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1. Introduction

Mean-field

 

approximation to many-body system

The study of one-particle motion

 

in the mean field

 

is the basis

 

for 
understanding not only single-particle mode

 

but also many-body correlation.

Mean field ← Hartree-Fock

 

approximation
Self-consistent potential = Hatree-Fock

 

potential

Phenomenological

 

one-body potential

Harmonic-oscillator potential
Woods-Saxon

 

potential

(convenient for understanding the physics

 

in a simple terminology
and in a

 

systematic way)

Note, for example, 
the shape

 

of a many-body system can be obtained only from the one-body density 

←
 

mean-field

 

approximation



Harmonic-oscillator potential

 

is exclusively used, for example,
the system with a finite number of electrons

 

bound by an external field
( = a kind of NANO structure

 

system).
This system is a sufficiently bound system so that harmonic-oscillator potential
is a good approximation to the effective potential.           

Another finite system to which quantum mechanics

 

is applied is
clusters of metalic

 

atoms

→
 

shell-structure based on one-particle motion of electrons.

In this system a harmonic-oscillator potential is also often used.



2. Mean-field approximation to spherical nuclei

2.1. Phenomenological one-body potentials

3-dimensional harmonic oscillator potential
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 =  N, N-2, …

 

0  or  1

Degeneracy of the major shell with a given N
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
 =   (N+1)(N+2)

leads to the magic numbers

2, 8, 20, 40, 70, 112, 168, …

In the above figure
spin (ℓ

 

= even for N=even, odd for N=odd)

1s
1p

1d, 2s

1f, 2p

1g, 2d, 3s



One-particle levels

 

for β

 

stable

 

nuclei

Large energy gap in one-particle spectra
Magic number 

N, Z

 

=

 

8, 20,28,50,82,126, …

Nuclei with magic number

 

:  spherical

 

shape

High-j orbits, 1g9/2 , 1h11/2 , 1i13/2 , 1j15/2  ,
which have parity

 

different from the neighboring
orbits do not mix with them under quadrupole
(Y2μ

 

)

 

deformation

 

and rotation. 

One-particle motion

 

in the mean-field 
→

 

shell structure

 

(=

 

bunching of one-particle 
levels)

→

 

nuclear shape

( Sn

 

≈

 

Sp

 

≈

 

7-10 MeV

 

)

h.o.
finite-well

Spin-orbit(surface)

Normal-parity orbits

 

←

 

majority in a major shell
of medium-heavy

 

nuclei

Modified harmonic-oscillator potential can often be 
a good approximation. 
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Woods-Saxon potential -

 

an approximation to Hartree-Fock

 

(HF) potential

Phenomenological

 

finite-well

 

potential :

V(r)
r

R

2a

VWS

( ) ( )WSV r V f r where 1( )
1 exp

f r
r R

a


   

 

a

 

:  diffuseness

R

 

:  radius R

 

= r0  A1/3

A

 

: mass number

standard values of parameters
r0  ≈

 

1.27 fm           a  ≈

 

0.67 fm

51 33WS
N ZV

A
    

 
MeV

 

for
+  for neutrons
–

 

for protons



Woods-Saxon

 

potential vs.

 

harmonic-oscillator

 

potential

In the above figure the parameters are chosen so that 
the root-mean-square radius for the two potentials,
are approximately equal.

a) repulsive

 

effect for short and large distances
→

 

push up

 

small ℓ

 

orbits 

Harmonic-oscillator potential cannot be used 
for weakly-bound

 

or unbound

 

(or resonant) 
levels.

For well-bound

 

levels;

higher ℓ

 

one-particle wave-functions

only ℓ=0 one-particle wave-funcions

b) attractive

 

effect for intermediate distances
→

 

push down

 

large ℓ

 

orbits

Corrections to harmonic-oscillator

 

potential are;



Schrödinger equation for one-particle motion with spherical

 

finite

 

potentials 
2 2 2 2

2 2 2 ( )
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For example, for neutrons

 

eq.($)

 

should be solved with the boundary conditions;

( ) 0R r at  r = 0

at  r → large (where V(r)

 

= 0)

( ) cos( ) ( ) sin( ) ( )R r krj kr krn kr      
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where

The Shrödinger

 

equation for radial wave-functions is written as

( )sV r 

k :  Modified spherical Bessel function of the third kind
(See p.443 of Abramowitz & Stegun, Handbook of 
mathematical functions) 

j :  spherical Bessel function
:  spherical Neumann functionn 



One-body

 

spin-orbit

 

potential

 

in phenomenological potentials : surface effect !

In the central part

 

of nuclei the density,  ρ(r)

 

= const.
Then, the only direction, which nucleons can feel is the momentum, p

From the two vectors, p and the spin s , of nucleons one cannot make 

P-inv

 

(i.e. reflection-invariant)  and T-inv

 

(i.e. time-reversal invariant)

quantity linear in the momentum.  For example, 

( )p s  P-inv

( )p s s 
   T-inv

At the nuclear surface ( ) 0r 


( ) ,0,0r
r
      


in polar coordinate (r,θ,φ)i.e.

( ) ( )p s r 
 Then,

( )p s p s
r   
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 


( ,0,0)r r


(0, , )r p rp rp   
 

 1 ( )r p s
r r


  


  

1( )s
r r


 



 

:  P-inv  &  T-inv

 

!

In practice, one often uses the form
1 ( )( ) ( ) c

s
V rV r s

r r
 

 


  where  λ=const. and Vc

 

(r)

 

is one-body central potential such as 
the Woods-Saxon potential



In the presence of spin-orbit

 

potential Vℓs

 

(r)

 

( ( )s 
  ) ,

j s 
 

the total angular momentum

 

of nucleons

becomes a good quantum-number.

( ), 0zs   
  

( ), 0zs s   
 
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ℓ

 

–1     for  j = ℓ

 

– 1/2
ℓ

 

for  j = ℓ

 

+ 1/2 

The radial part of the Schrödinger equation becomes 
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Centrifugal potential + Woods-Saxon

 

potential

2 2 2 2

2 2 2 ( )
2

V r
m x y z
   

       
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r V r

m r r r
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    


 


=

centrifugal potential

Woods-Saxon

 

pot.

centrifugal pot.

W-S

 

+ centrifugal

 

pot.
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1 1 1cot ( )

2 sin
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m r r r

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dependence on  ℓ

ℓ

 

= 2 ℓ

 

= 4

ℓ

 

= 0



Height

 

of centrifugal barrier  2
( 1)

hR
 

where Rh

 

> r0 A1/3

The height

 

:

ex.  For the Woods-Saxon potential with  R=5.80 fm, a=0.65 fm,

 

r0

 

=1.25 and
VWS = –

 

50 MeV

 

;

ℓ

 

height of centrifugal barrier

0               0  MeV
1           ≈

 

0.4
2           ≈

 

1.3
3           ≈

 

2.8
4           ≈

 

5.1
5           ≈

 

8.2

 higher

 

for smaller

 

nuclei
higher

 

for larger  ℓ

 

orbits



Height of centrifugal barrier ;

1)   well-bound

 

particles are

 

insensitive.

2)

 

affects eigenenergies

 

and wave-functions

 

of weakly-bound

 

neutrons,
especially with small ℓ

3)  affects the presence (or absence) of one-particle resonance, resonant energies

and widths.



Neutron radial wave-functions

1 ˆ( ) ( ) ( )n jm n j jmr R r X r
r

   


ε

 

=

 

– 8 MeV ε

 

= – 200 keV

ℓ

 

= 4

ℓ

 

= 0

halo



For a

 

finite

 

square-well
 

potential

V(r)

r

the potential, when the eigenvalue

 

εnℓ

 

(< 0)  →

 

0
R0

0
2

0
| ( ) |

R

nR r dr 

ℓ 0        1        2        3            ℓ

 

(≠0)

0       1/3     3/5     5/7      (2ℓ–1)/(2ℓ+1)

The probability

 

for one neutron

 

to stay inside

Root-mean-square radius,

 

rrms

 

, of

 

one neutron ; 2
rmsr r

In the limit of  εnℓ

 

(<0)

 

→

 

0

rrms  1/ 2( )n
  → ∞ for

 

ℓ

 

=

 

0

1/ 4( )n
  → ∞ for ℓ

 

= 1

finite value                 for

 

ℓ

 

≥

 

2

εnℓ



2s1/2

1d3/2

1d5/2

1d 3/2

2s1/2

1d5/2

2s1/2

1d3/2

1d5/2

Strongly
bound

Very weakly
bound

Energies of neutron orbits

 

in Woods-Saxon potential

in finite-well potential

Spherical

 

nuclei : unique behavior of low-ℓ

 

orbits, as  εℓ

 

(<0) → 0

Change

 

of shell structure

Stable sd-shell
nuclei

(

 

R = r0 A1/3  with

 

r0 = 1.27 fm  is varied.

 

) 

There is no

 

neutron

 

ℓ=0

 

(s) resonance !



One-particle

 

resonant level in spherical

 

finite

 

potentials (

 

Coulomb potential )

For εℓ

 

> 0  and  r

 

→

 

large

( ) cos( ) ( ) sin( ) ( )R r krj kr krn kr       where 2
2

2mk  
 :   phase shift

εres

π/2

The width

 

of the resonance;

2

res

d
d  


 

 

The resonance energy  εres

 

is

 

defined so that

 

the

 

phase shift δℓ

 

increases

 

with energy ε
as it goes through  π/2

 

(modulo π).
For example, see ;  R.G.Newton, SCATTERING THEORY OF WAVES AND PARTICLES,

McGraw-Hill, 1966.

At  εres ;  (1) a sharp peak

 

in the scattering cross section;
(2)  a significant time delay

 

in the emergence of scattered particles;
(3)  the incoming wave (i.e. particles) can strongly penetrate into the system;
(4) ………..







Resonance

 

↔

 

time delay

 

↔ 0
0
kkdk

d 

For  r→ ∞ ,   a wave packet in a scattering is written as

where )(k


 :  sharply peaked

 

around 0kk




For very large t (= time), the 2nd

 

term in

 

($)

 

contributes only at the distance

      )cos,()(exp)()(exp)( 1  kfEtkrirkkdEtrkikkd


($)

02
0

kkdk
dt

m
kr   )

)()()( 00 0
kk

dk
dkk kk  






Assume that at k=k0

 

a sharp peak only in

 

a given

 

ℓ

 

channel.

scattering amplitude 




 
0

1 )(cossin)12()cos,(



   Pekkf i

for 0kk 

0( )
2k k

d kik r t
dk me


 
0)( kkdk

dikEtkri ee 


Time delay

 

caused by the sharply changing term ie in the  f :
0

0

2
kkD dk

d
k
mt  

0
dk
d 

0
dk
d 

=

→

 

time delay

 

in the emergence of the scattered particles

→

 

time advance !



V(r)

r

V(r)

r

V(r)
r

β-stable nuclei

neutron drip line nuclei
 

–
 

role of
 

continuum
 

levels
and

 
weakly-bound

 
levels 

Γ

Importance of one-particle resonant

 

levels with small width

 

Γ

 

in the many-body 
correlations.

Obs.  no

 

one-particle resonant

 

levels for  ℓ

 

= 0  (i.e.

 

s) orbits.

Continuum levels

One-particle levels which contribute
to many-body correlations



Unique role played by

 

neutrons in

 

small ℓ

 

;

 

s,

 

p

 

orbits

(a)

 

Weakly-bound

 

small-ℓ

 

neutrons

 

have appreciable probability to be outside 
the potential;   

ex.  For a

 

finite square-well

 

potential and εnℓj

 

(<0) → 0 , the

 

probability

 

inside is
0     for

 

s neutrons
1/3  for

 

p neutrons

Thus, those neutrons

 

are insensitive

 

to the strength of the potential.

(b) No

 

one-particle resonant levels for

 

s

 

neutrons.
For a given  εℓ

 

j

 

> 0, higher-ℓ

 

orbits have one-particle resonance with smaller  width.
One-particle neutron

 

resonance with lower-ℓ

 

disappears

 

at a smaller εℓ

 

j

 

(> 0) value.

Change of shell-structure

Change of many-body correlation, such as
pair correlation

 

and

 

deformation
in

 

nuclei with weakly-bound

 

neutrons

Some summary
 

of weakly-bound
 

and positive-energy
 

neutrons
(β=0)in spherical

 
potentials



2.2.

 

Hartree-Fock

 

(HF) approximation  →
 

self-consistent mean-field

A mean-field approximation to the nuclear many-body problem with 
rotationally invariant

 

Hamiltonian,

2

2 i ij
i i j

H v
m 

    


“effective”

 

two-body interaction

The total wave function  Ψ

 

is assumed to be a form of Slater determinant
consisting of one-particle wave-functions,

( )i jr 
(i  and  j)  =  1, 2, ….., A

Variational

 

principle | | 0H   

together with subsidiary conditions 2 3| ( ) | 1i i ir d r 


leads to the HF equation.

OBS.

 

The HF solution  is not an eigen

 

function of the Hamiltonian H.

Popular effective interaction, vij

 

, is 
so-called Skyrme

 

interaction

 

–
many different versions exist, but

in essence, ( )i jr r 
  interaction

plus density-dependent part that 
simulates the 3-body interaction.phenomenology !



ex.  HF

 

equations for 2 particles

 

(a simple example !)

exchange (Fock) term (absent in Hartree

 

approximation)

Find the solutions, 1( )r 
2( )r 

and , with  ε1  and  ε2  , which satisfy simultaneously

the above coupled equations.

The usual procedure of solving the HF equation is;

1 1( )r 

2 2( )r 
1( )V r

2( )V r
1 1( )r 

2 2( )r w.f. pot. w.f.

Find self-consistent solutions together with eigenvalues,  ε1

 

and ε2

 

.

1(1,2)
2

  1 1 2 1

1 2 2 2

( ) ( )
( ) ( )
r r
r r

 
 

 
 

Hartree

 

potential 1( )HV r and 2( )HV r


2

3 3
1 1 1 1 2 1 2 2 1 2 1 1 1 1 1( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )

2
r r r v r r r d r r r v r r r d r r

m
              

            

2
3 3

2 2 2 2 1 2 1 1 2 1 2 2 2 2 2( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( ) ( )
2

r r r v r r r d r r r v r r r d r r
m

              
            



drip-line nuclei very different N/Z

 

ratio, compared to stable nuclei with a given A

rr r r r r

V(r) V(r) V(r)

β

 

stable nuclei proton-drip-line

 

nuclei neutron-drip-line

 

nuclei

protons protons protons neutronsneutrons neutrons

Since the Fermi levels for protons

 

and neutrons

 

are very different

 

in drip line nuclei,
this binding energy difference

 

of least-bound

 

protons

 

and neutrons will produce 
interesting phenomena in charge-exchange

 

reactions or β

 

decays.

Weakly-bound one-proton

 

motion in medium-heavy nuclei may not be so different 
from the well-bound one, due to the high Coulomb barrier.



Hartree-Fock

 

potential and one-particle energy levels
VN

 

(r) : neutron potential,   VP

 

(r)

 

: proton nuclear potential, VP

 

(r)+VC

 

(r)

 

: proton total potential 

A typical double-magic

 

β-stable

 

nucleus

126
208
82 Pb

One of Skyrme

 

interactions ;
SkM*

See :

 

J.Bartel

 

et al., Nucl. Phys. A386 (1982) 79.



Hartree-Fock

 

potentials and one-particle energy levels
VN

 

(r) : neutron potential,

 

VP

 

(r) : proton nuclear potential

ex. of neutron-drip-line nuclei ex. of proton-drip-line nuclei

50
3s1/2

50



Some nuclei are deformed  ---

 

axially-symmetric quadrupole

 

(Y20) deformation

Observation

 

:
1) rotational

 

spectra     E(I) ≈

 

AI(I+1)
2) large quadrupole

 

moment

 

or large

 

E2(I→I-2) transition probability

For  E(I) = AI(I+1),

E(I=4)
E(I=2) =  3.33

ex.  In the ground band

 

of 168Er

264.081

79.800
=  3.31

A rotational band

 

with a given K consists of members with  I ≥

 

K

 

.

3.1.  Rotational spectrum and its implication

K

I

sym axis

3.  Observation of deformed nuclei

rotation of deformed nuclei  →

 

time-dependent electric field  →

 

strong

 

el-mag

 

radiation



Bohr & Mottelson, Nuclear Structure,
Vol.II, 1975, Fig.4-5

Observed E2-transition probabilities

 

from 
the ground state (Iπ=0+) to the first excited
2+ state in stable even-even

 

nuclei.

The single-particle value used as unit is

423/4
2

22 30.0
5
3

4
5)2( fmeAReEBsp 










E2

0+

2+



WARNING

 

:   many different definitions (and notations) of Y20

 

deformation parameters

intrinsic quadrupole

 

moment 



Z

k
krQ

1

2
0 3

4

22
3

22
3

)(2)(
)()(

2
3









RR
RR

uniformly-charged spheroidal

 

nucleus 
with a sharp surface

β2 is defined in terms of the expansion of the density distribution

 

in spherical harmonics.

.......))(1(),( *
2020   YRRradius

.....))(()()( *
202

0
00 



  Y
r

Rrrdensity

In the deformed harmonic oscillator

 

model it is customary to use

av
osc R

RR 



 





 3

3

3

2
3




To leading order,   δ

 

≈

 

β2

 

≈

 

δosc

 

, but …….

δ

β

δosc

 

or

 

ε
ε

 

=

pn   for stable

 

nuclei, but pn   possibly for neutron-rich

 

nuclei towards 
the neutron-drip-line, since pn RR  ) ppnn RR  

or β2

: displacement of the surface



12C6

24Mg12

Oblate  (pancake

 

shape)

Prolate

 

(cigar shape)

rare-earth nuclei with
11290  N

Some new region

 

of deformed ground-state

 

nuclei away from β

 

stability

 

line;

1)

 

N ≈

 

Z

 

≈

 

38     ex.

2) N

 

≈

 

20          ex.

3) N

 

≈

 

8            ex.
20

30
10 Ne 20

32
12 Mg

36
72
36 Kr 38

76
38 Sr 40

80
40 Zr(oblate ?) (prolate

 

?) (prolate

 

?)

11
4 7Be 12

4 8Be

All stable single or double closed-shell

 

nuclei
are spherical.

Nuclei with

 

deformed ground state close to the β

 

stability line

some typical examples of deformed nuclei :

etc.

mostly prolate

(“island of inversion”)22
32
10 Ne 22

34
12 Mg

10
14
4 Be

Region of deformed even-even nuclei

line of β stability



oblate          prolate

 

prolate
Shape

 

of the ground state (from Coulomb excitation);

(A.Goergen, Gammapool

 

workshop in Trento, 2006)

38
76
38 Sr

0+

2+

4+

261

484

0+

2+

4+

290

538

40
80
40 Zr

Most probably

 

prolate

Deformed

 

ground state of N≈Z

 

nuclei

 

(proton-rich

 

compared with stable

 

nuclei)

(Z=36)

Coexistence of

 

prolate

 

and oblate

 

shape :

OBS.  Almost all stable

 

nuclei 
with

 

N

 

(or Z) = 40 are spherical.

0

635
854

1269
13634+

2+

0+
2+

0+ 0

918

1300

1469
1671

0+

2+

0+

4+

2+

40
74
34 Se

54
94
40 Zr

Ex.

( )



7
11
4 Be

0

319.8½ -

½ +

S(n)

 

= 504 keV

20
32
12 Mg 22

34
12 Mg

0+

2+

0+

2+660
885

(4+)
(4+)2120

2315

β

 

=            0.52

 

0.58

E(4+)

E(2+)
=      (2.62)                   (3.21)

Strong E2Strong E1

The spin-parity

 

of the ground state,
½+ ,  as well as the small energy
distance

 

between the ½

 

-

 

and ½+
levels, 320 keV,  is easily explained,
If the nucleus is deformed

 

!

N=8 is not

 

a magic number

 

! N=20 is not

 

a magic number

 

!
(in these neutron-rich

 

nuclei)(in this neutron-rich

 

nucleus)

S(n) =           5.81                   4.16  MeV



Example of deformed

 

excited states

 

of magic nuclei

20
40
20Ca : doubly-magic

 

nucleus,   spherical ground state

From E.Ideguchi

 

et al., Phys.Rev.Lett. 87 (2001) 222501.

Qt  = 1.80

strongly-deformed

 

band

+ 0.39
– 0.29 eb

from Doppler shift measurement

→ β

 

= 0.59
+ 0.11
– 0.07



Implication of rotational spectra

 

:

(1)

 

Existence of deformation

 

(in the body-fixed system), so as to specify 
an orientation of the system

 

as a whole.

(2) Collective rotation, as a whole, and internal motion

 

w.r.t. the body-fixed system
are approximately separated

 

in the complicated many-body system.

collective rotation

 

is the best established

 

collective motion

 

in nuclei.
Indeed,

Classical system

 

: An infinitesimal

 

deformation is sufficient to establish 
anisotropy.

Quantum system

 

: [zero-point fluctuation

 

of deformation] << [equilibrium

 

deformation],
in order to have a well-defined rotation.



For some nuclei

 

Hartree-Fock

 

(HF) calculations with rotationally-invariant

 

Hamiltonian
end up with a deformed

 

shape !

spherical shape  ←

 

HF solutions for “closed-shell”

 

nuclei

deformed

 

shape  ←

 

HF solutions for some nuclei

exhibit rotational spectra

Deformed

 

shape obtained from HF calculations is interpreted 
as the intrinsic

 

shape in the body-fixed system.


The notion of one-particle (or

 

one-quasiparticle

 

if pair correlation is included)

 

motion
in deformed

 

nuclei can be much more widely, in a good approximation, applicable 
than in spherical

 

nuclei.

) The major part of the long-range two-body interaction

 

is already taken into account
in the deformed mean-field.

Thus, the spectroscopy of deformed

 

nuclei is often much simpler

 

than that of 
spherical vibrating nuclei.





(a) Quantum numbers

 

of rotational spectra  ↔

 

symmetry of deformation
ex. Parity

 

is a good quantum number ← space reflection invariance, 
K

 

is a good quantum number ← Axially-symmetric shape

 

( E(I)    I(I+1)

 

) ,
where

 

K

 

is the projection of angular momentum along the symmetry axis. 
The Kπ=0+

 

ground band

 

has only I = 0, 2,4,…

 

← shape is

 

R-

 

invariant,
Kramers

 

degeneracy ← time reversal invariance, 
etc.

(b) rotational energy, E(I) -

 

E(I-2)
E2 transition probability

↔

 

size

 

of deformation}

R-invariant

 

shape : in addition to axially-symmetry, the shape is further invariant w.r.t.
a rotation of π

 

about an axis perpendicular to the symmetry axis. 
(If a shape is already axial symmetric, reflection invariance

 

is equivalent to R-inv.)
ex. Y20

 

deformed

 

shape is R-invariant, but not Y30 deformed (pear) shape.

Kramers

 

degeneracy : The levels in an odd-fermion

 

system are at least doubly degenerate.

What can one learn from observed

 

rotational spectra ?





Pause:  Appearance of only even

 

(or odd) angular momenta

The ground-state

 

(pairwise

 

levels, Ω

 

and –Ω, are occupied)

 

of Y20 deformed even-even nuclei
(Kπ

 

= 0+) has  r (eigenvalue

 

of R-operation) = +1

 

and, thus, the rotational-band has members 
with  I π

 

= 0+, 2+ , 4+

 

, 6+ , …….

The two-fermion

 

system in a j-shell (j : half integer) has only even total angular momentum,

Jj )( 2 where J

 

is an even

 

integer.

The two-phonon system with the same phonon (

 

: integer)  has only even total angular 
momentum, 

J)( 2 where J

 

is an even

 

integer.

The rotational band based on excited Kπ

 

= 0–

 

configurations

 

may have either 
r

 

= –1

 

with members I π

 

= 1–

 

, 3–

 

, 5–

 

, ……. 
that has been often observed in medium-heavy deformed nuclei

or  
r

 

= +1

 

with members I

 

π

 

= 0–

 

, 2–

 

, 4–

 

, …….

Coming from the (Fermion

 

or Boson) statistics

 

;

Coming from the R-symmetry of Y20

 

deformation ( or

 

Yλ0 deformation with

 

even λ

 

) ;

OBS.   The rotational bands based on intrinsic configurations with Kπ

 

=1–

 

have 
members  I π

 

= 1–

 

, 2–

 

, 3–

 

, 4–

 

, 5–

 

, …...



Usual understanding ;

Deformation of ground states (ND,  R┴

 

: Rz

 

≈

 

1 : 1.3)  ←

 

Jahn-Teller effect

Many particles outside a closed shell in a spherical potential
→

 

near degeneracy in one-particle quantum spectra
→

 

possibility of gaining energy

 

by breaking away from spherical symmetry
using the degeneracy.

Superdeformation

 

(SD,  R┴

 

: Rz

 

≈

 

1 : 2) at high spins

 

in rare-earth nuclei or 
fission isomers in actinide nuclei   

←

 

new

 

shell structure (and

 

new

 

magic numbers !) at large

 

deformation

Why are some nuclei deformed

 

?

Weakly-bound nuclei
→

 

possible change

 

of shell-structure
→

 

near degeneracy

 

in one-particle spectra at neutron numbers different
from stable nuclei.



Axially symmetric quadrupole

 

(Y20

 

) deformation (that has R-symmetry)   
- most important

 

deformation in nuclei 

Rz

Rx

Ry

R┴

 

(=

 

Rx = Ry

 

)< Rz

 

prolate

 

(cigar shape)

R┴

 

(=

 

Rx = Ry

 

) > Rz

 

oblate

 

(pancake shape)

3.2. Important deformation and quantum numbers in deformed nuclei

z-axis  =  symmetry

 

axis

z

z
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where θ

 

is polar angle w.r.t. the symmetry axis ( = z-axis)

Quantum numbers

 

of one-particle motion in H

(1) Parity   π

 

= (-1)ℓ

 

where  ℓ

 

is orbital angular momentum of one-particle.

(2) Ω

 

← ℓz +sz )
[ V2

 

(r) Y20 (θ)

 

, ℓz + sz

 

] = 0 and   0),(  zz ss 

One-particle Hamiltonian with spin-orbit potential



j (= one-particle angular momentum) is (approximately) a good

 

quantum number.

spherical

 

: (2j+1)

 

degeneracy  
→

 

Y20 deformed

 

: ±

 

Ω

 

degeneracy

those pushed down by )( s potential : ex. g9/2 ,h11/2 , i13/2 ,…

Small deformation and/or

 

high-j orbits

Single

 

j-shell :

Ω

 

= ±

 

j,  ±

 

(j–1),  …..,  ±½

 

:  symmetry-axis component of  j

1 20 2 0j Y j    only for 21 


In the linear order of β,

 

the Y20 deformation 
only shifts

 

(    β)  the energy

 

of doubly-degenerate
one-particle states with ±

 

Ω

 

.
One-particle wave-functions

 

remain the same
for

 

β

 

≠

 

0.



4.  One-particle motion well-bound in Y20 deformed potential
))(()()()(),( 2020 srVYrVrVrV s



  
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


 

4.1. Limits of small and large deformation

spherical sym

prolateoblate



0)( 22220111  jYrfj  for

21 )1()1(  

21 

221  jj
That means, in a  Y20  deformed

 

mean field with spin-orbit potential

Ωπ

 

=

 

1/2+ s1/2

 

,

 

d3/2

 

, d5/2 , g7/2 ,g9/2

 

, …..,  components ℓmin =

 

0

Ωπ

 

=

 

3/2+

 

d3/2

 

,

 

d5/2

 

,

 

g7/2 , g9/2 , i11/2

 

…..,   components

 

ℓmin =

 

2

Ωπ

 

= 1/2 –

 

p1/2

 

,

 

p3/2

 

,

 

f5/2 , f7/2 , h9/2 , …..,   components

 

ℓmin = 1

π

are good

 

quantum-numbers.

For example,

z
sym axis

J

Ω

Ωπ

 

= 3/2 – p3/2

 

,

 

f5/2 , f7/2 , h9/2 , h11/2

 

, …..,    components                  ℓmin

 

= 1

Ω :  projection of one-particle angular-momentum

 

along the symmetry axis, and 
a

 

good quantum-number

)1(:  parity   ≡
 [H, Jz

 

] = [Y20 , Jz

 

] = 0

Many j-shells coupled by Y20 deformation

Large (or

 

realistic)

 

deformation

Ω

 

← Jz

 

= Lz

 

+ sz

(One-particle angular-momentum j is not

 

a good quantum-number.     [ H, j ]  ≠

 

0

 

)

))(()()( 202 srVYrV s



 



Y20 deformed

 

harmonic-oscillator

 

potential

 )(
2

22222
... yxzMV zohdef  

One-particle energy  ( ε(N) at  δ=0  splits into  (N+1)  levels ). ) nz

 

= 0, 1, ….., N

   





    1

2
1),( nnnn zzz = 






  )3(

32
3 NnN z



where

yx nnn  zyx nnnN 

)2(
3
1

  z
av

z

z

z

R
RR 



 









2
3

),( znn has )1(2 n degeneracy.

spin
 nnx ,.....,1,0

Denote one-particle energies by

[N nz

 

nx

 

] or [N nz

 

Λ]

Λ ( )zL ),2(,   nn ….. ,  ±1 or 0

(cf. . . .[ , ] 0def h o zV L 

Asymptotic quantum numbers

[ N nz

 

Λ

 

Ω] where

 

Λ

 

> 0 ,  Ω z zL s 

( )z ( )z  prolateoblate

spherical
sym

δ ≈ β

where   nnN z

[nx

 

ny

 

nz

 

]     or

including spin

 

(= ½)

N=2

N=1

N=0

= Λ

 

± ½ > 0

))(()()( 202 srVYrV s



 



One-particle levels

 

in axially-symmetric quadrupole

 

(Y20

 

)

 

deformation

where

 

Ω

 

and  parity

 

π

 

= (-1)ℓ

 

=  (-1)N   is a good quantum-number.

One-particle levels for a finite quadrupole

 

deformation

 

β

 

are often denoted by [N nz

 

Λ

 

Ω] , 
since  for |β|>0.3

 

the wave functions are approximately expressed by  [N nz

 

Λ

 

Ω], except

 

high-j orbits.

z
(sym axis)

J

)( zJ

)( 22222 yxzz  

     )(2
3
12

3
1 2222222222 yxzzyx zz   =

r2
)(

5
16

20
2  Yr

(prolate

 

or oblate shape)  are denoted by

One-particle energy is degenerate

 

for  ±Ω

[N nz

 

Λ

 

Ω]   :  asymptotic quantum-numbers. ( )zL  with  Ω

 

›

 

0

 

and  Λ

 

› 0

≈ f(r) + c δ

 

r2 Y20

 

(θ) up till O(δ)

h.o.

 

potential :
no surface

 

–

 

maybe applicable for strongly

 

bound

 

system
no

 

spin-orbit

 

potential  –

 

maybe applicable for large

 

deformation



Ex.   [

 

harmonic-oscillator

 

+  surface

 

effect

 

+ spin-orbit

 

] potential

[N nz

 

Λ

 

Ω]  with  Λ, Ω

 

> 0 ,asymptotic quantum numbers
Doubly-degenerate (±

 

Ω) one-particle levels are denoted by

which become good

 

quantum numbers for very large  |β|

 

.

For  β

 

(~

 

δ) > 0

 

(prolate

 

shape)

1) [prolate]   For a given N :  εΩ

 

→ lower  for  nz

 

→ larger

2) [surface]  For given {N, nz

 

} : εΩ

 

→ lower  for  Λ → larger

3) [spin-orbit] For given {N, nz

 

, Λ} : εΩ

 

→ lower  for  Ω → larger

prolate

spherical

At large β

 

(~ δ),     ε  )3( Nnz 

N=2
nz

 

=0

N=2
nz

 

=1

i.e.  ε

 

as a function of  β

 

depends only on  β(3nz – N)

ex.   Nilsson levels in sd-shell (N=2)

Ωπ

 

= 1/2+                    Ωπ

 

= 3/2+                 Ωπ

 

= 5/2+

[200 1/2]
[211 1/2]
[220 1/2]

[202 3/2]
[211 3/2]

[202 5/2]

ε

4.2.  “Nilsson diagram”

 

–

 

one-particle spectra as a function of deformation

oblate

=  [modified oscillator] potential

N = nz

 

+ n┴

Λ(>0) = n┴

 

, n┴

 

-2, …,1 or 0

[101 3/2]

[101 1/2]

[110 ½]



h11/2

 

orbit
= high-j orbit
with

 

π

 

= –

Proton orbits in prolate

 

potential (50

 

< Z

 

<

 

82).

At small δ

 

and  h11/2 orbit,

ε  δ

 

(3Ω2 –

 

j(j+1) )

At large δ,

ε  –

 

δ(3nz – N)

g7/2 , d5/2 , d3/2 and s1/2 orbits, which have

 

π

 

= +, do not mix with h11/2

 

by Y20

 

deformation.

[N=4, nz

 

=0]

[N=4, nz

 

=2]

Levels are doubly degenerate
with  ±

 

Ω

 

.

At  δ

 

> 0.3 for prolate

 

shape
quantum numbers [Nnz

 

ΛΩ] work
well, except for

 

high-j orbits.



Ex.1.   Deformed one-particle wave-functions denoted by the asymptotic quantum numbers 
[N nz

 

Λ Ω] are expanded in terms of spherical basis.
(A modified-oscillator Hamiltonian

 

was diagonalized.)

parity of the states: )1()1(  N

Table 1.

OBS.  Various computer programs are at present publicly available if one is satisfied with 
the diagonalization

 

of modified-oscillator Hamiltonian.



for proton one-particle wave-functions at deformation  δ

 

= 0.3, which are obtained 
by diagonalizing

 

a modified-oscillator Hamiltonian, 
H = T + V(r,θ)  plus (ℓ·s) potential  

| [411 3/2]

 

>  =  0.926 | 411 3/2> + …
= 0.418 |g9/2 > –

 

0.140 |g7/2 > + 0.864 |d5/2 > + 0.246 |d3/2 > 

| [411 1/2]

 

>  =  0.900 | 411 1/2> + …
= –

 

0.163 |g9/2 > + 0.396 |g7/2 > –

 

0.099 |d5/2 > + 0.848 |d3/2 > + 0.297|s1/2 > 

| [400 1/2]

 

>  =  0.968 | 400 1/2> + …
= 0.147 |g9/2 > –

 

0.072 |g7/2 > + 0.539 |d5/2 > –

 

0.160 |d3/2 > + 0.811 |s1/2 >

Table 1.      (continued)
Ex.2.  Using Tables 5-2a and 5-2b in

 

A.Bohr

 

and B.R.Mottelson, Nuclear Structure, vol.II, 
one obtains, for example, 

OBS.

| [411 3/2]

 

>      :  states obtained by diagonalization

| 411 3/2

 

>       :   bases states exactly

 

expressed by the quantum numbers  N nz

 

Λ Ω

Normal-parity orbits;

High-j orbits;

| [532 5/2]

 

> = 0.861 | 532 5/2> +…

= 0.882 |h11/2 > + 0.339 |h9/2 > –

 

0.244 |f7/2 > –

 

0.062 |f5/2 >



Good approximation

 

;

(a) In the ground state of eve-even nuclei

0
1

 


A

i
iK

Namely, ±

 

Ω

 

levels are pairwise

 

occupied.

(b) In low-lying states

 

of odd-A nuclei





A

i
iK

1
 Ω

 

of the last unpaired particle.

Low-lying rotational bands

 

in deformed

 

odd-A
nuclei may well be classified in terms of 
one-particle orbit  [Nnz

 

ΛΩ]

 

occupied by
the last unpaired particle. 

Intrinsic configuration

 

in the

 

body-fixed

 

system

The rotational band based on [N nz

 

Λ Ω]
(a)  I ≥

 

K (← I3 ) = Ω
(b)  the bandhead

 

state has I=K.
Exception may occur for K=1/2 bands.

(c) some irregular rotational spectra are 
observed for

 

K=1/2 bands.



ex.  The N=13 th

 

neutron orbits

 

observed as low-lying excitations in  25Mg13  -

 

a textbook example

[N n z Λ Ω]

The above interpretation of the data works quantitatively :

measured large E2 transitions within the bands 
 β

 

≈

 

0.4

observed E2-

 

and M1-intensity relations

 gs
eff

 

= (0.7 –

 

0.9) gs
free


Nilsson levels : double

 

(±Ω)

 

degeneracy

Bohr & Mottelson, Nuclear Structure, Vol.II

S(n)

 

= 7.3 MeV

f7/2

(oblate) (prolate)



Some selection rules in terms of exact quantum numbers,  I,  K,

 

or  N nz

 

Λ Ω

1)  Between states ),( KI )','( KIand

E Mor transitions are

 

forbidden

 

for  |'| II

E Mor transitions are forbidden for  |'| KK ,  even if  |'| II

The selection rules in 2) approximately work for transitions
between realistic

 

one-particle states,  [N nz

 

Λ Ω]

 

and  [N’

 

nz

 

‘

 

Λ’

 

Ω’],  if  β

 

> 0.3 

How well “K-selection rule”

 

of 1) works in reality exhibits how good axial symmetry

 

is.

2)  Noting that   M1  


sor ,   and   GT  s

zs 

z zNn  zNn=

)( yx iss  zNn
2/1

1
2
1

2
1















 





  1,,, znN=

zs zNn  zNn=

where

)( yx i  zNn 1,1,1, znN 1,1,1, znN or 

( “K-selection rule”

 

)

( More complete formulas are given in Table 2. )



Selection rule

 

of one-particle operators

 

between one-particle states 
with exact

 

quantum numbers,

 

N nz

 

Λ Ω .

From J.P.Boisson

 

and R.Piepenbring, Nucl. Phys. A168(1971)385.

E1 operator

E2 operator

M1 operator

Gamow-Teller operator

If you use this kind of tables, you must be careful 
about the sign

 

of the non-diagonal matrix elements, 
which depends on the phase convention

 

of 
wave functions

 

!

The matrix elements

 

between realistic levels

 

with
the assigned asymptotic quantum numbers,
[N nz

 

Λ Ω] , can be obtained, to leading order,
from this table.

Table 2.



Table 3.

Matrix-elements of one-particle operators in  |(ℓ

 

s) j, Ω

 

›

 

representations

 ,)(,)( 11022 jsYrjs  


 1 2 1 2

1
1 2

2 2 1 1( 1) ,( 1) ( 1) ( 1)j jj r j  
         

)12(4
)12)(12( 21





jj

=

)0,2/1,2/1;( 12 jjC )0,,;( 12 jjC

 ,)(1,)( 11122 jsYrjs  


)0,2/1,2/1;( 12 jjC )1,,1;( 12 jjC
  2/11

1122 )1()1()1(,)1( 2121    jjjrj 

)12(4
)12)(12( 21





jj

=

 ,)(2,)( 11222 jsYrjs  


)0,2/1,2/1;( 12 jjC )2,,2;( 12 jjC

  2/11
1122 )1()1()1(,)1( 2121    jjjrj 

)12(4
)12)(12( 21





jj=

,)( js 1/ 2,
1 ( ) ( ,1/ 2, ; ) ( , )

s

s

j s m m
m m

R r C j m m Y
r

   


  ≡

1122 jrj  
2 2 1 1

0

( ) ( )j jdrR r R r r


  ≡

1,)(,)()1( 22111   jsYrjs  
=

2,)(,)( 22211   jsYrjs  
=



  ,)(1,)( 1122 jssjs 

  ,)(1,)( 1122 jsjs 

)12)(1()12(2)1)(,( 1111
2/1

21
21     jj )1,1,;1( 21 jjC )1,2/1;( 1122 jjW =

 ,)(,)( 1122 jssjs z 

2
)12(3)1)(,( 12/1

21
11


  jj ),0,;,1,( 21 jjC )1;,2/1,,2/1( 112 jjW=

 ,)(,)( 1122 jsjs z 

)12)(1(12)1)(,( 1111
2/1

21
21     jj )0;1( 21 jjC )1,2/1;( 1122 jjW =

( s±

 

= sx

 

±

 

i sy

 

etc. )Table 3 (continued)

= )12(3)1)(,( 1
2/1

21
11   jj )1,1,;,1( 2,1 jjC )1;,2/1,,2/1( 112 jjW 1122 jj 

1122 jj 
2 2 1 1

0

( ) ( )j jdrR r R r


  ≡

1122 jj 

  ,)(1,)( 1122 jsjjs  )1)((),( 21  jjjj= 1122 jj 

1122 jj 

1122 jj 



Table 3 (continued)

Phase convention

 

in wave functions  -

 

important

 

in non-diagonal matrix-elements

(ℓs)j

 

or (sℓ)j

 

; jsjs
j

)()1()( 2
1






),( 
mY ),( 




mYior

3)  The phase convention

 

of

)(rR j

> 0  (or  < 0)     for r

 

→ 0 ,        or

> 0  (or  < 0)     for r

 

→ very large,       or

output of computers


1)  The coupling order

 

of spin

 

and orbit

 

angular momentum ;

2)  Angular part

 

of one-particle wave functions is defined by ;

)(rR j ;



66 doubly-degenerate

 

levels in

 

sd-shell

3

 

Ωπ=1/2+   (ℓmin

 

=0)

2 Ωπ=3/2+   (ℓmin

 

=2)

1

 

Ωπ=5/2+

 

(ℓmin

 

=2)}12

 

particles

A.Bohr

 

and B.R.Mottelson, vol.2, Figure 5-1.

5.1. Weakly-bound neutrons

Remember the Nilsson diagram based on
modified oscillator Hamiltonian
for the sd-shell   →

[N nz

 

Λ Ω]

5.  Weakly-bound

 

and resonant

 

neutron levels in Y20  deformed potential 

harmonic-oscillator

 

potential



ex. Radial wave functions of the [200 ½] level  in Woods-Saxon potentials.

Bound

 

state with εΩ

 

=

 

-8.0

 

MeV. Bound

 

state with εΩ

 

=

 

-0.0001

 

MeV.

Similar behavior to wave functions in harmonic osc.

 

potentials. Wave functions unique in

 

finite-well

 

potentials.

s1/2

d5/2

d3/2

Ωπ

 

= 1/2+ one-particle level has ℓmin

 

= 0  component.

As εΩ

 

(<0) → 0, the structure of one-particle wave-functions may deviate 
from [N nz

 

Λ Ω], even for |β| → large. 
Nevertheless, one-particle levels are denoted by original  [N nz

 

Λ Ω].

(The radius of potentials is adjusted to obtain respective eigenvalues

 

εΩ

 

.)  



For

 

ε → 0, the

 

s-dominance

 

will appear in all Ωπ

 

=1/2+

 

bound orbits.  However,
the energy, at which the dominance shows up, depends on both 
deformation and respective orbits. 

ex.  Calculated  s½

 

probability in

 

three Ωπ

 

=1/2+

 

Nilsson orbits in the

 

sd-shell 
as a function of energy eigenvalue

 

εΩ

 

.



Ωπ=1/2+ neutron

 

orbit → s1/2

 

,

 

as |εΩ

 

|→ 0.

deformed

 

core

, irrespective

 

of the size of

 

deformation

 

and the kind of one-particle orbits.

The rotational spectra

 

of deformed halo

 

nuclei must come from the deformed core.

Deformed
 

halo
 

nuclei
ℓmin

 

=0



Calculated probabilities of  (ℓ

 

j) components of one-particle [N nz

 

Λ

 

Ω]

 

levels in the pf

 

shell
as a function of energy eigenvalue

 

εΩ

 

.

Ex.

 

Ωπ

 

= 1/2 –

 

and  3/2 –

 

one-particle levels have ℓ

 

min

 

= 1  component.

[330 1/2] orbit [321 3/2] orbit

The p-components increase

 

as  εΩ

 

→ 0 , but the probability at εΩ

 

=

 

0

 

depends on 
respective levels, deformations, and the diffuseness of potentials.



potential strength

W-S potential parameters are fixed except radius R.

(r0 = 1.27 fm  is used.)

Woods-Saxon

[200 ½]  [211 ½]

[220 ½
]

ℓ

 

min = 0
ℓ

 

min = 2
ℓ

 

min = 1

5.2.  One-particle resonant levels in deformed potential –

 

eigenphase

 

formalism

1)

 

The majority of bound

 

(εΩ

 

< 0) neutron
Ωπ

 

= 1/2+

 

levels do not continue

 

to one-
particle resonant

 

levels for εΩ

 

> 0. 
Even the resonant levels surviving for very 
small  εΩ

 

> 0  die out at small  εΩ

 

,  
if an appreciable amount of  ℓmin = 0
component is contained in wave functions. 

2) The ℓmin

 

value in the components of 
deformed wave functions is crucial for both
the width

 

of one-particle resonant levels 
and up till which value of εΩ

 

( > 0)  the 
resonant level can survive. 

3) One-particle levels die out at smaller
εΩ

 

( >0) values, for the potential with 
a larger

 

diffuseness.



Bound

 

state with

 

εΩ

 

= – 0.1 keV

Resonant

 

state with

 

εΩ

 

=

 

+100

 

keV

Radial wave functions of the [200 ½]  level

Existence

 

of resonance

 

← d

 

component
Width

 

of resonance

 

← s

 

component

OBS.

 

Relative amplitudes

 

of

 

various components

 

inside the potential

 

remain nearly the same
for εΩ

 

= – 0.1 keV

 

→ + 100

 

keV.

The potential radius is adjusted to obtain respective

 

eigenvalue

 

(εΩ

 

< 0) and

 

resonance (εΩ

 

> 0).

s1/2 d3/2 d5/2



One-particle resonant

 

levels in deformed

 

potentials are defined using eigenphase

 

formalism :

One eigenphase

 

δΩ

 

increases

 

through  π/2

 

as  εΩ

 

increases

I.H.,  Phys.Rev. C72, 024301 (2005); C73, 064308 (2006)

 one-particle resonance in deformed potential

In the limit of  β

 

→ 0  the definition of one-particle resonance in the eigenphase

 

formalism

 the definition in spherical potentials in terms of phase shift.

R.G.Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966)

Neutron resonant

 

levels in deformed

 

potential

(Among an infinite number

 

of positive-energy

 

one-particle levels, one-particle resonant

 

levels  
are most important in the construction of many-body correlations

 

of nuclear

 

bound states.)



For 0

( ) ( )j bR r rk r   for r

where

2
2 2



 m

b

For 0

)()sin()()cos()( rrnrrjrR ccj     for r

where
  2

2 2

m

c

 :   eigenphase

 

common to all

A given eigenchannel

 

: asymptotic radial wave-functions behave in the same way for all 
(ℓj)

 

components.

sin( )
2cr
    

Do not restrict the system in a finite box !

)( rk b is the modified spherical Bessel function of the third kind,  and

Due to the axially-symmetric deformation, radial wave-functions )(rR j for a given  Ω

 

but
different  ℓj  values are coupled.  All  (ℓj)  components of a solution of coupled-channel equations 
have a common eigenphase.

j channels



One-particle resonant

 

level in a deformed

 

potential :
one of eigenphases

 

δΩ

 

increases through π/2

 

as εΩ

 

increases.

When one-particle resonant

 

level in terms of one

 

eigenphase

 

is obtained, 
the width

 

ΓΩ

 

of the resonance in the intrinsic system

 

is calculated by

εΩ

res

π/2
res

:  intrinsic

 

width

resd
d




















2

δΩ



1) For

 

a given potential and a given εΩ
there are

 

several

 

(in principle, an infinite number of)

 

solutions

 

of eigenphase

 

δΩ

 

.

2) The

 

number of

 

eigenphases

 

for

 

a given potential and

 

a given εΩ

 

is equal to 
that of wave function components with different

 

(ℓ,j) values.

3) The value of

 

δΩ

 

determines the

 

relative amplitudes of

 

different (ℓ,j) components.

4) In the region of small

 

values of εΩ

 

( > 0),  only one

 

of

 

eigenphases

 

varies strongly
as a function of εΩ

 

,  while other eigenphases

 

remain close to the values of nπ. 

Some comments on eigenphase

 

;

I.H., Phys. Rev. C73, 064308 (2006)



5.3. Examples of Nilsson diagrams

 

for lighter

 

neutron-rich nuclei 

1.  ~

 

17C11

 

(S(n) =

 

0.73 MeV,   3/2+)

2.  ~

 

31Mg19

 

(S(n) =

 

2.38 MeV,  1/2+)

~ 33Mg21

 

(S(n) =

 

2.22 MeV,

 

3/2–)

Near degeneracy of some weakly-bound

 

or resonant

 

levels in spherical

 

potential,
unexpected

 

from the knowledge on stable

 

nuclei

- the origin of deformation

 

and …….
Jahn-Teller

 

effect

3.   ~ 31Ne21

 

(S(n)

 

= 0.29

 

±

 

1.64

 

MeV, halo structure)

4.   ~ 37Mg25

 

(S(n)

 

= a few hundreds keV

 

?)

5.   ~ 41Si27

 

(S(n)

 

= 1.34

 

±

 

0.57

 

MeV)

6.    ~ 45S29

 

(S(n)

 

= 2.86

 

±

 

0.77

 

MeV)

7.    A ~ 75 region

I.H., PRC 76

 

(2007) 054319;
I.H., J. Phys. G, 37 (2010) 055102



1d3/2

1d5/2
2s1/2

1p1/2

At β=0

 

; 
ε(2s1/2

 

)-ε(1d5/2

 

)
= 140

 

keV

One-particle neutron energies as a function of quadrupole

 

deformation  β
N ~ 8  region

[12]  H.Ogawa

 

et al., Eur.Phys.J.

 

A 13 (2002) 81
H.Ueno

 

et al., N.P.A738

 

(2004) 211

[11]  K.Asahi

 

et al., N.P.A704

 

(2002) 88c

[13]  W.Geithner

 

et al., PRL

 

83 (1999) 3792

In μcalc
35.0Rg

free
s

eff
s gg   are used.

(for β≠0)

17C11

 

(3/2+) S(n)

 

= 0.73

 

MeV

11Be7    (1/2+ )

[N nz

 

Λ Ω]

S(n)

 

= 0.50

 

MeV

0.32

0

½ -
½ +

β

 

~ 0.7
in 12Be  from (p,p’)



(MeV)

potential strength



One-particle neutron energies as a function of quadrupole

 

deformation  β
N ~ 20  region

[16]  D.T.Yordanov

 

et al., PRL 99

 

(2007) 212501

[14]

 

G.Neyens

 

et al., PRL 94 (2005) 022501

33Mg21 S(n)

 

= 2.22  MeV

31Mg19 S(n)

 

= 2.38  MeV

In μcalc 38.0Rg
free
s

eff
s gg )7.0(

(for β≠0)  are used. 

Then, Ncalc f  3.1)( 2/7 

Ncalc d  80.0)( 2/3 

2p1/2 ?

2p3/2 ?

[330 1/2]

[321 3/2]

[N nz

 

Λ Ω]

Resonant states at β=0

 

;
εres

 

(2p3/2

 

) <

 

εres

 

(1f7/2

 

)

εres

 

(1f5/2

 

) = +8.96 MeV

×
× × ×

 

or  ×

 

are excluded

 

by the sign of

 

measued
magnetic moments.

I.H., J. Phys. G,

 

37

 

(2010) 055102



(MeV)

potential strength



2p1/2 ?

2p3/2 ?

One-particle neutron energies as a function of quadrupole

 

deformation  β

Iπ

 

=

3/2 –

 

from

 

[330 1/2]     for 30.020.0  

3/2 +

 

from    [202 3/2]     for 40.030.0  

3/2 -

 

from    [321 3/ 2]     for 58.040.0  

1/2 + from    [200 1/2]     for 58.0

no halo

31Ne21 S(n)

 

= 0.29 ±

 

1.64  MeV

)1( p

)1( p
)0( s

halo

halo

halo

[N nz

 

Λ Ω]

)( )2min 

T.Nakamura, N.Kobayashi, Y.Kondo, Y.Satou, et al.,
PRL 103, 262501 (2009),

Coulomb breakup of 31Ne → halo structure

×

The 21st neutron

 

cannot be placed on ×

 

in   
[202 3/2 ] because of observed halo

 

structure.



1f5/2

2p3/2

1f7/2

1d3/2

2s1/2

2p1/2 ?

At β=0

 

;
ε(2p3/2

 

) –

 

ε(1f7/2

 

)
= 680

 

keV

37Mg25 S(n)

 

=

 

a few 
hundreds

 

keV

 

?

One-particle neutron energies as a function of quadrupole

 

deformation  β

Iπ

 

= 
5/2 –

 

from   [312 5/2]    for 3.00  
1/2 –

 

from   [321 1/2]    for 6.03.0   no

 

halo
)1( p halo

[N nz

 

Λ Ω]

( ) 3min  )

[312 5/2]

[321 ½]

In the case of very weak binding
N=28

 

is

 

not

 

a magic number !



One-particle neutron energies as a function of quadrupole

 

deformation  β N ~ 28 region

41Si27 S(n)

 

= 1.34 ±

 

0.6

 

MeV

At β=0

 

;
ε(2p3/2) – ε(1f7/2

 

) = 1.20 MeV

In μcalc 38.0Rg
free
s

eff
s gg )7.0(  are used. 

(for β≠0)

Then,
Ncalc p  4.0)( 2/1 

Ncalc p  3.1)( 2/3 

Ncalc f  3.1)( 2/7 

Cf.   In 43S27

 

the 320 keV

 

isomeric state has 7/2 –
from

 

g-factor measurement  →

 

The ground state 
is deformed ?

[N nz

 

Λ Ω]



One-particle neutron energies as a function of quadrupole

 

deformation  β

45S29 S(n)

 

= 2.86 ±

 

0.7

 

MeV

N ~ 28  region

In μcalc 38.0Rg
free
s

eff
s gg )7.0(  are used. 

(for β≠0)

Then,
Ncalc p  4.0)( 2/1 

Ncalc p  3.1)( 2/3 

Ncalc f  3.1)( 2/7 

[N nz

 

Λ Ω]



N ~ 50 regionOne-particle neutron energies as a function of quadrupole

 

deformation  β

εres

 

(1h11/2 ) = + 5.48  MeV

εres

 

(1g7/2 ) = + 3.44  MeV
at  β=0

A ~ 75 region

At β=0

 

;
ε(3s1/2

 

)

 

< ε(2d5/2

 

) 

51st

 

neutron

ex. 51
75
24Cr ?

Neutron-drip-line nuclei with N=51have 
a good chance to have the ground or 
very low-lying Iπ

 

= 1/2+

 

state,
irrespective of spherical

 

or deformed
shape.

In the case of very weak binding



(not applicable

 

when rotational perturbation

 

of intrinsic states has to be included.)

Rotational operator )(R Ω

 

: Euler angles ),,( 
zyz JiJiJi eeeR   )(

Rotation matrix )(' 
J
MMD

)()',()',(''')( '  J
MMDJJMJRJM 

Inverting the expression

 
J

J
MM JMDJMR



 ')()( '

Multiplying by )(' 
J

MMD and integrating over Ω, we obtain a projection operator

 



 )()(

8
12

2 RDdJJMJMP J
MM

J
M 




We need to calculate the expressions 

Appendix.  Angular momentum projection

 

from a deformed intrinsic state 

 



 


 )()(

8
12

2 RDdJP J
MM

J
M

 








 )()(
8

12
2 HRDdJHP J

MM
J

M

In lecture V.3 a way of calculating observed quantities in lab system using deformed intrinsic wave functions is
shown, which can be of practical use though it involves an approximation.  The set of basis wave functions 
given in V.3 are useful also for including rotational perturbation.  Here, we show ; 



If  is axially symmetric,  MJ z 

Appendix

MiJiMi eeeR y   )(
MiJiMiJ

MM eJMeJMeD y  )(

then,  using the “reduced rotation matrix” ')(' JMeJMd yJiJ
MM

 

 


yJiJ
MM

J
M eddJP 


 )(sin

2
12

0

 



 

0

)(sin
2

12 yJiJ
MM

J
M HeddJHP

  yJie ≈

 

1   for   θ

 

<< 1 ,
decreases quickly as  θ → larger  (at least in heavier deformed nuclei),
is symmetric about  θ

 

= π/2 .


(continued)

where the overlap functions :

which describes the collective rotational motion, one obtains 
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