BigRIPS 及び BigRIPS検出器

理化学研究所原子核研究技術開発グループ BigRIPS 開発チーム 大西哲哉

1: Introduction

Particle identification of RI beam

- •We can select nuclei of interest.
- •Experiment with several nucleus can be done at same time.

$B \rho - \Delta E - TOF method$

 $B\rho \rightarrow Position detector$

→ A/Q, P

TOF → Timing detector

 $\Delta E \implies Energy loss detector$

-⇒ 2

 $Z \neq Q$ More information: E \implies A

BigRIPS & ZDS

Dipoles

Normal Conducting H-Shaped Sector

Bending Radius	6 m
Bending Angle	30 degree
Pole Gap	140 mm
Max. Field	1.6 T
Max. Current	1000 A
Current Density	5.6 A/mm ²
Turn/Coil	100
Weight	60 Ton

D1 - Almina Cement Insulated Coil

Quadrupoles

Superconducting
Triplet in Single Cryostat

Hexapole superimposed

STQ1 STQ2

STQ11

Cryostat cooled by Cryogenic plant

BigRIPS Cave

STQ14

Cryostat with Cryocoolers

BigRIPS Hall

Transmission method

2: Detectors Position detector: PPAC

DL-PPAC: <u>Delay Line Parallel Plate Avalanche Counter</u>

H. Kumagai et al., Nucl. Instr. and Meth. A470(2001)562.

strip width=2.40mm, space=0.15mm

Gas: C₃F₈ 10∼30 Torr

HV: 800 ~1800 V

Anode, Cathode:

2 μ m Mylar

Window:

 $4\sim12~\mu$ m Al-Mylar

PPAC has been already used in RIPS.

Counting rate: ∼10⁶ Hz

Performance Test for heavy nuclei at high energy

132 Xe @400MeV/A at HIMAC

Resolution

Position $\sigma = 0.27 \text{ mm}(r.m.s)$

Timing $\sigma = 0.1 \text{ ns(r.m.s)}$

DL-PPAC for BigRIPS

Effective area: 240 mm x 150 mm

To avoid the effect of δ -ray, we set the double layer.

----- High efficiency

ΔE detector: Ion chamber

K. Kimura et al., Nucl. Instr. and Meth. A538(2005)608

Drift length: 2 cm Anode: 12

Electrode: 4 μ m Mylar Cathode: 13

Tilted angle : 30° Window : 50μ m Capton

- •Short drift length for high counting rate.
- Stacked structure for large signal.
- •Tilted electrodes to avoid the effect of recombination.

 ϕ 90 mm

 ϕ 200 mm

Performance test

RIKEN E1C

⁵⁶Fe at 90MeV/A

 ϕ 90 mm HV:500V, P-10:740 Torr

ToF: Plastic

 $\Delta E/E \sim < 2\%(FWHM)$

Performance for heavy ion at high energy

 86 Kr 400MeV/A: HIMAC 132 Xe 400MeV/A: HIMAC 80 OMeV/A: GSI (ϕ 200 mm)

ΔE Resolution of TEGIC

Rate dependence

Rate: 10⁶ Hz Development of circuit

3: Readout system

Signal transport system with optical fiber

- •We can transport with long distance (>100m)
- •The electric ground level of the detector is isolated from that of the counting room
- •It is easy to add a long delay time.

Transmitter

Receiver

100 m Coaxial cable

100 m fiber cable

Fast signal

Noise

Linearity $V_o = -2.066 + 1.0045 \times V_i + 3.826 \times 10^{-5} V_i^2$

Y=-2.066+1.0045X+3.826e-5X^2 R=0.99999

4: DAQ

Requirement and Condition

- Analog signal can be transported with optical fiber.
- •The total number of channel at a time is not so much. (~ 50 ch)
- •It is required that assets of CAMAC modules are applied.
- Network based DAQ system is required to combine with User's DAQ system

Network based CAMAC DAQ system with CC/NET

CC/NET

Pipe line CAMAC controller with PC104plus single board computer

1 CAMAC access: 1 μ sec + (40 nsec overhead)

This module has been developed by KEK online group.

5: Summary

Detectors: PPAC, IC

Proto-type detectors have been developed.

Construction and development are going on.

Readout system

Signal transport system with optical fiber has been developed.

DAQ system: CC/NET

The proto-type system is under construction.

All detectors and DAQ system are scheduled to be ready at Autumn 2006.