WS on Reaction Cross Section, Jan. 13, 2006

"黒い"原子核描像に基づく 核半径と反応断面積

• Contents:

- Purpose
- BS Approxi.
- r_{BS} $vs. r_{m}$
- σ_{BS} vs. σ_{R} , σ_{I}
- Energy Depen.
- React. CS Formula
- Summary

The black-sphere picture as a reference frame

A. Kohama (RIKEN)

in collaboration with

K. Iida (RIKEN-BNL R.C.)

K. Oyamatsu (Aichi Shukutoku U.)

Ref. Phys. Rev. C69, 064316 (2004).

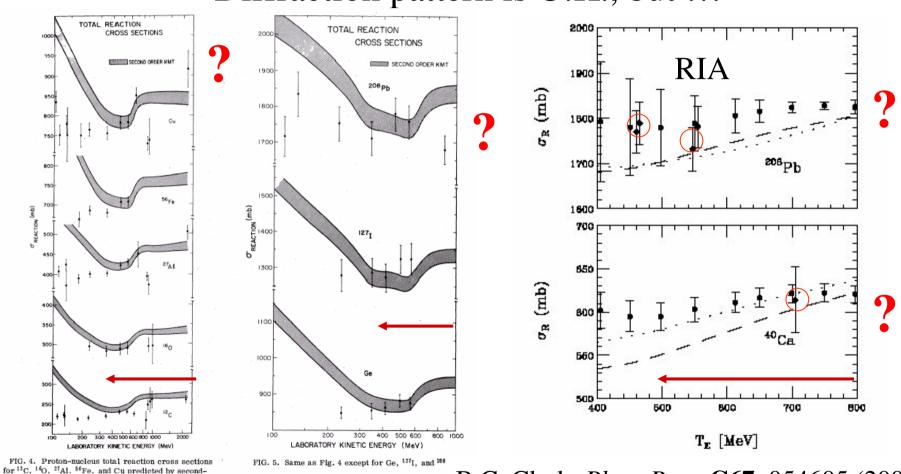
Phys. Rev. **C72**, 024602 (2005).

添付資料2(RIBF反応断面積実験での課題)

- ---実験サイドからのテーマ
 - _
- ---グラウバー模型による解析 (反応断面積から核半径へ)
- 1)300AMeV付近でのグラウバー模型
 - Optical limit or Few body,
 Zero-range or Finite range
 - どういうターゲットが良いか?
 - どういう測定が必要か?安定 核での実験?
 - 変形をどう取り込むか?
- 2) グラウバー模型以外での解析の可能性は?

- ---どの領域を測定するか?
- 1) skin/haloの最新の予測
- 2)核半径によるほかの物理 は?例えばEOS?
- 3) 関連する実験の現状は?
 - (ア) 陽子弾性散乱実験の現 状
 - (イ) SLOWRIにおける荷電核 半径の測定
 - (ウ) SCRITの現状

研究目的

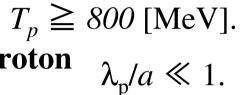

- 安定核の豊富なデータに基づき、中性子過剰不安 定核の特徴を浮かび上がらせる。
 - 核半径、反応断面積の系統的解析。
- 目論見:弾性散乱データで得た尺度で、反応/相 互作用断面積を眺める。ハロ一核の密度が外側に 広がっていれば両者に矛盾が生じる可能性がある。
 - → ハロ一核の特徴を引き出せるだろう。
- 現状: "くろたま"模型を構築し、陽子散乱データの系統的解析進行中。
 - _ 経過:次ページ(→)。

Present Status of Our Study

- We have analyzed p-A elastic scattering data in the black sphere approximation, which gives a scale "a". This "a" reproduces the first peak position and reaction cross section simultaneously.
- We have found that
 - the values of r_{BS} agree quite well with each other for A > 50 while they are systematically smaller than those of r_m deduced from elaborate scattering theory for A < 50. This suggests a significant deviation of the nucleon distribution from the rectangular one for A < 50.
 - the absorption cross section, σ_{BS} (= πa^2), is consistent with the empirical total reaction cross section for C, Sn, and Pb.
 - The energy dependence of σ_{BS} seems to be consistent with σ_{R} .

p-A Total React. Cross Sect.

Diffraction pattern is O.K., but ...


up to the 2^{nd} order of KMT.

L. Ray, Phys. Rev., C20, 1857 (1979).

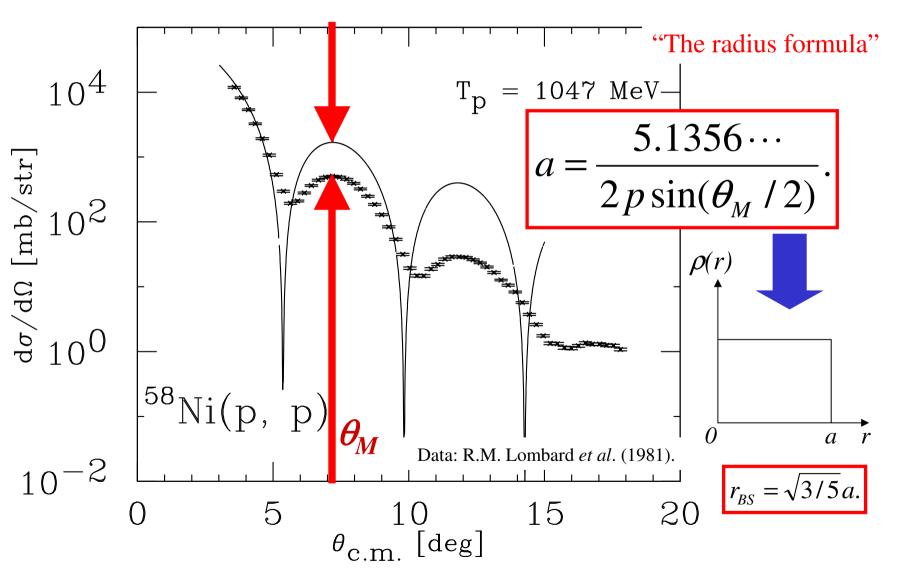
B.C. Clark, *Phys. Rev.*, **C67**, 054605 (2003).

Black Sphere Approximation

"Black" Nucleus

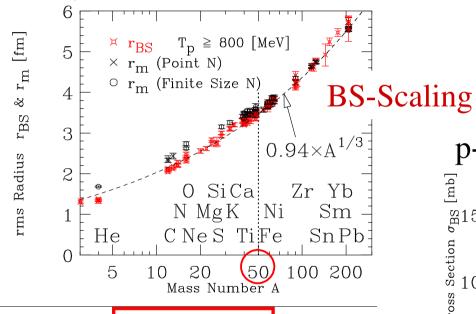
proton

• We assume that the target nucleus is strongly absorptive.


i.e.,
$$a/(1/\rho_0\sigma_{pN}) \gg 1$$
.

e.g., L. Ray, *Phys. Rev.* C20, 1857 (1979).

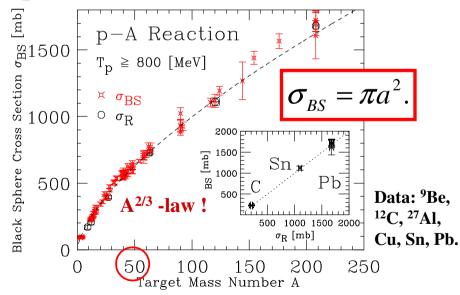
Fraunhofer diffraction formula is applicable. G. Placzek and H.A. Bethe (1940).


> Ref. A.K., K. Iida, and K. Oyamatsu, *Phys. Rev.* **C69**, 064316 (2004).

How to determine "a"?

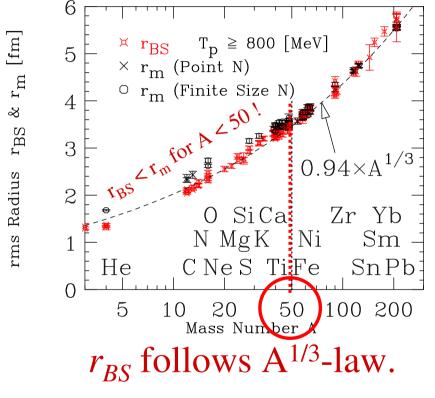
Recent Results: for stable nuclei

 r_{BS} as a function of A (≥ 3)


$$r_{BS} = \sqrt{3/5}a$$

 r_m is obtained from the conventional multiple-scattering theory.

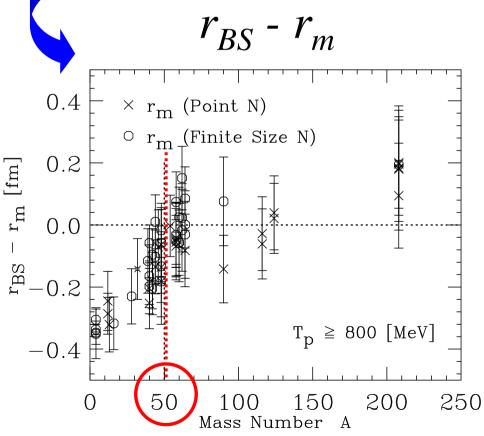
$$T_p \ge 800 \text{ MeV}$$
:


- $r_m = r_{BS}$ for A > 50.
- $\sigma_R = \sigma_{BS}$ for $A \ge 3$.

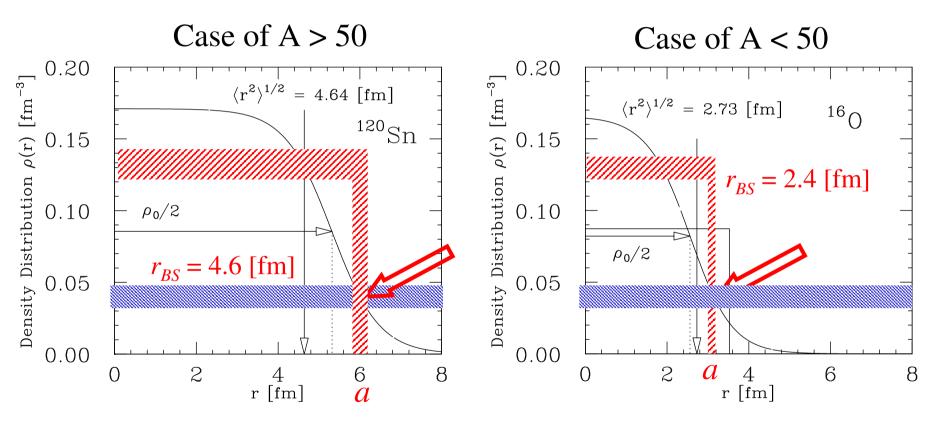
p-A Reaction Cross Sections

A.K, K. Iida, and K. Oyamatsu, *Phys. Rev.* **C72**, 024602 (2005).

r_{BS} as a function of A (≥ 3)



of Nuclide: 18.


of Data : 81 (r_{BS}) , 63 (r_{m}) .

(used EXFOR)

This feature is consistent with the charge density distribution.

Which part is probed?

A possible interpretation is: the incident proton "sees" a certain definite density region. Similar discussion was done by P.J. Karol (PRC11) and S. Kox (PRC35).

σ_{I} vs. σ_{BS} : for stable nuclei

$$\sigma_{\rm BS} = (5/3)\pi \{r_{\rm BS}(^{12}\rm C) + 0.94A^{1/3}\}^2.$$

$$\sigma_R \cong \sigma_{BS} \geqq \sigma_{I}$$
.

A.K., K.Iida, K.Oyamatsu, Phys. Rev. C 72, 024602 (2005).

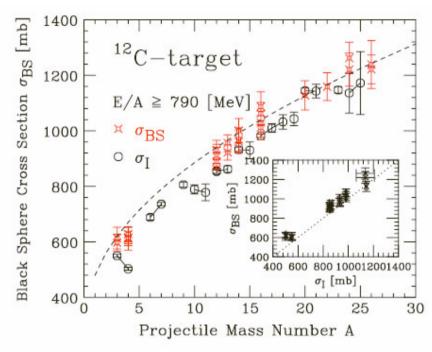
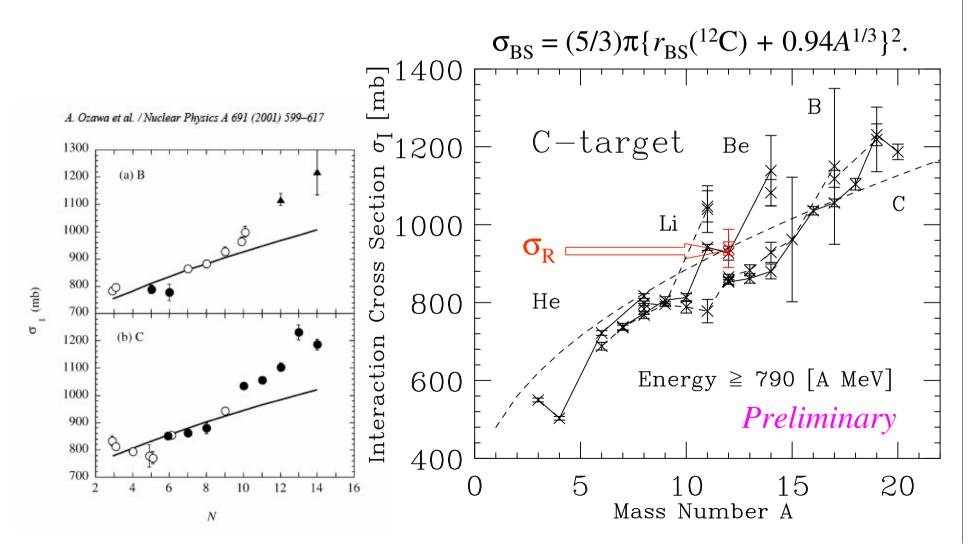
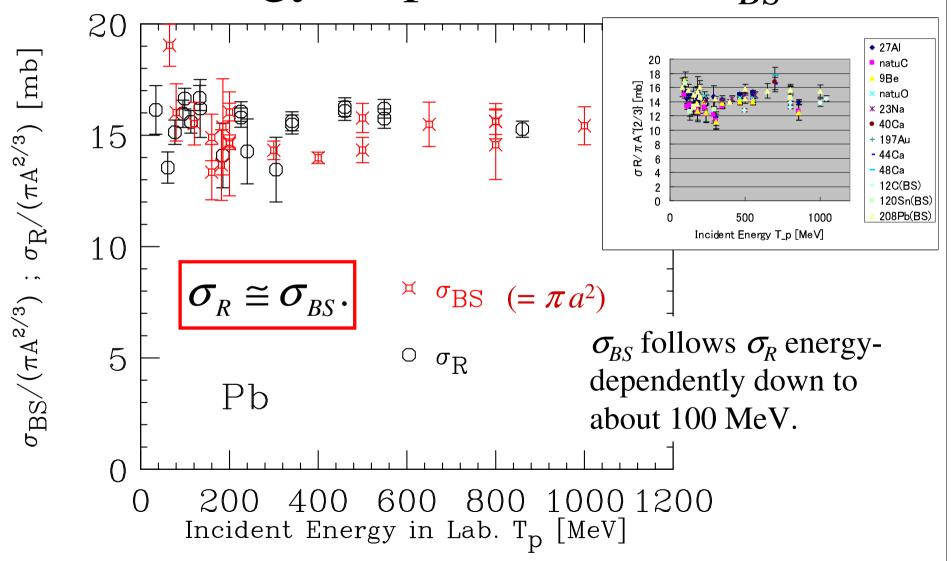
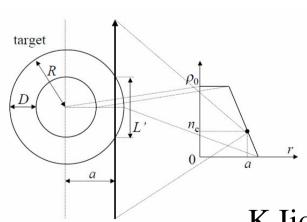
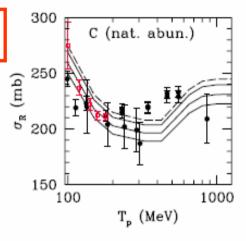
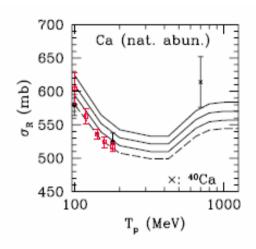




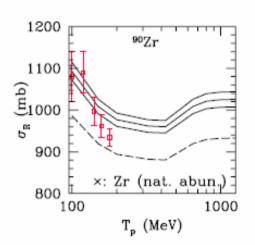
FIG. 4. (Color online) Absorption cross section, $\sigma_{\rm BS}$, for a projectile stable nucleus of A < 30 and a $^{12}{\rm C}$ target. We fix $r_{\rm BS} = 2.086 \pm 0.05$ fm for $^{12}{\rm C}$. For comparison, we plot the interaction cross section, σ_I (o), measured at $E/A \gtrsim 800$ MeV for a projectile of $^{3,4}{\rm He}$, $^{6,7}{\rm Li}$, $^{9}{\rm Be}$, $^{10,11}{\rm B}$, $^{12,13}{\rm C}$, $^{14,15}{\rm N}$, $^{16,17,18}{\rm O}$, $^{19}{\rm F}$, $^{20,21}{\rm Ne}$, $^{23}{\rm Na}$, and $^{24,25}{\rm Mg}$ incident on a $^{12}{\rm C}$ target [51]. The dashed curve represents $(5/3)\pi(2.086 + 0.94A^{1/3})^2$ fm². Inset: $\sigma_{\rm BS}$ versus σ_I for $^{4}{\rm He}$, $^{12,13}{\rm C}$, $^{14}{\rm N}$, $^{16}{\rm O}$, $^{20}{\rm Ne}$, and $^{24}{\rm Mg}$. The dotted line represents $\sigma_{\rm BS} = \sigma_I$.

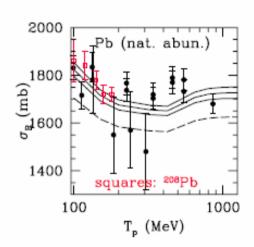
σ_I vs. BS-scaling: for neutron-rich *unstable* nuclei


Energy Dependence of σ_{BS}


React. Cross Sect. Formula


$$\sigma_{\rm R} = \pi \ a_0^2 (1 + \Delta a/a_0)^2$$
.


- Based on the "optical" dept. $\widehat{\mathfrak{g}}$ $\tau = \sigma_{pN} \, n_c \, L' \cong 0.9, \text{ the}$ energy-dependence of Δa is translated into that of σ_{pN} .
- Isospin-dependence can be included.



proton

K.Iida, A.K., K.Oyamatsu, *nucl-th/0601039*.

まとめ

- 陽子散乱から物質半径推定可。 (ただし質量数50あたり以上)
- Mo S
- 軽い核についても"反応半径"を与える。
- 反応断面積公式"出荷"。 (ただし核子あたり100MeV以上)
 - アイソスピン依存性も取り込める。
 - K.Oyamatsu and K.Iida, *Prog. Theo. Phys.*, **109**, (2003) 631.
- 反応断面積の基準値として使ってもらえると嬉しい。