Di-neutron相関を考慮した反応断面積の計算に向けて

中重核領域の _{tot}、 _{-n}、 _{-2n}、 _{-p}を考える上で

筑波大数理物質科学研究科 計算科学研究センター

矢花一浩

軽い核の断面積測定と、その解析(グラウバー、アイコナール理論)で見られたこと。

- ・ドリップラインに近づくと反応断面積が増加する。特にハロー核で。その場合、多くの断面積は中性子分離過程に起因。
- ·コア + ハロー構造が良〈成り立つとき、 _{C+2n} = _C+ _{-2n}
- ·中性子分離断面積 _{-n}は陽子分離断面積 _{-p}よりも大きい。
- ·Optical limit 近似は断面積を過大評価する。中性子分離断面積で3割位。

より重い原子核の衝突断面積で何が問題になるだろうか? 今日は、中重核領域のDi-neutron相関に焦点を絞って考えてみる。

核表面でのDi-neutron相関

松尾氏(新潟大)、Phys. Rev. C71(2005) 064326-1~24

HFB方程式をまじめに解くと、核表面では強いDi-neutron相関がある。 1個のスピン 中性子の周りには、半径2fmの中にスピン の中性子が 50%の割合で存在する。

FIG. 5. Same as Fig. 3, but for 44 Ca and 66 Ni. Reference neutron is fixed at the surface position $z' = R_{\text{surf}}$.

FIG. 6. Density $\rho_n(r)$ and pair density $\tilde{\rho}_n(r)$ of neutrons in ^{44,58}Ca and ^{66,84}Ni. Solid and dashed lines represent $\rho_n(r)$; dotted and dot-dashed lines are for $\tilde{\rho}_n(r)$.

グラウバー(もどき)理論による Di-neutron相関を考慮した 中性子分離断面積の計算

まず、相関のない場合

核子が標的と衛空る確立

$$F_{1}(b) = \int d\vec{r} \, e^{(1)}(\vec{r}) \, \theta \left(R_{T} - l\vec{s} - \vec{b} \, l \right) \qquad \vec{r} = (\vec{s}, \vec{z})$$

衝突しない確立

$$F_{0}(b) = \int d\vec{r} \, \rho^{(1)}(\vec{r}) \, \theta \left(|\vec{s} - \vec{b}| - R_{T} \right)$$

$$F_{0}(b) + F_{1}(b) = 1$$

全及应出行的積

$$\mathcal{O}_{tot} = \int d\vec{b} \left\{ 1 - \left(F_0^{(p)}(b) \right)^{Np} \left(F_0^{(n)}(b) \right)^{Nn} \right\}$$

1中性子分離對面積

$$G_{-n} = \int d\vec{b} N_n F_I^{(n)}(b) \left(F_0^{(n)}(b) \right)^{N_n - 1} \left(F_0^{(p)}(b) \right)^{N_p}$$

2中性子/分離計面積

Di-neutron 相関かる3場合:2体密致分布 (で)(デルだ)

$$\int d\vec{r}_1 d\vec{r}_2 \, \xi^{(2)}(\vec{r}_1, \vec{r}_2) = 1 \qquad \vec{\underline{\beta}}(\bar{x}_1 + \beta) = 0 \qquad f(r_1) + f(r_2) \, e^{-\beta \left(\vec{r}_1 - \vec{r}_2\right)^2} \, a \, \vec{\pi}_2^2$$

3直りの場合

2中生3 とも 徳竹突

$$G_{2}(b) = \int d\vec{r}_{1}d\vec{r}_{2} e^{[2]}(\vec{r}_{1},\vec{r}_{2}) \theta(R_{7} + |\vec{s}_{1} - \vec{b}|) \theta(R_{7} - |\vec{s}_{2} - \vec{b}|)$$

1つのみ 御笑

$$G_{1}(b) = \int d\vec{r_{1}} d\vec{r_{2}} \, \rho^{(2)}(\vec{r_{1}}, \vec{r_{2}}) \, \theta \left(|\vec{S_{1}} - \vec{b}| - R_{T} \right) \theta \left(R_{T} - |\vec{S_{2}} - \vec{b}| \right) \times 2$$

衝突ナシ

$$G_{0}(b) = \left[d\vec{r}_{1}d\vec{r}_{2} e^{(2)}(\vec{r}_{1},\vec{r}_{2}) \theta \left(|\vec{s}_{1}-\vec{b}| - R_{T} \right) \theta \left(|\vec{s}_{2}-\vec{b}| - R_{T} \right) \right]$$

掛面積の式

Total
$$O tot = \int d\vec{b} \left\{ 1 - \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2}} \left(F_0^{(p)}(b) \right)^{N_p} \right\}$$

$$O - n = \int d\vec{b} \left(\frac{N_n}{2} \right) G_1^{(n)}(b) \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2} - 1} \left(F_0^{(p)}(b) \right)^{\frac{N_n}{2} - 1} \left(F_0^{(p)}(b) \right)^{\frac{N_n}{2} - 1} \right)$$

$$O - 2n = \int d\vec{b} \left[\frac{\binom{N_n}{2} \binom{N_n}{2} - 1}{2} G_1^{(n)}(b) \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2} - 1} + \frac{N_n}{2} G_2^{(n)}(b) \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2} - 1} \right)$$

$$\times \left(F_0^{(p)}(b) \right)^{N_p}$$

$$O - p = \int d\vec{b} \left[\frac{N_n}{2} \binom{N_n}{2} + \frac{N_n}{2} G_2^{(n)}(b) \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2} - 1} \right]$$

$$= \int d\vec{b} \left[\frac{N_n}{2} \binom{N_n}{2} + \frac{N_n}{2} G_2^{(n)}(b) \left(G_0^{(n)}(b) \right)^{\frac{N_n}{2} - 1} \right]$$

⁶⁶Ni と ⁸⁴Ni を例にとり、 反応確率と反応断面積を計算

標的として、陽子(R_T=1fm)と ¹⁶O(R_T=3fm)の場合をとる。

$$\rho^{(N)}(r_1, r_2, \dots, r_N) = \rho^{(1)}(r_1)\rho^{(1)}(r_2)\dots\rho^{(1)}(r_N)$$

 $ho^{\scriptscriptstyle (1)}\!ig(rig)$ Woods-Saxon型

b [fm]

Di-neutron相関のない場合

FIG. 6. Density $\rho_n(r)$ and pair density $\tilde{\rho}_n(r)$ of neutrons in ^{44,58}Ca and ^{66,84}Ni. Solid and dashed lines represent $\rho_n(r)$; dotted and dot-dashed lines are for $\tilde{\rho}_n(r)$.

$$\rho^{(N)}(r_1, r_2, \dots, r_N) = \rho^{(2)}(r_1, r_2)\rho^{(2)}(r_3, r_4) \dots \rho^{(2)}(r_{N-1}, r_N)$$

$$\rho^{(2)}(r_1, r_2) = f(r_1)f(r_2)e^{-\beta(r_1 - r_2)^2}$$

$$\rho(r) = N \int dr_2 \rho^{(2)}(r, r_2)$$

実線: Di-neutron相関なし破線: Di-neutron相関あり

$$ho^{(N)}ig(r_1,r_2,\cdots,r_Nig)=
ho^{(1)}ig(r_1ig)
ho^{(1)}ig(r_2ig)\cdots
ho^{(1)}ig(r_Nig)$$
 $ho^{(1)}ig(rig)$ Woods-Saxon型

16O 標的の場合

上段:相関なし

Cross section

中段:相関あり

下段:混合

66**N**i

84**N**i

Target	proton	16 O		proton	16 O
Total cross section	1608 1544 1577	3590 3468 3532	Total cross section	1932 1834 1885	4129 3934 4039
- p	209 245 226	225 283 251	-р	132 167 148	107 155 127
-n	335 245 293	432 251 351	-n	497 368 438	643 383 532
-2n	110 123 113	133 175 144	-2n	191 202 192	258 304 264

反応断面積、陽子分離断面積、中性子分離断面積と核構造の関連

中性子スキン 陽子分離断面積の減少 -p/ -nなどからスキンの厚さを計れないか?

2中性子相関(di-neutron相関)と断面積

-nは減少、 -pは増加

_{-2n}の増加は(期待したほど)大したことはなさそう。

---/ _nから2中性子相関の情報を得るのはマージナルか。

プログラムライブラリの整備をどう進めていくか?

- ・実験で必要な(あると便利な)道具の需要
- ・理論側で使いやす〈提供する枠組み(マンパワー)

例えば

・3体ハロー計算と、その密度を用いたグラウバー計算

$$E\psi(\vec{r}_{1},\vec{r}_{2}) = \left(-\frac{\hbar^{2}}{2m}\nabla_{r_{1}}^{2} - \frac{\hbar^{2}}{2m}\nabla_{r_{2}}^{2} + V_{nC}(r_{1}) + V_{nC}(r_{2}) + V_{nn}(\vec{r}_{1} - \vec{r}_{2})\right)\psi(\vec{r}_{1},\vec{r}_{2})$$

V_{nC}, V_{nn} はWoods-Saxon型