cm ²)
Probe light shift	Laser intensity	Negligible ($I = 0.7 \mu W/cm^2$)	$\Delta I/I = 0.3\%$ (I = 74 mW/cm ²)
Blackbody shift at 300 K	Environmental temperature	ΔT = 0.1 K (T ≈ 296 K) 特罟の絶対温度な	ΔT = 0.1 K (T ≈ 294 K) 字美オスのけ難し
Second-order Zeeman shift	Environmental magnetic field	表面の絶対加度で (<i>B</i> ₀ = 0.23 mT)	$(B_{\rm m} = 0.83 \text{ mT})$
First-order Doppler shift	Relative motion of lattice and lasers	v =3 nm/s	v =3 nm/s
	光学	定盤の熱膨張・振動	カ、プレート移動10c

 1×10^{-17} for $T_i = 400$ ms

時計をつなぐと新しい物理が見えてくる

Thur

L.O.

- ジオイドの探索
 物理定数の恒常性?
 - $f[\text{Hg}(\alpha(t)^2)]/f[\text{Sr}(\alpha(t)^2)]$
- 物理定数と重力の結合? f[Hg(α(U_g))]/f[Sr(α(U_g))]

原子の中における電子の軌道エネルギーの相対論 的補正に現れる。電磁相互作用の結合定数を表す 無次元の定数。

電磁相互作用の強さ

高安定な光時計の配信は大問題

従来の衛星による伝送10⁻¹⁵@1day

世界中で光ファイバリンクを建設中 ~10⁻¹⁸@1000s

F. L. Hong et al., Opt. Lett. 34, 692 (2009). AIST-U. of Tokyo: 120 km

ドイツではミュンヘン、ブラウンシュバイクをつなぐ900kmの 周波数伝送ファイバが開通→やがて全ヨーロッパ圏へ

東京圏で光格子時計のネッ トワークを作る

重**カシフトを使って測地学** ジオイド:重力の等ポテンシャ ル面、日本では東京湾の平均 海水面で定義

$\Delta f/f=g\Delta H/c^2$

- ジオイド高は30-50 cm, or 3-5x10⁻¹⁷の不確かさでマッ ピングされている
- 時計の比較はジオイド高の測定と等価
- 地球は柔らかすぎて、長距 離にわたっての正確な時 間の共有は難しい
- 時計は、ジオイド高のセン サーになる:資源探索、地 殻の変動...

18桁の周波数比較に向けて

No dead time operation of clocks

- 1/T_cより遅いレーザー
 一
 一
 ボンク

 <li
- n/T_c (< 1/ T_i)のレーザー周波数ノイズは、低周波にダウンコンバートされ ⁻ ホワイトノイズとなってレーザー安定度を劣化(Dick効果)

Frequency stability trajectory simulation

Blackbody radiation shifts for Sr atoms

Development of two cryogenic Sr optical lattice clocks for synchronous/no-dead-time operation

2012.04.23

- Fiber based system: BS & DM are replaced by WDM couplers
- Finally covered by μ -metal box

Synchronous operation : Evaluation of BBR or other systematic shifts
No dead time operation: Sr-Hg/remote clocks comparison

Optical lattice clock with mercury

H. Hachisu *et al., Phys. Rev. Lett.* **100**, 053001 (2008) Magic wavelength determined: L. Yi et al, *Phys. Rev. Lett.* 106, 073005 (2011)

- **1)** Heaviest lattice clock candidate \checkmark Large α dependence: $\Delta \nu/\nu = 0.8 \times 10^{-16}$ for $\Delta \alpha/\alpha = 10^{-16}$
- 2) Very small BBR shift: -0.18Hz@300K << Sr,Yb
- 3) Hyperpolarizability effects: $\delta v \sim 0.3$ mHz
- 4) Require high laser intensity for lattice : ~ 2 kHz/(kW/cm²)
 - Moderately cold atomic sample necessary

10⁻¹⁹ accuracy achievable!

Current status: MOT and Lattice

The Group

University of Tokyo/ERATO

<u>T. Takano</u>, D. Yu, K. Hashiguchi, I. Ushijima, <u>K. Yamanaka</u>, S. Okaba, T. Ohkubo, T. Oita, K. Araki, M. Tanaka / Si-cavity: <u>Y. Aso</u>, <u>N. Ohmae</u>, A. Shoda, T. Ushiba, H. K. <u>RIKEN/ERATO</u>

M. Takamoto, N. Ohmae, P. Thoumany, M. Das, B. Christensen, T. Akatsuka, M. Kobayashi, H. K.

光格子時計は「魔法波長」のプロトコルを導入して、多数原子の 同時観測で高速な時間計測を実現 ―実時間で重力で歪む時空間を見せてくれる ―物理定数は本当に定数なのか?

日相対論的な時空間の工学的応用へ
 日科学の新しいプローブで自然の声を聴く
 一望遠鏡、顕微鏡、加速器、...、原子時計
 今まで見えなかった時間の隙間に何があるか?

正確過ぎて正確でなくなる新しい時間の概

The Persistence of Memory, 1931 : Salvador Dalí

18桁の時間計測をめざして