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1. Introduction

Mean-field approximation to many-body system

The study of one-particle motion in the mean field is the basis for
understanding not only single-particle mode but also many-body correlation.

Mean field <«— Hartree-Fock approximation
Self-consistent potential = Hatree-Fock potential

Phenomenological one-body potential
(convenient for understanding the physics in a simple terminology
and in a systematic way)

Harmonic-oscillator potential
Woods-Saxon potential

Note, for example,
the shape of a many-body system can be obtained only from the one-body density

<— mean-field approximation




Harmonic-oscillator potential is exclusively used, for example,
the system with a finite number of electrons bound by an external field
( = a kind of NANO structure system).

This system is a sufficiently bound system so that harmonic-oscillator potential
is a good approximation to the effective potential.

Another finite system to which quantum mechanics is applied is
clusters of metalic atoms

—> shell-structure based on one-particle motion of electrons.

In this system a harmonic-oscillator potential is also often used.



2. Mean-field approximation to spherical nuclei

2.1. Phenomenological one-body potentials

3-dimensional harmonic oscillator potential
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In the above figure
V(r)= %ma)zr2 + const

where const = -55 MeV
ho =8.6MeV

2
H=—"" A+ oo
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harmonic-oscillator potential

has a spectrum

ez(N +§)ha)
2

where
N =n,+n,+n, inrectilinear coordinates

=2(n, -1 +/ in polar coordinates
£=N,N-2 ..0or1
Degeneracy of the major shell with a given N
2.2(20+1) = (N+1)(N+2)
l
spin 4y (£ = even for N=even, odd for N=odd)

leads to the magic numbers
2,8, 20,40, 70,112, 168, ...



One-particle levels for 3 stable nuclei
(S,=S,=7-10 MeV)
Modified harmonic-oscillator potential can often be
a good approximation.

Large energy gap in one-particle spectra

«—— Magic number
N, Z =8, 20,28,50,82,126, ...

Nuclei with magic number : spherical shape

Normal-parity orbits <« majority in a major shell
of medium-heavy nuclei

High-j orbits, 19g,, Thyy/2, Tz, 115

which have parity different from the neighboring
orbits do not mix with them under quadrupole
(Y,,) deformation and rotation.

One-particle motion in the mean-field
— shell structure (= bunching of one-particle
levels)
— nuclear shape

(surface) Spin-orbit

finite-well
h.o.
LS 184
\-|1 '15,4 (16)—[184]—184
3d¥ (4)—
1 rd
o8 —4s »<==4slfz = (2)—
—3d ;“, 2972 T (ﬁ%}h
rd /! - 5
She | —29—=<X 3d%2 (6)—
it A 2% (10)—
\\ I126
| 1013/ — (14)—[126]—1
112 _-=3pln ((2}—{ =128
—=3p <
- _3p1.t;‘ {(.}_
e 25 (6)—
She < E—r 2f77 (8)—[100]
odd /, 1h92 (10)—
4
—th—
" | | 82
70 * 1h'V3 (12)—[82] —B2
—35——====3sp2 (2)—
i 2d%2 (4)—
Lhw B 2d%2 (6)—[64]
even L 1972 (8)—
, —19—=_ 50
0 . 1992 (10)—[50] —— 50
y —2pY T Eza—Ew%
—2p <. /2 6)—[38
:(i:lt‘j:f {_” ‘(%_2p1l" 28 [ﬁ}l‘—
2 ~ 172 (8)—[28) —28
20
— e 1d%, (4)—[20]——20
g.l‘e‘;{ {_m_._cjf--zglfz (2)—[16]
~ 1d5; (6)—[14]
8 8
———1p'f2 (2)—[8] ——8
1h —p—
odd <2 _1p¥ (4)—(6]
0 —1§ ——mueais2 (2)—[2] 2

Figure 2-23 Sequence of one-particle orbits. The figure is taken from M. G. Mayer and



Phenomenological finite-well potential :

Woods-Saxon potential - an approximation to Hartree-Fock (HF) potential

1

1+exp(r;Rj

a . diffuseness

\% (I’) :sz f (I’) where f(r)=

<

/
(") I-l-\) R : radius R=r, A3

> r

A : mass number

standard values of parameters
o =1.27 fm a = 0.67 fm

N-Z

+ for neutrons
Vius = (—51i 33Tj MeV for

— for protons



Woods-Saxon potential vs. harmonic-oscillator potential
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higher £ one-particle wave-functions

onrly £=0 one-particle wave-funcions

In the above figure the parameters are chosen so that
the root-mean-square radius for the two potentials,
are approximately equal.

Harmonic-oscillator potential cannot be used
for weakly-bound or unbound (or resonant)
levels.

For well-bound levels;
Corrections to harmonic-oscillator potential are;
a) repulsive effect for short and large distances
—> push up small £ orbits

b) attractive effect for intermediate distances
—> push down large { orbits



Schrodinger equation for one-particle motion with spherical finite potentials

n(o* o o —
" 2m (axz PP ] +V(r) V() (xy.2) = (6.9)
_ 1 ¢
HY = &¥ ¥=Ry (N X, (F)

where

Xy ()= 3 C(Zim,mam Y, (0.6) 21,
(DY (0,6) = 1L + DY 1, (0,9)

The Shrodinger equation for radial wave-functions is written as

d’ /(¢+1)  2m
dr? r? h?

(05 =V () —st(f))} R,;(r)=0 ($)

For example, for neutrons eq.($) should be solved with the boundary conditions;

k(/ : Modified spherical Bessel function of the third kind
at r=0 Rg (r)=0 (See p.443 of Abramowitz & Stegun, Handbook of
mathematical functions)

j/ . spherical Bessel function

at r— Iarge (Where V(I‘) = 0) n} . spherical Neumann function
for £<0  R(Necark(ar)  where o= _Zh_';“g[
i ; 2m
for ¢,>0 R/g(r) oC COS(@)km (kr) —Sln(5z)krn£(kr) where k? =7

6, . phase shift



One-body spin-orbit potential in phenomenological potentials : surface effect !

In the central part of nuclei the density, p(r) = const.
Then, the only direction, which nucleons can feel is the momentum,

P

From the two vectors, P and the spin S , of nucleons one cannot make

P-inv (i.e. reflection-invariant) and T-inv (i.e. time-reversal invariant)

quantity linear in the momentum. For example,

(p-s) B

(Px5)-§ T
At the nuclear surface  Vp(r) =0 i.e. Vp(r) =(Z—f,0,0j in polar coordinate (r,6,¢)
Then, ~ r =
(Fx5)-Vo(r) . P-inv & Teinv ! F=r00)
b1 o rxp=(0,-rp,,rp,)
= (pes¢ p¢Sa) or _F((r x P) S)E
=(/-5 1op
r or

In practice, one often uses the form

1 Ve (r) where A=const. and V (r) is one-body central potential such as

V. (r)= ﬂ(ﬁ 5)=
ror the Woods-Saxon potential



In the presence of spin-orbit potential V,(r) (o (7-5) ), _(z-§),€z] 20
the total angular momentum of nucleons }
- = : 1 ?-5),s, |#0
((7-5),0,+s,]=0

becomes a good quantum-number. -( )l Z}
2

H :_h_A +V(r) — quantum number of one-particle motion (£,s, m,, m,)
2m

2
H=—2tA +V(r)+V,(r)  — quantum number of one-particle motion (£,s,j, m;)
m

Josyo e e 1] gy 11 _ 01 for j=2—1/2
(t S)_z{J Fos }_2{1(”1) H{e+D 2(2+1)} B { ¢ for j=12+1/2
- 1 1.
H\P gLIJ \PZFjo(r)ngmj where ijmj = Z C(&E’J;mwms’mj)YEm((9!¢)11/2,m5

The radial part of the Schrodinger equation becomes

d® «(r+1)  2m
dr®  r? n*

(Egj -V (r) —V[s(r))} Rfj (r) =0
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0(0+1)

Height of centrifugal barrier oc “RZ where R,>r, A3
h
The height : higher for smaller nuclei
e height - higher for larger { orbits

ex. For the Woods-Saxon potential with R=5.80 fm, a=0.65 fm, r,=1.25 and
Viys=—50 MeV ;

height of centrifugal barrier

0 MeV
0.4
1.3
2.8
5.1
8.2

OO P OWODN 2O e

o u uu




Height of centrifugal barrier ;

1) well-bound particles are insensitive.
2) affects eigenenergies and wave-functions of weakly-bound neutrons,

especially with small {

3) affects the presence (or absence) of one-particle resonance, resonant energies

and widths.



radial wave function (fm™"?)
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For a finite square-well potential

V(r) The probability for one neutron to stay inside

the potential, when the eigenvalue ¢, (<0) — 0

v
-

—L e, 7 o 1 2 3 £ (#0)

Ro
[IR,(r)[Fdr 0 1/3 3/5 5/7 (28=1)/(20+1)
0

Root-mean-square radius, r

_ 2
'ms,» Of one neutron; I = <I’ >

In the limit of €,(<0) — O

Y2, o for £=0

lims o€ (_5ng
(-g,) M — o for £="1
n

finite value for £1=22



Spherical nuclei : unique behavior of low-{ orbits, as ¢,(<0) — 0

Energies of neutron orbits in Woods-Saxon potential
(R=r A" with r,=1.27 fm is varied. )

E, MeV

=30

151
—40k s /2

1 1 | 1 1 1 1 1 1 1

1
0 20 40 60 8o 100 120 140 160 180 200
A

Figure 2-30  Energies of neutron orbits calculated by C. J. Veje (private communication).

Change of shell structure

— 1dy;,
—1dg,
— 1d,, 2syp;
— 284
— 1dg;,

Strongly Stable sd-shell Very weakly
bound nuclei bound

in finite-well potential

There is no neutron {=0 (s) resonance !




One-particle resonant level in spherical finite potentials ( Co tial )

For ¢>0 and r— large

R,(r) «c cos(9, )krj,(kr) —sin(o,)krn, (kr)

0, : phase shift

/2 /T

gl’es

where k2 =—¢g,

The width of the resonance;

N
do
de|,_,w

I =

The resonance energy &S is defined so thatthe phase shift 6, increases with energy ¢

as it goes through 11/2 (modulo ).

For example, see ; R.G.Newton, SCATTERING THEORY OF WAVES AND PARTICLES,

McGraw-Hill, 1966.

At ¢*s; (1) a sharp peak in the scattering cross section;
(2) a significant time delay in the emergence of scattered particles;
(3) the incoming wave (i.e. particles) can strongly penetrate into the system;

) N



ds, ‘

Resonance < time delay < —=|_ >

scattering amplitude f(k,cos ) =k™) (2¢+1)e" sin §,P,(cos )
(=0

For r— « |, awave packet in a scattering is written as

[dkg(k)expli(k -7 —Et) |+ [ dkp(k)r  expli(kr — ED]f (k,cos8)  (s)
where ¢ (k) : sharply peaked around k = k|,

Assume that at k=k, a sharp peak only in a given £ channel.
For very large t (= time), the 2"9 term in ($) contributes only at the distance

r =~ 2k ddie - ~) for k=k, 5,(k)~ 5, (ky)+ i' Kk, (K= Kyo)
m 0
ik (r+ dgf\ “ 1)
ai(kr- Et)e dk‘k o _ g = dk ! 2m
i 2m do,
Time delay caused by the sharply changing term e'5f inthe f: ty, = k dk ‘k Ko
(iji" >0 — time delay in the emergence of the scattered partlcles
ds, — time advance !

<
dk



B-stable nuclei

One-particle levels which contribute
to many-body correlations

neutron drip line nuclei — role of continuum levels
and weakly-bound levels

vI(r) v(r)

I _J Continuum levels I T === 1ir -

>r >r
%

Z 7,

Importance of one-particle resonant levels with small width I in the many-body
correlations.
Obs. no one-particle resonant levels for £ =0 (i.e. s) orbits.




Some summary of weakly-bound and positive-energy neutrons
in spherical potentials  (3=0)

Unique role played by neutrons in small £ ; s, p orbits

(a) Weakly-bound small-£ neutrons have appreciable probability to be outside
the potential;
ex. For a finite square-well potential and ¢
0 for s neutrons
1/3 for p neutrons

2 (<0) — 0, the probability inside is

Thus, those neutrons are insensitive to the strength of the potential.

—  Change of shell-structure

(b) No one-particle resonant levels for s neutrons.
For a given ¢, > 0, higher-t orbits have one-particle resonance with smaller width.
One-particle neutron resonance with lower-{ disappears at a smaller ¢,; (> 0) value.

— Change of many-body correlation, such as
pair correlation and deformation
In nuclei with weakly-bound neutrons



2.2. Hartree-Fock (HF) approximation — self-consistent mean-field

A mean-field approximation to the nuclear many-body problem with
rotationally invariant Hamiltonian,

#2 Popular effective interaction, v; , is
H = __ZAi 4 Zvij so-called Skyrme interaction -
2m 5 i<j many different versions exist, but

in essence, S(F - rj) interaction

“effective” two-body interaction plus density-dependent part that

simulates the 3-body interaction.

phenomenology !

The total wave function W is assumed to be a form of Slater determinant
consisting of one-particle wave-functions,

@ (F;) (ifand j) = 1,2, ..., A

Variational principle S(W|H|¥)=0

together with subsidiary conditions  [|¢,(F) [ d°r, =1

leads to the HF equation.

OBS. The HF solution w is not an eigen function of the Hamiltonian H.



@ () o,()

Y(1,2) :i
, o,()  o,(1)

ex. HF equations for 2 particles (a simple example !) A

2

Ao ®) + @) 0, (P P (F)AT — 0, (B) [ 0, (FW(E Py () = 2,60, E)

2m

2

A, ®)+ 0, @) WV D)o (F)ITZ 0B [ 01" (FW(E F)p, () = 6,0, (F)

2m

exchange (Fock) term (absent in Hartree approximation)

Hartree potential V() and V(1)

Find the solutions, @,(F) and @,(F) , with €, and ¢, , which satisfy simultaneously

the above coupled equations.

The usual procedure of solving the HF equation is;

wf o (1) of V() wf o (1)
) T P vy T Y e

Find self-consistent solutions together with eigenvalues, &,and ¢,.



drip-line nuclei very different N/Z ratio, compared to stable nuclei with a given A

B stable nuclei proton-drip-line nuclei neutron-drip-line nuclei

vin vin V()
r </-\ > T r</\ k r r ::/\ 1 > T
AN

protons neutrons protons neutrons protons neutrons

N
v

AN
%/

Since the Fermi levels for protons and neutrons are very different in drip line nuclei,
this binding energy difference of least-bound protons and neutrons will produce
interesting phenomena in charge-exchange reactions or 3 decays.

Weakly-bound one-proton motion in medium-heavy nuclei may not be so different
from the well-bound one, due to the high Coulomb barrier.



Hartree-Fock potential and one-particle energy levels

V\(r) : neutron potential, Vp(r) : proton nuclear potential, Vp(r)+V(r) : proton total potential

30 RN T, (T . ) 0 2 M (N (01 [ (N O L [ A [ O O
B Proton 2P 2s Neutron S

A typical double-magic 3-stable nucleus 20 - SkM* g

208 "
82 Pb126

MeV
W
o

|

One of Skyrme interactions ; ]

SkM* |
See : J.Bartel et al., Nucl. Phys. A386 (1982) 79. -50

Ve(r)+Ve(r)

—— Occupied states
i - == Unoccupied states »
'go 1 1 I I ] 1 I 1 | I ] 1 l 1 I 1 | l 1 I ] 1 | | |

10 B 0 5 10
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Hartree-Fock potentials and one-particle energy levels
V(r) : neutron potential, V(r) : proton nuclear potential

ex. of neutron-drip-line nuclei
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ex. of proton-drip-line nuclei
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3. Observation of deformed nuclei

3.1. Rotational spectrum and its implication
Some nuclei are deformed --- axially-symmetric quadrupole (Y20) deformation

Observation :
1) rotational spectra  E(l) = Al(I1+1)
2) large quadrupole moment or large E2(I—1-2) transition probability

rotation of deformed nuclei — time-dependent electric field — strong el-mag radiation

For E(l) = Al(I+1),

7 195081
5 182014
5 1708.01 —E(I_4) = 333
8 160585 4 161536 E(I=2)
3 154158
7 143297 7 144897 Km=3~-
6 131148
L ex. In the ground band of '68Er
5 760 4 109405
4 994.77 Km=4- 264081
B 9% 3 g4 - 331
2 82119 79.800
K=2+ )
6 548.73
168
4 264081 ﬁsEr
2 79.800 I
0 0
Km=0+
ret »Sym axis
: 4+“—>
Figure 4-7 Spectrum of '®Er. The data are taken from H. R. Koch, Z. Physik 192, 142 K

A rotational band with a given K consists of members with /= K.
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Observed E2-transition probabilities from
the ground state (I™=07) to the first excited
2* state in stable even-even nuclei.

The single-particle value used as unit is

5 (3 ,Y
B,,(E2) = —e2[— sz =0.30A"3%* fm*
A 5

Bohr & Mottelson, Nuclear Structure,
Vol.ll, 1975, Fig.4-5



WARNING : many different definitions (and notations) of Y,, deformation parameters

4 /2
o) intrinsic quadrupole moment Q, = §<Z rk2>5
k=1

uniformly-charged spheroidal nucleus
with a sharp surface

5_3 RV -(R)’
2 (R) +2(R,)’

I B, is defined in terms of the expansion of the density distribution in spherical harmonics.

or 3, radius  R(0,¢) =Ry(L+ B,Y, (0) +.......)

0scOF € In the deformed harmonic oscillator model it is customary to use
£= 5 =3 0 —W; R;—R,
20 +w R
i 3 av

To leading order, 6=pf,=0,

SC ?
9, =0, for stable nuclei, but 9, <J, possibly for neutron-rich nuclei towards
the neutron-drip-line, since R, >R, ) RO, = R,0, :displacement of the surface



Nuclei with deformed ground state close to the (8 stability line

14OI|I]I|I]T|I[I]I|I[I l

I~ even-even nucleus with E,/E,>2.7 _ )
120 B All stable single or double closed-shell nuclei

- - - are spherical.

100 ?f;f/ :

some typical examples of deformed nuclei :

proton number Z
(@)] Qo
o o
I

By
N
I
®
O.
>
S

40 g -
0 i /:/ _ ] 12C,  Oblate (pancake shape)
<0 | (547, ] 24Mg,, Prolate (cigar shape)
0 4 [ IO | IO NN N ST TN N : I
0 20 40 60 80 100 120 140 160 180 200 rare-earth nuclei with

neutron number N 90< N <112
Region of deformed even-even nuclei mostly prolate

Some new region of deformed ground-state nuclei away from (3 stability line;

1YN=Z=38 ex. [Kr,(oblate?) &Shs (prolate ?)  wZ%o (prolate ?)

2) N =20 ex.  YNe,, ZNe, SMg, SMg,, (“island of inversion”)
~ 11 12 14
3)N=8 ex. +Be& 4 Be; T Bey

etc.



Deformed ground state of N=Z nuclei (proton-rich compared with stable nuclei)

Coexistence of prolate and oblate shape :
Z=36)
rypton isotopes

e

Systematics of the light

-;‘:‘1)‘.

511 T
o 5 346 2 i } w7
* ¥ - 770

G710 it T .

x 456 508 424 # j

& c o W oy ¥ W B 4

pEQ) 7210 85- 102 79 - 102 47 - 103

Shape of the ground state (from Coulomb excitation);

oblate prolate prolate

(A.Goergen, Gammapool workshop in Trento, 2006)

(4+)

2+
0+

-~

Ex.

484

4+
2+

0+
2+

0+

_y 261

76
38 S I’.38

4t —

538

2+
290
0+ XT—m

80
40 Z I'-40

Most probably prolate

OBS. Almost all stable nuclei

with N (or Z) = 40 are spherical.

1363
1269

854
635

0

74
34 Se40

2+ 1671
4+ 1469
0+ — 1300
2+ 918
0+ 0

94

40 Zr54




S(n) = 504 keV

V2- —7— 319.8
Strong E1
1/2 + v O
11
4 Be?

The spin-parity of the ground state,
Y2+, as well as the small energy
distance between the 72 - and 2+
levels, 320 keV, is easily explained,
If the nucleus is deformed !

N=8 is not a magic number !
(in this neutron-rich nucleus)

2315 (4+)
2120 — (4+)
2+
885 66OI o+
Strong E2
0+ 0+
15 Mgy, M3y,
B= 0.52 0.58
S(n) = 5.81 4.16 MeV
E@+)
E2n (2.62) (3.21)

N=20 is not a magic number !
(in these neutron-rich nuclei)



Example of deformed excited states of magic nuclei

4§Ca20 . doubly-magic nucleus, spherical ground state

22064 16%

td
()

20581 _16*

sl strongly-deformed band

15* 19197
4050 142 18125 15504 14t
18 + 14 17700 | 185 T
— +
i 1ose) 4 43 igssi] 14t 3454 3230 Q = 1 80 039 b
16 (12 15750 3466 sz \ t ) — 029 €
o A3sise 2297 | d52711 12t
o ) 1617 M a2ze 120
ﬁ G I “—”"EJPE E‘H? e
=4 ao) 12504 b 1 3229 2546 12328] 10 from Doppler shift measurement
8012 ¢ ot | Lo 2h12 ___[;_ms 10*
5] 10411003
5 3287 T Lk i
Bl 4491 2773 | ) / 9856 | 8
5 L | | gy, —2002 3385 9?07 sl f
g TL_&Q_"1 e - 1:;1'\ (!‘"J T8 1880 + 0_1 1
R 15382004 8 $ m“‘/ 7976 | 6t —_
Q 5 ?_i')‘_)K \ /L}-‘z 1432 > B - 059 — 0 07
m T Tasoe  13ea. \— 209 6544 | o+ )
234
6+ 1260 |19ﬁ-—1—°‘m el
| 5249 _ \ 5280 4* 4’{3” g
263
343 1375
ol i 3905 I 2 /
"""""" 3332 533 0°F
sh40 5630
5 L 3905
gl . ol o0
40
Ca

FIG. 1. Partial level scheme of **Ca; the energy labels are

From E.ldeguchi et al., Phys.Rev.Lett. 87 (2001) 222501.



Implication of rotational spectra :

(1) Existence of deformation (in the body-fixed system), so as to specify
an orientation of the system as a whole.

(2) Collective rotation, as a whole, and internal motion w.r.t. the body-fixed system
are approximately separated in the complicated many-body system.

Classical system : An infinitesimal deformation is sufficient to establish
anisotropy.

Quantum system : [zero-point fluctuation of deformation] << [equilibrium deformation],
in order to have a well-defined rotation.

Indeed,
collective rotation is the best established collective motion in nuclei.



For some nuclei Hartree-Fock (HF) calculations with rotationally-invariant Hamiltonian
end up with a deformed shape !

spherical shape « HF solutions for “closed-shell” nuclei

deformed shape <« HF solutions for some nuclei

7

exhibit rotational spectra

Deformed shape obtained from HF calculations is interpreted
as the intrinsic shape in the body-fixed system.

The notion of one-particle (or one-quasiparticle if pair correlation is included) motion
in deformed nuclei can be much more widely, in a good approximation, applicable
than in spherical nuclei.

*.’) The maijor part of the long-range two-body interaction is already taken into account

in the deformed mean-field.

Thus, the spectroscopy of deformed nuclei is often much simpler than that of
spherical vibrating nuclei.



What can one learn from observed rotational spectra ?

(a) Quantum numbers of rotational spectra < symmetry of deformation

ex. Parity is a good quantum number « space reflection invariance,
K'is a good quantum number «— Axially-symmetric shape ( E(l)oc I(1+1) ),
where K is the projection of angular momentum along the symmetry axis.
The K™=0* ground band hasonly | =0, 2,4,... « shape is R- invariant,
Kramers degeneracy <« time reversal invariance,

etc. l
5] 548.73

(b) rotational energy, E(l) - E(I-2) } o size of deformation l
E2 transition probability . Ly 26406

R-invariant shape : in addition to axially-symmetry, the shape is further invariant w.r.t.
a rotation of 1 about an axis perpendicular to the symmetry axis.
(If a shape is already axial symmetric, reflection invariance is equivalent to R-inv.)
ex. Y,, deformed shape is R-invariant, but not Y;, deformed (pear) shape.

Kramers degeneracy : The levels in an odd-fermion system are at least doubly degenerate.



Pause: Appearance of only even (or odd) angular momenta

Coming from the R-symmetry of Y,, deformation ( or Y,, deformation with even A );

The ground-state (pairwise levels, (2 and —(), are occupied) of Y,, deformed even-even nuclei
(K™= 0%) has r (eigenvalue of R-operation) = +1 and, thus, the rotational-band has members
with /7= 0% 2*,4% 6%, .......

The rotational band based on excited K™= 0~ configurations may have either
r=-1 withmembers ["=1-,3",5, .......
that has been often observed in medium-heavy deformed nuclei
or
r=+1 withmembers /™=0-,2",4-, .......

OBS. The rotational bands based on intrinsic configurations with K™ =1~ have
members ["=1-,2-,3,4",5, ......

Coming from the (Fermion or Boson) statistics ;

The two-fermion system in a j-shell (j : half integer) has only even total angular momentum,
(jz)J where J is an even integer.

The two-phonon system with the same phonon (A : integer) has only even total angular
momentum,

(1%),  where Jis an even integer.



Why are some nuclei deformed ?

Usual understanding ;

Deformation of ground states (ND, R.: R,=1:1.3) « Jahn-Teller effect

Many particles outside a closed shell in a spherical potential
— near degeneracy in one-particle quantum spectra
— possibility of gaining energy by breaking away from spherical symmetry
using the degeneracy.

Weakly-bound nuclei
— possible change of shell-structure
— near degeneracy in one-particle spectra at neutron numbers different
from stable nuclei.

Superdeformation (SD, R.:R,=1 :2) at high spins in rare-earth nuclei or
fission isomers in actinide nuclei
«— new shell structure (and new magic numbers !) at large deformation



3.2. Important deformation and quantum numbers in deformed nuclei

Axially symmetric quadrupole (Y,,) deformation (that has R-symmetry)
- most important deformation in nuclei

A
\: R z-axis = symmetry axis

z

Ri(=R,=R,)<R, prolate (cigar shape) G_. z

R.(=R=R,)>R, oblate (pancake shape) z



One-particle Hamiltonian with spin-orbit potential

H=T+V(r6)
V(r,0) =V, (r) +V,(r)Y,(6) +st(r)(_é ' g) Ya(0) = w/]ﬁiﬂ(&:osz 0-1)

where 6 is polar angle w.r.t. the symmetry axis ( = z-axis)

Quantum numbers of one-particle motion in H
(1) Parity 1= (-1) where { is orbital angular momentum of one-particle.

2)Q—2t+s, )
[Vo1) Yoo (6) , £,+5,1=0 and  [7-5),4,+s5,|=0



4. One-particle motion well-bound in Y,, deformed potential
V(r,0) =V, (1) +V, ()Y, (8) +V,(r)(£5)

4.1. Limits of small and large deformation

Small deformation and/or high-j orbits

(Vo (N)Y(0)) << (Vo (N7 -5))

those pushed down by (Z , g) potential :

Single j-shell :

eX. JoisNy1i2s T4z 50

j (= one-particle angular momentum) is (approximately) a good quantum number.

Q==xj, £(-1), ..... , £/2  : symmetry-axis component of j

(01 | BY 5| €12, ) # 0 only for Q, =Q,

In the linear order of 3, the Y,,deformation

one-particle states with = Q) .
One-particle wave-functions remain the same
for 3 # 0.

only shifts ( « B) the energy of doubly-degenerate

spherical : (2j+1) degeneracy
— Y,,deformed : + Q degeneracy

j=11/2 shell

€a [Q]=11/2
|Q|=9/2
|Q|=7/2
|Q|=5/>2
|Q|=3/2

|Q|=1/2
o B
oblate T prolate
spherical sym




Large (or realistic) deformation

<V2 ()Y, (9)> >> <szs (r)(z : §)>

Many j-shells coupled by Y,, deformation

(D" =(-D"

: : _ J
<€11191‘f(r)Y20‘€2J292>¢0 for g_!l _QZ /"
“1 - Jz‘ <2 > >Z
(@) sym axis
That means, ina Y,, deformed mean field with spin-orbit potential
(One-particle angular-momentum | is not a good quantum-number. [H,j] #0)
( Q : projection of one-particle angular-momentum along the symmetry axis, and
. a good quantum-number [H, J,1=1[Ys, J,]1=0 Q—dJd,=L,+s,
\ T parity = (—1)£
are good quantum-numbers.
For example,
Qm=1/2* Sq25 a0y Aoy G7/2:9g/p 5 -+ , components £..=0
Qm = 3/2* dsos deny G705 op s iqqy2 -+,  COMpPONENts [ =2
Q"=1/2~ piosPaps f50s f705 Ngpp s ..., COMpoONenNts b =1
Qm=3/2-  Paasfens 72, Ngs Nygps o , components lonin = 1




Y, deformed harmonic-oscillator potential

Vet ho. = %(wzzzz + a)i (x* + yz))

One-particle energy (€(N) at =0 splits into (N+1) levels).

g(n,,n)= (nz +%jha)z +(n, +1)ho,

8
8 190 168 n
140
7 e 12 7
110
100
6 70 80 6
13 68
A 60
% 5 “w 40 5
ol 40
: 3
S
z A
i
= -3
w
-2
1:2 2:3 11 3:2 2:1 31
Lty . V ' ' Y .
| 1 1 ] | ] | 1 | 1 1 1 | 1 1 1 1
-1.0 -05 0 05 1.0
oblate b= 225 rolate
(C()Z > a)L) ate osc o prola (a)z < a)l)

Figure 6-48 Single-particle spectrum for a{al]y symmetric harmonic oscillator potentials.

spherical
sym

<V2 ()Y (9)> >> <szs (r)(z : §)>

3 0
hao| N+—=—-—3n,—N ~
w( 23t )j 6=f
where
n,=n,+n, N=n,+n, +n,
ZUEE(COZ-FZG)L) 5=3-"% ~RR
3 20, + o, R..

g(n,,n,) has 2(n, +1) degeneracy.

spin 4y

n .=01...n,
Denote one-particle energies by [n,n n, or
[N nZ nX ] or [N nZ /\] (Cf [\/def.h_oll LZ] =0
A (=L,)=%n£(n -2), , ¥1or0

Asymptotic quantum numbers
[Nn/\Q] where /\>O,Q<:LZ+SZ

V4
=Nx% >0

including spin (= 2)




0’7" + o (X* +y?)

= %(cof + 2ce)j)(x2 +y°+ 22)+%(a)22 —a)jXZZZ —(X*+ y2))

& \/?r%o (0)

f(r) + ¢ 6 r* Yp(6)  uptil 0(0)

Q

h.o. potential :
{ no surface — maybe applicable for strongly bound system

no spin-orbit potential — maybe applicable for large deformation /J,‘

»

One-particle levels in axially-symmetric quadrupole (Y,,) deformation P > (sym ;)Z(is)
Q(<1J,)

(prolate or oblate shape) are denoted by

[INn,A Q] : asymptotic quantum-numbers. A(«<L,) with Q>0 and A>0

where Q and parity ™= (-1)! = (-1)N is a good quantum-number.

One-particle energy is degenerate for £Q)

One-particle levels for a finite quadrupole deformation 3 are often denoted by [N n,A Q] ,
since for |3[>0.3 the wave functions are approximately expressed by [N n, A Q], except high-j orbits.



4.2. “Nilsson diagram” — one-particle spectra as a function of deformation

Ex. [harmonic-oscillator + surface effect + spin-orbit ] potential = [modified oscillator] potential

Doubly-degenerate (+ Q) one-particle levels are denoted by

asymptotic quantum numbers [N nZ/\ Q] with A, Q>0, N=n,+n.
AN>0)=ni,n.-2,...,10r0

which become good quantum numbers for very large |B] .

oy f%
] " n=2 For B (~0)> 0 (prolate shape)
Z n,=0

1) [prolate] For agiven N : ¢, — lower for n,— larger

400
| —

| —

ex. Nilsson levels in sd-shell (N=2)
50
~ N=2 Qm=1/2* Qm=3/2* Qm=5/2*
325 |- | n=1 €
[200 1/2] 002 3/2
2ol [211 1/2] {2?1 2;2} [202 5/2]
[220 1/2]
S~ [220v2]
A I LR ey o 2) [surface] For given {N, n_}: ¢, — lower for A — larger
Pe - [101%2) B
L me e T 3) [spin-orbit] For given {N, n_, A} : ¢, — lower for Q — larger
""""" P3 h‘hh‘"‘-.._
225 | "ﬁ'(‘);::IZ] @ H“m.“_‘
T [1ov]

-05 —0:". -03 =02 -01 Ul_'l Ele 013 UJ.-‘i 01.5 At Iarge B (~ 6)’ € oC — 5(3”2 o N)

:
oblate f prolate i.e. € as afunction of B depends only on [(3n,— N)

spherical



Proton orbits in prolate potential (50 < Z < 82).

J7/2, dspp , d3;p @Nd s4, Orbits, which have = +, do not mix with h,,,, by Y,, deformation.

[N=4, n,=0]
F TR T L T.:\IJ SR : i /
“ 40
{75260
<Xtz Levels are doubly degenerate
e | with £ Q.
88} 4153372
. \—ws:h;
11
= high-j orbit JEE?D;:E At small 6 and h,,,, orbit,
with 7= — 3 S W0 S 111 2] 5
B S i mm—— N € o« 0 (30— j(j+1))
= B\
(651 ¥2) At large 0,
e N
ias € o« Tl
e \ — ~ ":.--\t[!;M 2]
=
N
— e Al \.\ \ [N:4, nZ :2]
plhs == 0 5 TR0
g 3% 838 T E 3
1 . . : ; J . At © > 0.3 for prolate shape
0 m 02 0.z 04 05 06
Bis quantum numbers [Nn, AQ] work

Figure 52 Proton orbits in prolate potential (30 < Z.<82) The spectra.in this and the We”, except fOl' hlg h'J OI’bItS



Table 1.

Ex.1. Deformed one-particle wave-functions denoted by the asymptotic quantum numbers
[N n, A\ Q] are expanded in terms of spherical basis.
(A modified-oscillator Hamiltonian was diagonalized.)

[ NnsAQ] j=1/2 j=3/2 j=5/2 j=1/2
(101 1/2] 0.920 0.392

(220 1/2] —0.523 ~0.285 0.803

[2113/2] ~0.236 0.972

[202 5/2] 1.000

[2111/2] 0.419 0.735 0.533

(200 1 /2] 0.743 ~0.615 0.265

(202 3/2] 0.972 0.236

(330 1/2] 0.279 —0.646 ~0.188 0.685

Table 5-9 Single-particle wave functions for nuclei with 19 < 4 < 25. The table
gives the expansion coefficients (N{j@|r) of the one-particle orbits » labeled by
the asymptotic quantum numbers [Nn;Af]. The wave functions are obtained
from the Hamiltonian (5-10) employing the parameters of Table 5-1 and the
deformation 8§ =0.4. The phases are as in Table 5-2b and Eq. (5-17).

parity of the states: 7 =(-1)" =(-1)'

OBS. Various computer programs are at present publicly available if one is satisfied with
the diagonalization of modified-oscillator Hamiltonian.



Table 1.  (continued)

Ex.2. Using Tables 5-2a and 5-2b in A.Bohr and B.R.Mottelson, Nuclear Structure, vol.ll,
one obtains, for example,

Normal-parity orbits;

| [411 3/2] > = 0.926 | 411 3/2> + ...
= 0.418 |gg, > — 0.140 |g,,, > + 0.864 |d,,, > + 0.246 |d,,, >

| [411 1/2] > = 0.900 | 411 1/2> + ...
=—-0.163 |g,,> + 0.396 |g,,> — 0.099 |d,,> + 0.848 |d,,> + 0.297|s, >
| [400 1/2] > = 0.968 | 400 1/2> + ...
= 0.147 |g,,> — 0.072 |g,,,> + 0.539 |d,, > — 0.160 |d,, > + 0.811 |s, , >
High-j orbits;

| [532 5/2] > = 0.861 | 532 5/2> +...
=0.882 |h,,,> + 0.339 |hy, > — 0.244 |f,, > — 0.062 [f,,, >

for proton one-particle wave-functions at deformation & = 0.3, which are obtained
by diagonalizing a modified-oscillator Hamiltonian,
H=T+ V(,0) plus (€s) potential

OBS.
| [411 3/2] > : states obtained by diagonalization

| 411 3/2 > . bases states exactly expressed by the quantum numbers N n,A Q




Intrinsic configuration in the body-fixed system

J"' f?"f h'?\‘\

- LY
L [303 7] ~
E b [Poza]

[200%2]

=% [20:%4]
(33072

i [2171744])
EFEES 2113
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o |
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“© 00
300
i
=l [220V3)
2TE | TELL == [101%]
! e ______-HL
i Pz = D133
2.50 - ..J-—""%
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sl - @) #f.,_‘_‘

" [ie]
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Good approximation ;

(a) In the ground state of eve-even nuclei
A
K=>Q =0
i=1
Namely, + Q levels are pairwise occupied.

(b) In low-lying states of odd-A nuclei

A
K=>Q, = 0 of the last unpaired particle.

i=1

The rotational band based on [N n, A Q]

Low-lying rotational bands in deformed odd-A
nuclei may well be classified in terms of
one-particle orbit [Nn, AQ] occupied by

the last unpaired particle.

(@) 12K («—15)=0Q

(b) the bandhead state has /=K.
Exception may occur for K=1/2 bands.

(c) some irregular rotational spectra are

observed for K=1/2 bands.



ex. The N=13 th neutron orbits observed as low-lying excitations in Mg, , - a textbook example

[N n z/\ Q] Bohr & Mottelson, Nuclear Structure, Vol.ll
IIIHIIII|1|!|||I_II|[Ill]]I_II|IIIllIIII|II|IIIIIII_llIll]JII 574 (1/2)
Neutron one-particle levels in Woods-Saxon potential 545 (11/2)
4 - = Q=1/2 ee= Q=32 == Q=52 == QF=7/2 - —
- Vs = - 50.0 MeV R =3.66 fm = 4704 92
2 e o :_ 4277 V2
] B 3905 54 3970 Y2 4057 /2
0 t .................. 5 _—— e K = 9/2 +
9 i gt A L T B 3.405 Sk 3816 32
%J 2 C Ka=1/2 -
3 B 3, [3301/2]
= 4 3 e, ] & 2738 /2 22_._-2212 1:; Aaone f7/2
a T 300 2] . . 2562 /2 a,--0.400
W . [ ] 1., b Krt= 12+ :
6 — @ ~ 1960 55 [2007/2]
-0 ) B30 1/2f%., [ oo e A=ous0
— S 2111 - 1614 2 Aq=-0.071
— — +«—
] ! [202 5/2] \_ 0975 3/
-10 ' — 0585 /2
. 1 - Km= 12+ _ M V
-12 IIIIIIIII|IIIIIIII!|IIIIIIlII!IIIIIIli|IIIIIIIII|IIIIIIIII o 5{2[21_‘”2] S(n)_73 e
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 [20252] "' 25
A =0.231 12M3g 5

(oblate) B (prolate)

The above interpretation of the data works quantitatively :

Nilsson levels : double (+Q)) degeneracy N o
measured large E2 transitions within the bands

> B=04
observed E2- and M1-intensity relations
—  g°"=(0.7 - 0.9) g/free



Some selection rules in terms of exact quantum numbers, |, K, or Nn,A Q
( More complete formulas are given in Table 2.)

1) Between states (I,K) and (1',K")

EA or M4 transitions are forbidden for |1 -1'> A

Ei1 or M4 transitions are forbidden for |K-K'>4 , evenif [ —I'[< 4

( “K-selection rule” )

—

2) Notingthat M1oc ¢ OF'S  and GT oc S

(zxiwy)\anA@ oc [N,n,+L,A+LQ+1)  or oc [N,n,-LA£1,Q+1)

(,INn,AQ) = A |Nn,AQ)
(s, tis,) anAQ> = K%$Zj(%i2+lﬂ IN,n, A, Q1) where
S, > T=Q-A
S INm,AQ) = 3 [Nn,AQ)

How well “K-selection rule” of 1) works in reality exhibits how good axial symmetry is.

The selection rules in 2) approximately work for transitions
between realistic one-particle states, [Nn, A Q] and [N n, A" Q’], if §>0.3



Table 2.

Selection rule of one-particle operators between one-particle states
with exact quantum numbers, Nn,A Q.

Matrix elements of the most important operators in the asymptotic basis, and their selection rules

Operator 04N AN, 4d A 49 N'NAOINN. 4> The matrix elements between realistic levels with
5 0 e o 0 o 4z the assigned asymptotic quantum numbers,
S Fl1 0 —3@£2) [(N:+1) W-NFA) I . .

O S ELFL 0 D) N (V- Ntd 2 [N n, /A Q] , can be obtained, to leading order,

o o
N o
o o
o o
o o

A24+A442 [N, (N—N,+1)]+(N—N,—4) 1
i (¢ R ) from this table.
[N: (N;—1) (N—N,FA+2) (N—N.—A+2)J+

12

=
b
o
o
o

2z’ +1 &1 0 0 0 " o BN sup)lt - @@
E1 operator
+1 0 1 0 1 do BN-N£A+DE o ————

FEV 4 0 41 0 41 FeL BN—NFAR

0 0 0 0 ¢ (N:+13)
te.? [(N+1) (N 42)1%

0
-2 -2 0 0 0 $c.? [N, (N.—D}*
o o o o o 12 (V=N +1) \
x24y2 2 0 0 0 0 —4c, 2 ((N=N,+A4+2) (N—N,—A4+2)}¢ \
E2 operator

N

M
(5]
]
(=]
(=]
(=]

—#c,? [N—N;+4) (N=N,— )}

b
o
o
(=]
=]

o 1 &0 i Fherer [(Na+1) W—N,FA)
raexyy © T 0l teyc [N, (NN, £4+2)]
72 L+l 0 +1 tieic, [(N;4+1) W—N, £4+2)}4
-2 -1 £ 0 il Fiese [N, N—NF D
o 0 &2 0 42 —c,? (N=N.F4) (N—N,£4+2)}
(' +iy)? 2 0 42 0 +2 3012 [(N—No£A4+2) (N—N. A +4)]+
—2 0 42 0 &2 $c,2 (N—N.F4) (N—N,FA-2) 1t
L 0 0 0 0 0 A \
o 1 £ o i D) (NN A M1 operator
Lkl 0 ~1 & 0 &l —& [N, N—N,:4+2)}
T 2 Ll 0 1 D [(N,+1) (N—N,£4+2) 1}
-2 -1 +1 0 +1 2 [N; (N—N.FH))*
S 0 0 0 V] 0

‘ o P — Gamow-Teller operator
Sockis, 0 0 0 +1 1 [GF2) GZ+DH

If you use this kind of tables, you must be careful
about the sign of the non-diagonal matrix elements,
From J.P.Boisson and R.Piepenbring, Nucl. Phys. A168(1971)385. which depends on the phase convention of

wave functions !




) 1 .
Table 3. (1) ],Q) = —Rf,-(r)Z C(¢,1/2, j;m,mQ)Y,. (0.4) 211,

<212‘rl‘€1h = Tderzjz(r)Rfljl(r)ri
Matrix-elements of one-particle operators |nO I(fs)], Q> representations
((£28) 12, QIr Y[ (£:9) 1, Q)
_ 5((_1)zl+z2’(_1)/1)< 212|I”1|€111>( 1)11+12+1+/1( 1) \/(2122(12)22:21;1)
C(J,1A41/2,-1/2,0) C(}), )4 Q2,-Q,0)

<(€23) jz , Q) +1‘r;tY,11‘ (615) jl’ Q>

S 8 N Ty G N
C(j,jA1/2-1/20) C(j,jA;Q+1,-Q1)

= (_1)<(€13) 1, Q rlYi—l‘ (£58) Jp, Q2+ 1>

((€,8) 15, Q2+2[r*Y | (£:5) 1, Q)
= 162 I i 1+ 1o +1+ - (2-1 1)(2-2 1)
S0 O e b r| gD (g e (BRI
C(j,j; A1/ 2,-1/2,0) C(j,j,A;Q+2,-0,2)
= ((08) Ju, QY| (0,8) j,, Q2+ 2)




Table 3 (continued) (s.=s,tis, etc.)

(20 |00) = [drR, (DR, (1)
0

((£,9) 1, Q+1]s.|(£:5) |1, Q)
= 5(@1’62)(_1)f1+j1+1/2 /3(2 jl +1) C(Jll, jZ;Q,l,Q-i-l) W(1/2, j2,1/ 2, jl,fll) <€2j2‘€1j1>

((£,9) J,, Q+1)1 |(£:9) 1, Q)
= (0, 0,) (D)2, + 1) 4 (0 +D)(260,+D) C(jli; L+ W (L, j, 0, 1/ 2,0)
(202101 10)

(,9)§, Q) = (i, i)V - +Q+D) (L) |010)

((£,9)],, Q+1

J.
((£25)J2, s, | (£19) 1, Q)
= 5(61’f2)(_1)£1+j1_1/2ﬂw C(j1111 121Q1019) W(1/2’ j2’1/2’ Jl’fll) <€2j2‘€1jl>

((€,8) 15, Q] (£:9) ], ©)
= 5“1’62)(_1)(1“#1/2\/2j1+1\/€1(€1+1)(2€1+1) C(11),;Q0Q) W(l, ], 0, ],;1/2])

ALYy




Table 3 (continued)

Phase convention in wave functions - important in non-diagonal matrix-elements

1) The coupling order of spin and orbit angular momentum ;

() or (sbi;  |(s0)j)=(-12""|(Ls)])

2) Angular part of one-particle wave functions is defined by ;

Yfmz (9’ ¢) or ingmZ (‘91 ¢)

3) The phase convention of R, (r) ;

( >0 (or <0) for r—0, or

R,;(r) { >0 (or <0) for r—verylarge, or

\ output of computers



5. Weakly-bound and resonant neutron levels in Y,, deformed potential

harmonic- i ntia

5.1. Weakly-bound neutrons

Remember the Nilsson diagram based on
modified oscillator Hamiltonian

for the sd-shell —

6 doubly-degenerate levels in sd-shell
3 Qm=1/2* (1,,=0)
2 Qm=3/2* (.,,=2) ( 12 particles
1 Qm=5/2* (1,.,=2)

min~—

4.00

3.78

350

3.25

e/h@

3.00

2.75

250

2.25

[N n,A Q]

» f
Pt T2

=
-7 [3037%]
»

-~

-
——— -

LN
Y

———

| [2023/2)

M\ [20254)
[330'2)

[~ [211/2]¢

— [2113]¢

N [220v2] %

== [0112]

_— [1013%]

-
-
e
-
——

\‘l-
~ [11014]

| - [2901&}*

-05 -04 -03 -02 ~-01

0

6050

01

02

0.3

04 05

A.Bohr and B.R.Mottelson, vol.2, Figure 5-1.



ex. Radial wave functions of the [200 %] level in Woods-Saxon potentials.

(The radius of potentials is adjusted to obtain respective eigenvalues ¢ .)

—~ 05

fm—1/2

0.4

(
=
w

RADIAL WAVE FUNCTION

0.2
0.1
0.0
-0.1
0.2
0.3
-0.4

QT = 1/2" one-particle level has ¢

As £, (<0) — 0, the structure of one-particle wave-functions may deviate

from [N n, A Q], even for |B| — large.

Nevertheless, one-particle levels are denoted by original [N n, A Q].

min

Bound state with £, =-8.0 MeV.

pocn v b b b b b b b b
=| One-particle bound radial wave-function of [200 1/2]  E
I n Vs =— 51 MeV, B=05, en=—8.0MeV =
ENE R, =4.028fm and (Ry1.27)°=31.9 3
\
3 &~ .' —— Raplr) =
;:.l = == Ruplr E
_g r:: .-__.“\ ....... Rusol) g_
él. R LR ;
s TTT | TTTT | TTTT ‘ TTTT ‘ TTTT | TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT -
0 5 10 15 20 25 30 35 40 45 50

r (fm)

Similar behavior to wave functions in harmonic osc. potentials.

=0 component.

Si2
ds),

d5/2

Bound state with £,=-0.0001 MeV.

—~ 05

-1/2

0.4

(
o
(&)

RADIAL WAVE FUNCTION

0.2
0.1
0.0
-0.1
-0.2
-0.3
0.4

One-particle bound radial wave-function of [200 1/2]

VWS = 51 MeV, B = 05,
Re =3.338fm and (R,/1.27)°=18.15

gn=—0.1keV

Radial wave function is normalized with r. .= 60 fm.

;"\ Rarilr) g—

: “ - == Ay g
' S et Rysplr) =
A—
- 5
|\||||\l\||||||\||||||\|\|\|\\|\|\\HH|HH|\|\|E
0O 5 10 15 20 25 30 35 40 45 50

r (fm)

Wave functions unique in finite-well potentials.



For ¢ — 0, the s-dominance will appear in all Q™=1/2* bound orbits. However,
the energy, at which the dominance shows up, depends on both
deformation and respective orbits.

ex. Calculated s., probability in three Q™=1/2" Nilsson orbits in the sd-shell
as a function of energy eigenvalue ¢ .

12 Pl e bvv o b b b b b b
1'1 Sy probability in [220 1/2], [211 1/2] and [200 1/2] orbits

VWS=_51 MeV B=05
1.0

0.9
0.8

-
= 0.7
806
05

Q.
0.4
0.3
0.2
0.1
().() T I‘I I \| T \| 1 \I| 1 \I| T ‘I\ I |II I |I T |\ T
10 9 8 7 6 5 4 3 2 1 0

gq (MeV)

[220 1/2]

III\‘II\I|\II\‘IIII|\II.\-|.I.I.\.I.|\III|II\]-|\III|IIQ_)III|II\I




Deformed halo nuclei
£ =0

min~

QQ™=1/2* neutron orbit — s,,, as |eg|— 0.

. deformed core

, irrespective of the size of deformation and the kind of one-particle orbits.

The rotational spectra of deformed halo nuclei must come from the deformed core.



probability
© oo
(62 I o) TN |

Ex. Qm=1/2- and 3/2 - one-particle levels have { . =1 component.

The p-components increase as €5 — 0, but the probability at e,=0 depends on
respective levels, deformations, and the diffuseness of potentials.

Calculated probabilities of (£j) components of one-particle [N n, A Q] levels in the pf shell
as a function of energy eigenvalue ¢ .

—
= N

i B =
®© © o

AETARRRRARNRRARRRRARAAN

o
~

O 000
o= v w

[330 1/2] orbit

pov el by r e bevv v bovn o Povw o bovn o byp oo bvvaealonns

P12 Pas fs2 and f;, probabilities in the [330 1/2] orbit
R=3.990fm (A=31) B=03

—
[ —
—

Lotiilinn
/

1
Ay

—
—

[NERARRARARRARANY

P12 __,_.——-’?/

L [ L l L | LI | L | L l L | L | LI 1 LI Il$'
10 -9 -8 -7 -6 -5 -4 -3 -2
gq (MeV)

|l|l|||1l|||ll|]ll|l||III|IITUI]T”T]III]|II|1|IIIIiIHI

-1 0

probability
© 0 0o
E=NN &) B> BN |

[ Y
- PN

2o =
® © o

©coo
- N W

o
o

[321 3/2] orbit

pora v be o by o b bo v v b by s b liaag
3 Pse fs2 and f;;, probabilities in the [321 3/2] orbit E
_g R =3.990 fm (A=31) B=0.5 g
e =
3 D
é \E
&
s Sl E
- T o e
T I T T T T T T I T T
10 -9 8 7 6 5 -4 3 -2 -1 0

eq (MeV)



€, (MeV)

5.2. One-particle resonant levels in deformed potential — eigenphase formalism

10.0 A T T N I T T T T T O O I
9'0 1 One-particle energy in Yy, deformed potential -
80 Woods-Saxon o
70 ] —eoQ"=1/2" £ . =0
60 1 o-o[2113/2] ¢ =2o[
5.0 m-m[3301/2] 5 gl
4.0 - N
3.0 1 —
2.0 1 [
1.0 ] * [
0.0 oy
-1.0 ] \h . VWS =—51 MeV [
2.0 B=05 =
-3.0 — —
4.0 - b'\Q —
-5.0 . N
'60 I I | I‘ | | | | | | | | | |

T ]
4 6 8 1012141618 20 22 24 26 28 30 32 34
(Rfro)®

f

potential strength

W-S potential parameters are fixed except radius R.

(ro=1.27 fm is used.)

1) The majority of bound (g, < 0) neutron
Q™= 1/2*levels do not continue to one-
particle resonant levels for €, > 0.

Even the resonant levels surviving for very
small £,>0 die out at small ¢,

if an appreciable amount of { . =0
component is contained in wave functions.

2) The . value in the components of
deformed wave functions is crucial for both
the width of one-particle resonant levels
and up till which value of €, ( > 0) the
resonant level can survive.

3) One-particle levels die out at smaller
£, (>0) values, for the potential with
a larger diffuseness.



Radial wave functions of the [200 %] level

Si2 == dy

The potential radius is adjusted to obtain respective eigenvalue (¢, < 0) and resonance (g, > 0).

Resonant state with €5 = +100 keV

RADIAL WAVE FUNCTION (fm '#)

BoundstateW|th£Q=—O1 keV 3.00_HH|\\III‘I\H‘IIII|\H.\|III\‘IHI‘lII\I‘HH|III\_
3 One-particle resonant radial wave-function of [200 1/2] F
0.25 v b b b b b b b b i b 2250{ Vws=—51MeV, =05 &=+01MeV —
=7 7 One-particle bound radial wave-function of [200 1/2] [ 0 . Ro=3.334fm and (Ry/1.27)° = 18.0854 -
0.20 _: Vws=—51MeV, [=05 ¢g,=-01keV :— |: 2.00 E < Total normalization of radial wave-function is arbitrary. ;
8 Ry =3.338fm and (Ry/1.27)°=18.15 - % 150 Renlt) o
0.15 _E Radial wave function is normalized with r_,.= 60 fm. E_ E . -
0.10 C gswzir; — g 1.00 E =
n === Fggpll » n o
0.05 _; ....... ResnlD) ;_ g 0.50 E ;
000 —i -.-_-.-_-_-_-_-_:-_:------.-'-T-T.'.'.T.'.'.f..-.'.‘.'r\.'l'\.'l'-'l'.nn.n.n.n.nnn—i— EI OOO E ;
010 = ULV ol
_015_3 f_ '1.507\H\|\\II‘I\H‘IIII|\H\|III\‘IHI‘II\I‘HH|III\7
] (a) [ 0 5 10 15 20 25 30 35 40 45 50
-0.20 I I B r(fm)
0 5 10 15 20 25 30 35 40 45 50
r (fm) Existence of resonance < d component

Width of resonance <« s component

OBS. Relative amplitudes of various components inside the potential remain nearly the same
foreqg=-0.1 keV — + 100 keV.



Neutron resonant levels in deformed potential

One-particle resonant levels in deformed potentials are defined using eigenphase formalism :

One eigenphase §, increases through 11/2 as €, increases

—>  one-particle resonance in deformed potential

I.H., Phys.Rev. C72, 024301 (2005); C73, 064308 (2006)
R.G.Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966)

(Among an infinite number of positive-energy one-particle levels, one-particle resonant levels
are most important in the construction of many-body correlations of nuclear bound states.)

In the limit of B — O the definition of one-particle resonance in the eigenphase formalism

—> the definition in spherical potentials in terms of phase shift.



For &.<0 Do not restrict the system in a finite box !
Q

Rejgz(r) oc 1k, (e, r) for I — oo
where K, () is the modified spherical Bessel function of the third kind, and
as =— 22;99
For &,>0
R0 () oc €0s(5,,)r], (1) —SIn(S,)rn, (e, 1) for I — 00

— sin(e, I + &, —6%)

where , 2m
&, =5 6o

5Q . eigenphase common to all éj channels

Due to the axially-symmetric deformation, radial wave-functions Rm(r) for a given Q but
different {j values are coupled. All ({j) components of a solution of coupled-channel equations
have a common eigenphase.

A given eigenchannel : asymptotic radial wave-functions behave in the same way for all
(fj) components.



One-particle resonant level in a deformed potential :
one of eigenphases 0, increases through /2 as ¢, increases.

%

A

/2 // > £Q

res

When one-particle resonant level in terms of one eigenphase is obtained,
the width ', of the resonance in the intrinsic system is calculated by

2

FQ = . intrinsic width

ds,
de, e




I.H., Phys. Rev. C73, 064308 (2006)

Some comments on eigenphase ;
1) For a given potential and a given ¢,
there are several (in principle, an infinite number of) solutions of eigenphase 9 .

2) The number of eigenphases for a given potential and a given ¢, is equal to
that of wave function components with different (£,j) values.

3) The value of 3, determines the relative amplitudes of different ({,j) components.

4) In the region of small values of €, ( > 0), only one of eigenphases varies strongly
as a function of €5, while other eigenphases remain close to the values of nrr.



|.H., PRC 76 (2007) 054319;
l.H., J. Phys. G, 37 (2010) 055102

5.3. Examples of Nilsson diagrams for lighter neutron-rich nuclei

1. ~7C,, (S(n)=0.73 MeV, 3/2%)
2. ~3Mg,s (S(n)=2.38 MeV, 1/2%)
~3Mg,, (S(n)=2.22 MeV, 3/2°)
3. ~3Ne,, (S(n)=0.29 £ 1.64 MeV, halo structure)
4. ~3"Mg,: (S(n)=a few hundreds keV ?)
5. ~41Si,,  (S(n)=1.34 £ 0.57 MeV)
6. ~%S,, (S(n)=2.86=0.77 MeV)
7. A~ T75region

Near degeneracy of some weakly-bound or resonant levels in spherical potential,
unexpected from the knowledge on stable nuclei

- the origin of deformation and .......
Jahn-Teller effect




One-particle neutron energies as a function of quadrupole deformation 3

N ~ 8 region
INn,A Q]
L b b bvver bvere brre b der g bvvva ba g
10 Neutlron olne-palrticle evels in Woods-Saxon potential - At B=0 :
] Vws=-40.0MeV R=3266fm(A=17) a=0.67fm - ’
87 - €(2s4)-€(1d5),)
6 - 2 = 140 keV
4 - -
> 2 ] o
= - e 17C,, (3/2+)  S(n)=0.73 MeV
o 0 1 -
w 1 n
2 n
R 5 e "Be, (1/2*)  S(n)=0.50 MeV
¥ TB21001 18] s ; Y- — 032 p~07
7 N 0 12 s
'8 IIII|II|I‘IIII|IIIIIIII|II|I|IIII|IIII|IIII|II|| 1/2+ O In Befrom(p’p)
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5 0.6
quadrupole-deformation parameter 3
Iny,. | 9= =0.35 (for B#0)
geff _g free are used.
s ~ Is
Nucleus S(n) ¥l Lhobs Reference”™  fieae (8t B, [N n, A )
(keV) () (een) [12] H.Ogawa et al., Eur.Phys.J. A 13 (2002) 81
17C4 727 3/2  40.758(4) [12] —0.75 (8=0.4, [211 3/2]) H.Ueno et al., N.P.A738 (2004) 211
"'Ber o04 1/2" ~—1.6816(8) [13] —1.7 (6=06, [220 1/2]) [13] W.Geithner et al., PRL 83 (1999) 3792
150y, 1218 1/2F  +1.720(9) [11] ~1.9 (8=0, 281/2) ’

[11] K.Asahi et al., N.P.A704 (2002) 88c



¢ (MeV)

N

oo lva b bbb b b draa b

N
N

Neutron one-particle levels in Woods-Saxon potential
R=3.266fm (A=17) a=0.67fm

III||.'II|III|I.I.|||II|lII|IUII|II||I

1T 1T 1 | T 1T 1 | | | [ .'I. | | 1T 1T 1 | -.I. L
-70 -65 -60 -55 -50 -45 -40
depth of Woods-Saxon potential (Mev)

potential strength



One-particle neutron energies as a function of quadrupole deformation 3

£...(1fs, ) = +8.96 MeV

[N n,A Q]
ot v v bvrar o v e br v bypa b byaag
& Neutron one-particle levels in Woods-Saxon potential |
] Vs = —40.0 MeV R =3.99 fm a=0.67fm [~
4 — oo Q=12 —==Q%Bf2 —— Q5 —ee— QT —
2= -
E 0 ] T
S 2 -
o 4 —: 'E;;d'ﬁm :—
) o e [211 1/2] el
~ . 2% N
6 o —
"8 _: 1¢ :_
3 (220 1/2] _
'10 IIII|II§I|III%|§IIIIlII|IIII|TIII{IIII|[III[I[I[
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5 0.6
quadrupole-deformation parameter 3
Nucleus S(n)  (I™)obs Lobs Reference (IM)eat  Heate (3t B, [N n; A )
(keV) (pn) (un)
BMg,, 2222 3/2  —0.7456(5) [16] 3/2- —0.88 (£=0.25, [330 1/2))
3/2t  40.91 (8=0.35, [202 3/2])
3/2=  —0.39 (8=0.45, [321 3/2))
31Mge 2378 1/2t  -0.88355(15) [14] 1/2+  —1.00 (8=0.45, [200 1/2])
3/2= -0.91 (=0.35, [330 1/2))

l.H., J. Phys. G, 37 (2010) 055102

N ~ 20 region

Resonant states at 3=0 ;
E:res(2pS/2) < ares(1f7/2)

e 3Mg,,  S(n)=2.22 MeV

o Mg,  S(n)=2.38 MeV

X or X are excluded by the sign of measued
magnetic moments.

N Heaie ((9g =0.38  (for B20)
g¢" =(0.7)g,"

} are used.

/ucalc( f7/2) = _1'3IUN
/ucalc (d3/2) - +080/uN

Then,

[16] D.T.Yordanov et al., PRL 99 (2007) 212501

[14] G.Neyens et al., PRL 94 (2005) 022501



e (MeV)

T T T N U NN N W N O U T A TN T TN U SN N DU S B B

Neutron one-particle levels in Woods-Saxon potential
R = 3.990 fm (A = 31) a=0.67 fm

\
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coa Ly oo Lo b b ra oo Po

1 T 1 ,| | I I | 1 T 1T ] 17 17 1T ] L 1T T 1
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depth of Woods-Saxon potential (Mev)

potential strength



One-particle neutron energies as a function of quadrupole deformation 3

eo (MeV)

et b brrra v braaa brvra bevr s bvvra e braag
6 - Neutron one-particle levels in Woods-Saxon potential [

] Vs = — 39.0 MeV R =3.99 fm a=0.67fm [~
4 - eeeee Q=12 === Q=32 == Q5[ e QT2 —
2 =
0: '.l:

] X
"2 ] =
4 = =
6 3
-8 - e
-10 _||l||||H||lil||||1 ||11}||||{||||1:|||;||||]||||-

-04 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5 0.6

quadrupole-deformation parameter 3

( 3/2- from [3301/2] for
= < 32" from [202 3/2] for
3/2 - from [3213/2] for

1/2* from [2001/2] for S>0.58

0.20< £<0.30
0.30< £ <0.40
0.40< £ <0.58

Nn,AQ]

S(n)=0.29 £ 1.64 MeV

T.Nakamura, N.Kobayashi, Y.Kondo, Y.Satou, et al.,
PRL 103, 262501 (2009),
Coulomb breakup of 31Ne — halo structure

The 21st neutron cannot be placed on * in
[202 3/2 ] because of observed halo structure.

p(/=1) halo
no halo () gmin =2 )
p(/=1) halo

s(/=0) halo




One-particle neutron energies as a function of quadrupole deformation 3

[Nn,AQ] In the case of very weak binding
N=28 is not a magic number !
Crra bbb b b b b b e g
g Neutron one-particle levels in Woods-Saxon potential [
7] Vws=—-40.0MeV R=4232fm(A=37) a=0.67fm B
5 - At 3=0;
] pemmmmmmsT B €(2p5,) — €(1f7))
4 - =680 keV
S 2 - -
% N N
= 0 - :
5 5 3 s e 3Mg,s S(n)=afew
] ) - hundreds keV ?
-4 —: 20232 __—"".. :—
6 - IS \\__
E L1 /0 [211 1/2] (202 5/2] ) N
"8 IIII|IIII|IIII|IIIIIIII|IIII|IIII|IIII|IIII|IIII‘

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 0.5 0.6
quadrupole-deformation parameter f3

™ =

5/2- from [3125/2] for 0<fB<03 <«— nohalo () ¢,;,=3)
1/2- from [3211/2] for 03<p<06 <+«— P(E=1) halo



One-particle neutron energies as a function of quadrupole deformation 3

go (MeV)

o A D O N A O O©

1
0 0]

N ~ 28 region

-04 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 04 05 0.6

quadrupole-deformation parameter

S(n)

Nucleus (I")ear  Hheate (8t G, [N n, A Q))
(MeV) (pn)
TSy 134 3/2~  +0.07 (B=—0.4, [301 1/2])
3/2°  —0.66 (8=0.25, [321 1/2))
5/2-  —0.58 (8=0.45, [312 5/2])

[N n,A Q]
1Il|l|III{III{|I_III|IIil1-llll|IILI|IIII]IIIE1I.1|I
- Neutron one-particle levels in Woods-Saxon potential |- At B=0;
5 Vws=—-39.0MeV R=438fm a=0.67fm B
-: ooooo Qn:1:(2 - 9“23!2- — — QK=5)"2' -_— s - Qﬂ=7‘|{2‘ —_ 8(2p3/2)_ 8(1f7/2) = 1.20 Mev
- .~ -
= _ S -- =
= o=
.0""
_—_ fp ”’-'-.g ----- __
aHi2 T
: sehesssssssssssana,,, . ‘d::: :
mespapyosetessesssgg, - - _..--'."l" .............

------- Sy, ='s '..'_
4 @  .eesen Pop ,, A™50cer g, JO21 12] - .
Jpurua i E g — e 1252) @ L o S, S(n)=1.34+0.6 MeV
P '.--,--‘ -" T2 NlwL ey -*---__
T - Wiy ""-,-. .... B
N Lo .. SsJB2132 0 tte | "
= e - @ [330 1/2] '..... ~o =
X =
E Ton -
_Illl|llll|lIlI||||l||Il|l|II[I||[|I|II|I1IL|'I.?Il_ gR2038 (fOI"B#O)

} are used.

In “calc {

Then,

9" = (0.7)9."

:ucalc( p1/2) = +0'4IUN
:ucalc( p3/2) = _1'3/’IN
/ucalc( 1:7/2) - _1'3/”N

Cf. In438,,the 320 keV isomeric state has 7/2 -
from g-factor measurement — The ground state
is deformed ?




One-particle neutron energies as a function of quadrupole deformation f N~ 28 region

[N nZ/\ Q]

i e by b by b benaa b Pevaa liag
8 R Neutron one-partlcle levels in Woods-Saxon potentlal =
- Vws=—41.0MeV R=452fm a=0.67fm =
i Q=12 —==Q%B/2 —— Q%52  —eem =72 -
6 L~

-
— -’ -
4 . ?199& - =
_— L : ____________ ..c... -,' :
% 2 ___l'o.-. "-:-;"1{.’2".-'-.?.?.".--— e~ -
= ]t -
= O = /.—-" ............... . » -
G G i [B10121... :

W g eunuir_ Tl i
=N [B1232]" B
4 JnTERT -
ke N
63 P o
- R

-8 ‘rlll]nrlplll]llu TTTT T T T T[T T[T T T[T T T[T TTT

-04 -0.3-0.2-0.1 0.0 0.1 0.2 0.3 04 05 0.6
quadrupole-deformation parameter 3

Nucleus S(n) (I™)ea teate (8t B, [N n, A Q])
(MeV) (1)
45599 221 7/20 —0.74 (8= 0.25, [303 7/2])
1/2=  +0.59 (8=0.45, [310 1/2])
1/2=  +0.59 (B=—0.40, [310 1/2])
3/2-  +0.16 (B=—0.40, [312 3/2))

° S 4 S(n)=2.86+£0.7 MeV

N Yoo ( 9r =0.38 (for B#0)
off free are used.
g, =(0.7)g,
Then’ /ucalc(pllz) = +0'41uN
/ucalc(p3/2) = _1'3:uN
/ucalc( f7/2) - _1'31uN



One-particle neutron energies as a function of quadrupole deformation B N ~ 50 region

go (MeV)

A ~ 75 region

£..(1h,,,) = +5.48 MeV

t B=0
(1g,,) =+ 344 Mev P

8I'eS

NI O A A O A O A O O A

6 - Neutron one-particle levels in Woods-Saxon potential
7] Vs = — 40.0 MeV R =5.36 fm a=0.67 fm

4 S R Q.'I:____-I !2: T _Q‘Jl:a‘l,rzt —-—Q“=5f2t —--—Q“=7f2t e e ?t___gfz:

- =

3 ) O L I

I I I O

""10 ]II]|II11|]II[|]II]]II‘I-|IiII|III.!|![II|IIII|]I-II

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
quadrupole-deformation parameter 3

In the case of very weak binding

At =0 ;
£(3s10) < €(2dg))

®  51st neutron

75
ex. ,,Cr,

Neutron-drip-line nuclei with N=51have
a good chance to have the ground or
very low-lying I™= 1/2* state,
irrespective of spherical or deformed
shape.



In lecture V.3 a way of calculating observed quantities in lab system using deformed intrinsic wave functions is
shown, which can be of practical use though it involves an approximation. The set of basis wave functions
given in V.3 are useful also for including rotational perturbation. Here, we show ;

Appendix.| Angular momentum projection from a deformed intrinsic state ‘¢>
(not applicable when rotational perturbation of intrinsic states has to be included.)
Rotational operator R({2) Q: Eulerangles («, f,7)

R (Q) — e—ian e—iﬂJy e—i;/JZ
Rotation matrix Dy (Q)

(M [R(Q)| ' I'M") =5 (e, @')5(3,3") Dy ()

Inverting the expression
R(©) =D | adM ) Dy () (M|
od

Multiplying by D|\J/|M-*(Q) and integrating over Q, we obtain a projection operator

= 2] M M |- 2] +ldeDJM (QR(Q)

We need to calculate the expressions

<¢‘P|\ﬂ¢> 2J +1

—— 40D, (@)IRE)9)

2J +1

(#|HPa]g) == == [ dODi, () FHR(Q)])




Appendix| (continued)

If ‘¢> is axially symmetric,  J,|¢)=M|¢)

(4|R(Q) ) =" <¢\e“ﬂ3v | p)e M
D () =& (M [ | M e
then, using the “reduced rotation matrix” d? (0) = <JM ‘e_iwy‘\]M >

which describes the collective rotational motion, one obtains

<¢‘Pl\ﬂ¢> 2J +17%

j d@sinady,, (0)(gle™ ™ |4)

2J +17%

(g|HP|#) = jde néd;,, (0)(g|He ™ |4)

where the overlap functions :

i, =1 for 8<<1,
<¢‘e ‘¢> decreases quickly as 6 — larger (at least in heavier deformed nuclei),
is symmetric about 6 = 11/2 .
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