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When IVGDR was found in photo-neutron cross sections,
it had a resonance shape, but the width was typically of
the order of 5 MeV, which was an order of magnitude 
larger than the resonances known in nuclei at that time 
(~ 1960 ies).

Thus, it was called “Giant Resonance”.

Photon energy resolution = several hundreds (< 500) keV.



The hydrodynamical model consists of incompressible neutron and proton fluids. 

Nuclei consist of nucleons, and the population of GR by, for example, γ-absorption is
via one-particle operator.
Thus, the presence of quantum-mechanical shell-structure of one-particle levels in 
nuclei sets a limitation on the applicability of the hydrodynamical model.

If a collective mode consumes an appropriate sum-rule 
→ Possibility of being approximately described by a macroscopic hydrodynamical model

Taking the simplest model for nuclei, namely harmonic-oscillator model,
the above possibility exists if all one-particle excitations by a given operator 
have the same energy, one-frequency.

ex.
01 ω==∆EIVGDR is this example ;   all one-particle excitations have ∆N=1,

GQR  , since ∆N=0  and 2.

The hydrodynamical model is not directly applicable to spin-dependent modes.



GRs in heavier nuclei have often a better resonance shape than those in lighter nuclei.

This may be due to the fact that in heavier nuclei ;

(a) GR can be more collective, since many more 1p-1h configurations are available.
(b) The spread of energies of 1p-1h excitations ( ~ A–1/3 ) is smaller, while

the p-h interaction which couples 1p-1h excitations with different energies 
has no strong A-dependence.

Thus, building up a collective state out of available 1p-1h configurations is easier.

Lighter nuclei have less clear distinction between the surface and the inside.
This makes a difference, for example, when a probe used is sensitive only to the surface
or GR is of a surface type.



Neutron-excess gives an essential difference in  charge-exchange GR, t± GR, 
from the case of N=Z nuclei.

ex.  Some t+GR may disappear due to the Pauli principle.
ex.  Ex(t–GR) > Ex(t+GR) in the presence of neutron excess.

→ Excitations made by Isoscalar (i.e. isospin-independent) operators
carry an isovector transition density ----- When neutrons and protons
move in the same way in nuclei with  N > Z,  δρn – δρp ≠ 0 .

Neutron excess



Giant resonances and sum rules

7.1.  Introduction

7.2.  Sum rules

7.2.1.  Sum rules for  (1 or tz ) excitations
Classical oscillator sum (= energy-weighted sum) 
Sum-rule in axially-symmetric quadrupole-deformed nuclei

7.2.2.  Sum rules for  (t± ) charge-exchange excitations
Difference,  S– – S+  , of non-energy-weighted sums

7.3.  Giant resonances of  IS  or zt type (excitations within the same nuclei)

7.3.1.  Isovector giant dipole resonance (IVGDR)

7.3.2.  Isoscalar and isovector giant quadrupole resonance (ISGQR and IVGQR)

7.3.3.  Isoscalar giant monopole resonance (ISGMR)  - compression mode



7.4.  Giant resonances of charge-exchange (n→p or p→n ) type  
(excitations to the neighboring nuclei)

7.4.1.  Fermi transitions (IAS)
7.4.2.  Gamow-Teller (GT) resonance  (incl. magnetic giant dipole resonance)
7.4.3.  Isovector spin giant monopole resonance (IVSGMR)
7.4.4.  Isovector spin giant dipole resonance (IVSGDR)

7.5.  Giant resonances in nuclei far away from the stability line

7.5.1.  ISGQR of nuclei with weakly-bound neutrons
- an example of threshold strength

7.5.2.  β-decay to GTGR in drip line nuclei
β– decay to  GTGR– in very neutron-rich light nuclei
β+ decay to  GTGR+  in medium-heavy (N>Z) proton-drip-line nuclei
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7.  Collective motion based on particle-hole excitations
- giant resonances and sum-rules

7.1.  Introduction

Collective motion :
Many nucleons participate coherently in the motion so that a given observable
(transition) is much enhanced compared with a single-particle estimate.

The best-established collective motion in nuclei is rotational motion of deformed nuclei.

The properties of very low-energy collective states are sensitive both to pair correlations
and to the shell-structure around the Fermi levels.

Only those particles close to the Fermi levels contribute to the pair correlation.

In contrast, many (if not all) particles in a nucleus participate in giant resonances (GR), so that 
(a) the properties of GR are almost independent of the shell-structure around the Fermi level, 
(b) depend on the bulk properties, and 
(c) are expressed as a smooth function of  Z,  N and A.



The total transition strength should be limited by a “sum rule”, which depends on the 
ground-state properties. 
Due to the collective nature, GR consumes the major part of the sum rule that is defined 
for respective collectivity.  

→ Then, GR may correspond to a classical picture of collective motion.

Usefulness of sum-rules

If an observed peak consumes the major part of the sum-rule, the peak expresses
a collective mode.

Moreover, there are almost no other collective excitations carrying the strength of 
the same operator F,
while the mode created with the operator acting on the ground state is approximately 
an eigenstate of the Hamiltonian.



Examples of Giant Resonances experimentally studied in β-stable nuclei are

(a)  Excitations in the same nuclei  (IS = Isoscalar,  IV = Isovector) 
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(b)  Excitations to neighboring nuclei 
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Examples of selection rules in spherically-symmetric harmonic-oscillator potential

⇒ 0ω= ) excitations1) Operator rY1µ (or  x, y, z) ∆N=1 (Ex =

NF + 1
NF + 1

NF

NF – 1
NF

Closed-shell configuration Partially-occupied  NF  shell

⇒ 00 ω= or 02 ω= ) excitations2) Operator  r2 Y2µ (or  x2 , y2 , z2 ) ∆N=0 or  2 (Ex =

NF + 2
NF + 2

NF + 1
NF + 1

NF

NF – 1

NF – 2

NF

NF – 1

Closed-shell configuration Partially-occupied  NF  shell

In realistic potentials the above selection rules do not exactly work, but work approximately.



Observed one-particle energies are not well reproduced

by Hartree-Fock calculations using Skyrme interactions with  m* (= (0.6-0.8) m ).

In contrast,

observed energy of ISGQR are often reproduced

by RPA based on the Hartree-Fock calculation with the same Skyrme interaction
(so-called self-consistent RPA).

Note that the parameters related to ISGQR are well taken care of, when Skyrme parameters are 
determined.

In this lecture we do not further go into detail of [ Skyrme H.F. + RPA ] calculation.

Instead, we try to understand GRs, sometimes using the result of [ Skyrme H.F. + RPA ] calculation, 
but mostly using the models which are as simple as possible.



Shape oscillations - typical vibrational excitations when nuclear matter 
is incompressible.

Compression modes → information on nuclear compressibility
{
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In heavier nuclei GR may show a resonance (Lorentzian ?) shape and the properties can be 
systematic, while those of GR in medium weight and light nuclei are more individual.
In very light nuclei GR strength distribution is split into several fragments.

∵) In lighter nuclei the collectivity is weaker, or a number of p-h configurations 
to contribute to GR is smaller.

In lighter nuclei the difference of the relevant p-h excitation energies may be large 
compared with the interaction between them, 

Transition densities of GR with good accuracy is not experimentally available.

Example of transition density of 
IS shape oscillation ;

3– state of  208 Pb at  Ex = 2.61 MeV

Experimental data are taken from 
(e , e’) in J.Heisenberg and I.Sick,
P.L. 32B (1970) 249.

I.H., P.L. 66B (1977) 410



7.2.  Sum rules

⇒ Valid in the energy interval, well below internal excitations of nucleons .

In this lecture we treat nucleons as elementary particles, 
neglecting possible contributions from internal degree of freedom of nucleons.

7.2.1.  Sum rules for (1 or tz) excitations
Classical oscillator sum - sum of energy-weighted transition strength
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Note that the sum is expressed as a ground-state expectation value of one-body operator
- insensitive to the many-body correlation in the ground state – “model independent”.
Sums with other energy weightings involve two- or many-body operators.



In particular,  if )ˆ()( rYrfF λµλµ = ,      we obtain
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For  E1 transitions ;
Since isoscalar dipole operator corresponds to the center of mass motion that must not 
create an excitation, the dipole operator which creates excitations is necessarily of 
isovector character.

For example, electric-dipole excitation operator (in the direction of z-axis) should be
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ex. center of mass motion for E2 operator

Total E2 moment measured with respect to the center of mass
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For harmonic oscillator wave-functions and low-energy transitions ; 
matrix elements of (a) receive no contributions from  the recoil term, namely,
the correction term in (b) is exactly cancelled by the 2-body term in (a). 



Distribution of S(E2) in axially-symmetric deformed nuclei

Low-energy IS ( r2 Y2ν ) excitations

rotational excitation (ν = ±1 )
gamma-vibration (ν = ±2 )
beta-vibration (ν = 0)
(one-particle excitations)
{(1)

(∆N≈0)

a)  rotation excitation – main E2 oscillator strength in the low-energy region
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2Yr Type surface vibration) takes  less than (0.01) classES )2(





(2) High-energy (∆N≈2) excitations
E2 strength will split depending on the quantum number  |ν| of  Y2ν .
The E2 strength of  GR with  ν = 0, ±1, ±2  is expected to be approximately

1 : 2 : 2

Ex Ex

prolate shape oblate shape

OBS. L-S doubly-closed spherical nuclei (such as 40-Ca) have only
high-energy (∆N≈2) collective quadrupole excitations. 

Spherical vibrating nuclei have both low- and high-energy collective 
quadrupole excitations.  The low-energy (∆N≈0) IS quadrupole modes
have enhanced E2 transitions due to the attractive quadrupole interaction,
but carry less than  (0.10) S(E2)class .



ex.  an extra contribution to S(E1) from an exchange interaction

Increase of energy-weighted sum-rules, S(E1), from S(E1)class
due to the presence of attractive Majorana space-exchange interaction
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An attractive Majorana interaction makes an extra contribution to  S(E1) .



7.2.2. Sum rules for ( t± ) charge-exchange excitations
There is no sum-rule, which corresponds to the classical oscillator strength for IS operators. 

Instead,  model-independent and non-energy weighted sum-rules,
for the difference between  t– and  t+  transitions.
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7.3.  Giant resonance of isoscalar (IS) or  tz type

7.3.1.  Isovector giant dipole resonance  (IVGDR) :  the oldest and best known
Giant Resonance 

Systematics of observed IVGDR frequency

Observed 79 A-1/3 MeV is in good
agreement with the value estimated 
in the harmonic-oscillator model.

For light nuclei with  A < 50 a deviation
from the systematics is observed.
--- Other types of GR show the same

tendency.  

Note that unpertrubed Iπ =1– p-h energies in 
realistic potentials are approximately 
degenerate and close to  41 A-1/3 MeV (!) 
also in drip-line nuclei !

Fig. 6-19 of A.Bohr & B.R.Mottelson, Nuclear Structure, vol.II



Well-established IVGDR – observed peak(s) in photo absorption cross section

Photo absorption cross section of  16O

Photo absorption cross section of 197Au
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Additional dipole strength is observed
on the high-energy side, that appears
to be associated with short-range 
(velocity-dependent) correlations 
between nucleons.

Figs.6-18 and 6-26 of A.Bohr & B.R.Mottelson, Nuclear Structure, vol.II
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S(E1)obs = S(E1)class (1 + x)

x comes from the velocity- and
)( ττ ⋅ - dependent terms in the

nucleonic interactions.

pion threshold



IVGDR is the giant resonance, of which the semi-classical picture is possible.

Steinwedel-Jensen model

n p

Goldhaber-Teller model

Neutron and proton fluids are oscillating within a sphere,
keeping the total density constant.

the frequency ω ∝ R -1
For simplicity, assuming  [IVGDR ~ a standing wave in a nucleus with a fixed boundaries],

⊥ω ∝ 1−
⊥R

the strength distribution would have two peaks
corresponding to an oscillation of neutrons vs
protons along the long and short axes, 
as observed in 150Nd90 .

Then, in contrast to one-peak structure 
in spherical nuclei,
in axially-symmetric quadrupole-deformed nuclei

zω ∝ 1−
zR

← N=82

← N=90



For a prolate (oblate) shape the integrated cross section associated with the vibration 
along the symmetry axis (= longer (shorter) axis), which has lower (higher) frequency, 
should be about a half of the one along two shorter (longer) axes.  

ExEx

prolate shape oblate shape

δThe energy splitting is proportional to the deformation

ω
ωω z−⊥

R
R∆≈ ≈ δ

Thus, the ground state of  150Nd90 is prolately deformed !



Harmonic oscillator potential
only  for Nf = Ni ± 1, , 0f iN x y z N ≠

Ni

Ni + 1
0ω=

occupied

unoccupied

one-particle energy

All excitations are from the last-filled major shell
to the next major shell, with excitation energies,

1/3
0 41E Aω −∆ = ≈= MeV.

Many degenerate particle-hole (p-h) excitations,
especially in heavier nuclei.

A schematic model :
(for  IVGDR)

many degenerate
p-h excitations

After including a separable repulsive interaction between the p-h excitations, only one collective
state is pushed up, while all other states remain at the unperturbed excitation-energy, and  
the collective state absorbs all transition strength,  if one takes  

a collective state

ground state ground state

separable interaction relevant transition operator

G.E.Brown,  Unified Theory of Nuclear Models,  p.29-32 and  p.47-49.



Taking the strength of IV dipole-dipole interaction from the symmetry term of 
the phenomenological nuclear one-body potential, in the harmonic oscillator potential model
we obtain

unperturbed p-h energy, 1/ 3
0 41Aω −== MeV

1/ 380A− MeV for the excitation energy of the collective state, 
(= IVGDR) 

in agreement with the observed systematics in medium-heavy nuclei.

p-h energies, 3/141 −A MeV →
which consumes the major par

due to the repulsive p-h interaction

collective  IVGDR at 3/180 −A
t of E1 strength.

MeV, [ ]
|)1(| Eep

eff |)1(| Een
effmeans, and for low-energy E1 transitions are much smaller

than the values of (N/A) e    and (Z/A) e ,  respectively  (see Sect. 6.1).



In the self-consistent calculations plus RPA for spherical nuclei, 
the strength of  IVGDR is split into several peaks even for heavier nuclei.

The transition density of lower-lying peaks appears to be closer to the Steinwedel-Jensen
prediction, while that of higher-lying peaks looks more like the Goldhaber-Teller one.

)()( 0 rrrtr
SW ρρ ∝

dr
rdrtr

GT
)()( 0ρρ ∝

Radial transition density :

Goldhaber-Teller model

Steinwedel-Jensen model

( IVGDR
ISGDR )Examples of self-consistent calculations plus RPA

20
40
20Ca 126

208
82 Pb

I.H., H.Sagawa and X.Z.Zhang, PRC 57, R1064 (1998)



ex.  “Pigmy dipole resonances” observed at much lower energy than IVGDR
of  the A ≈ 140 region consume less than 1 % of S(E1)class .

obtained from   by folding with a Lorentzian
with a width of 500 keV ( from A. Zilges, 2007 )



7.3.2.  Isoscalar and isovector giant quadrupole (ISGQR and IVGQR) resonance

Operator                      spin-parity                     observed peak energy

2
2 ˆ( )k k

k
r Y rµ∑ 2+ 64 A-1/3 MeV

2
2 ˆ( ) ( )z k k

k
k r Y rµτ∑ 2+

ISGQR

IVGQR (130 A-1/3 MeV ?)

A schematic model :     (for ISGQR)

many degenerate
p-h excitations

a collective state

ground state ground state

After including a separable attractive interaction between the p-h excitations,  only one collective state 
is pushed down, while all other states remain at the unperturbed excitation-energy, and 
the collective state obtains all transition strength, if one takes 

separable interaction relevant transition operator



Taking the strength of IS quadrupole-quadrupole interaction from the self-consistent 
condition that the eccentricity of the potential is the same as that of the density, 
in the harmonic oscillator potential model we obtain

A.Bohr and B.R.Mottelson, Nuclear Structure, vol.II, p.509

02 ω=unperturbed p-h energy, =  82 A-1/3   MeV

0ω=
for the excitation energy of the collective state
(= ISGQR) 

=   58 A-1/3  MeV2

In stable nuclei the estimate based on the above h-o potential model works well, because 

Ni

Ni - 1

Ni + 1

Ni + 2

one-particle energy

unoccupied

occupied

bound levels

unbound levels} in stable nuclei

most one-particle levels in the major shell  (Ni + 2)
are narrow resonances in realistic potentials.
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– 7  to  – 10  MeV In the schematic harmonic oscillator model

0,, 222 ≠if NzyxN

only for Nf = Ni ± 2 or Nf = Ni



Using (7.1),

2
2

24
50 rA

m
=

πclassISS )2,( =λ = Energy Weighted Sum Rule  (EWSR)

The classical sum-rule for IS giant resonances should work when the interaction is kpG

in contrast to IVGDR, the quadrupole operator has  N → N matrix elements, in addition to
N → N+2 matrix elements.  And, the IS (attractive) coupling between the two kinds of modes, 
∆N = 0  and  2, shifts some transition strength to lower-energy modes.  

In open-shell nuclei the  N → N transitions are possible within the last filled major shell, while 
in medium-heavy nuclei the transitions are present even in the closed-shell nuclei, due to the 
presence of the spin-orbit splitting.
For example, in the doubly-closed shell nucleus 82Pb126  one finds 4 low-energy excitations; 
2 proton-excitations, 1h11/2 → 1h9/2 , 2f7/2 and 2 neutron-excitations, 1i13/2 → 1i11/2 , 2g9/2 . 

Nevertheless, since the sum-rule considered here is the energy-weighted sum-rule, 
the observed IS lower-lying quadrupole excitations exhaust only up till 15 percent of EWSR.

In the harmonic-oscillator potential model,
0,, 222 ≠if NzyxN only for  Nf =Ni  and Nf = Ni ±2

Thus,



Some summary of the observed properties 
of ISGQR of medium-heavy nuclei

M.N.Harakeh & A. van der Woude, Giant Resonances, 2001

Observation of the IS giant quadrupole resonance (ISGQR)
- one of the first observations of a giant resonance

other than the well-known IVGDR 

R.Pitthan, Z. Phys. 260 (1973) 283



Experimental information on isovector giant quadrupole resonance (IVGQR) is very limited.
The reason for this can be ; Some experimental evidence :

D.Sims et al., Phys.Rev.C55 (1997) 1288;
interference (E1/E2) effects in reactions 
involving photons.

T.Ichihara et al., Phys.Rev.Lett. 89 (2002) 142501;
60Ni (13C, 13N) 60Co  reaction

(a) Due to the high frequency mode, large background
and possible overlap with many other excitations;

(b) Large width and relatively small excitation cross section;
(c)  Lack of a selective experimental tool to excite IVGQR

For reference, the result of a self-consistent HF+RPA calculation is shown below.

20Ca20 is a stable nucleus, while 20Ca40 is possibly a neutron-drip-line nucleus.

In both nuclei ISGQR appears as a clean collective peak, while IVGQR spreads over several peaks with 
varying form factors.  The ‘threshold strength’ in 60Ca comes from the presence of weakly-bound neutrons
in the ground state, which are not present in stable nuclei.

I.Hamamoto, H.Sagawa and X.Z.Zhang, Nucl.Phys. A626 (1997) 669. threshold strength



p-h energies, 3/182 −A → 3/158 −A
which consumes the major part of IS quadrupole
strength.

MeV MeV,collective  ISGQR at

due to the attractive p-h interaction
[ ]

)2(Eepolmeans ;  ISGQR makes a considerable amount of positive contribution to

of low-energy E2 transitions.



7.3.3.  Isoscalar giant monopole resonance (ISGMR)  - compression mode

In 208Pb , observed ISGMR ( EISGMR ≈ 14 MeV,  Γ ≈ 3 MeV ) exhausts about 100 % of 
the energy-weighted sum rule.

Observed properties of ISGMR

D.H.Youngblood, H.L.Clark and Y.W.Lui, 
RIKEN Review No.23 (July, 1999) 159.



Examples of experimental data of ISGMR
S.Shlomo and D.H.Youngblood, PRC 47, 529 (1993)



Measured energy of  ISGMR (= “breathing mode”),  EISGMR ,

→ information on the compressibility of nuclear matter ( Knm ). 

Nuclear compressibility is an important information on the equation of state of nuclear matter.

ex.  shape of the density distribution,  values of the radii,  the strength of shock wave following 
the collapse of supernovae, etc. 

However, the relation, EISGMR   ↔ Knm is model-dependent !

02

2
2
0

)/(9 ρρρ
ρ =≡

d
AEdKnmKnm is defined by

An effective compression modulus, KA , for a nucleus with mass number  A  
in terms of  EISGMR(A) is defined by

2

22))((

=
mISGMR

A

rAEm
K =

where
m

r2 is the mean-square mass radius.

⋅⋅⋅⋅⋅++⎟
⎠
⎞

⎜
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⎛ −

++= −
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ZNKAKKK CoulsymsurfvolA

Writing ($)

{ if the mode corresponds to a radial scaling of the ground-state 
density.lim

∞→A
AK

lim
∞→A AK

volK= nmK=

nmK)10/7(= from a Hartree-Fock calculation with a constraint on the 
r.m.s. radius.



Moreover, various Ki values in ($) are poorly determined, since the variations of KA with
N and Z  are very small for available nuclei.

Thus, some experts state (for example, Blaizot et al., NPA 591 (1995) 435) :

Phenomenological expansion ($) using measured EISGMR(A) values cannot be 
used to obtain Knm . 
Microscopic calculations remain the most reliable tool for determining  Knm
from measured EISGMR(A) values.

Knm = 210 ± 30  MeV



Comparison of calculated ISGMR using self-consistent Hartree-Fock calculations
plus RPA with various Skyrme interactions, which have different  Knm values.
Knm = 217, 256 and 355 MeV for SkM*, SGI and SIII, respectively.

I.H., H.Sagawa & X.Z.Zhang, PRC 56, 3121 (1997)

126
208
82 Pb20

40
20Ca

Calculated ISGMR in heavy nuclei is 
obtained as a well defined resonance and 
exhausts the sum rule.

Calculated ISGMR in medium weight and 
light nuclei usually does not have 
a clean one-peak shape. 

(In the above calculation the particle decay width of GR is fully taken into account, while 
the spreading width, coming from the coupling to 2p-2h configurations, is not included.)



( 0)effe EThe effective charge of E0 transitions, ,  for low-energy E0 transitions has not
really been studied.

In heavier nuclei self-consistent calculations plus RPA produce a relatively clean 
resonance peak.   Nevertheless, the calculated peak energy is not so different from 
averaged unperturbed  p-h energies in the potential based on harmonic-oscillator.   

→ Calculated values of E0 polarization charge, ( 0)pole E
transitions due to ISGMR may not be large and may depend sensitively on
the models and parameters used.

,  for low-energy E0

ex.   A recent information on ( 0)n
effe E from the data on 8

12
4 Be

S.Shimoura et al., Phys. Lett. B654 (2007) 87; 
I.H. and S.Shimoura, J. of Phys. G34 (2007) 2715.

)00( ..2
++ → sgτMeasured partial life =  402 ± 16  ns

→ ++
1

2
2 0)0(0 rEen

eff =  0.87  e fm2

→ )0(Een
eff

+
202.251

)0(Een
pol

+
10 = =  0.076 e

The presence of weakly-bound neutrons in the deformed potential
is duly taken into account.

OBS.  The polarization charge for E0 transitions obtained from subtracting the center of mass motion
is analogous to that  of E2 transitions described in Sect.7.2.1. and is

)0(Een
eff = eAZ )/( 2 =   (0.028) e     for Be12



Comparison of IS and IVGR in 208 Pb
calculated by self-consistent Hartree-Fock
plus RPA using  SKM* interaction.

I.Hamamoto., H.sagawa and X.Z.Zhang, J.Phys.G 24 (1998)1417. 

r2

r3 Y1µ

r2 Y2µ

Particle decay width is fully taken into account, 
though spreading width coming from the coupling 
to 2p-2h configurations is not included. 



7.4.  Giant Resonances of charge-exchange type  (∆Tz = ±1 )

T0 + 1

T0

T0 – 1

T0  + 1 
T0  

T0 + 1

T0

Various isospin states, which can be excited by acting
an isovector excitation operator on a nucleus with
T = Tz ≠ 0.

[ C(T0 1 T ; T0 , ∆Tz , T0 + ∆Tz ) ] 2Excitation strengths ∝

1

(2T0 + 1) (T0 + 1)

1
T0 + 1 1

T0 + 1

1

T0

T0 + 1

2T0 – 1
2T0 + 1

∆Tz = – 1∆Tz = +1
∆Tz = 0

Z ≠ NZ–1, N+1 Z+1, N–1

N – Z N – ZN – Z
Tz = T0 = Tz = Tz =+ 1 – 1

2 22



EX(t+ GR) < EX(t– GR) in the presence of neutron excess

p-h excitation energy EX  measured from the ground state of mother nuclei

t+

Z N

∆E

E0

t-

Z N

∆E

E0

EX (t+) =  E0 – ∆E EX (t–) =  E0 + ∆E

E0  ~  α ħ ω0  ~  A–1/3

∆E  ~  A2/3 for neutronfor neutron--excess in excess in stablestable neutronneutron--richrich nucleinuclei{
∴ EX (t+)  becomes monotonically smaller as  A → larger.

This relation,  EX (t+ GR) < EX (t– GR),  is present in all charge-exchange (t± ) GRs.

In  N>Z nuclei towards neutron-drip-line
Ex(t+ GR) << Ex(t– GR) Ex in respective final nuclei



Some expected features unique in spin-isospin ( σµt± ) Giant Resonances

1) [ t± σµ ]  → Not almost all strength under the GR peak. 

Instead, a considerable amount of high-energy tail above the peak is expected, 
with the tensor correlation responsible for the highest energy components.

Dependence of the high-energy tail on respective GRs ?

2)  [ σµ ]  → Relatively large width (or large spread) of GR

)∵ a)  Unperturbed 1p-1h excitations have already an energy spread of    2 sEA∆
where the spin-orbit splitting of high-j orbit is expressed by sEA∆ (≈ 7-9 MeV),
except for GTGR and some IVSGDR where the spread  ≈ sEA∆

b) Due to the same sign of the couplings to a particle and a hole;
the coupling of 1p-1h to 2p-2h configurations is strong,
in contrast to spin-independent modes. and



Examples of charge-exchange Giant Resonances studied in β-stable nuclei

spin-isospin modes

*  compression mode

)ˆ( ±Ospin-parity                          operator
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kt )(
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kkt σG)(
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Jkkk rYrkt πσ ))ˆ(()( 1
G

IAS                        0+

GT GR 1+

IV GQR                  2+

IV spin GMR*  1+

IV spin GDR 0–, 1–, 2–

Direct and systematic experimental data are available only for IAS and GTGR.

IAS = Isobaric Analogue State

IV = IsoVector
GMR = Giant Monopole Resonance

GDR = Giant Dipole Resonance
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ex.  In the L-S doubly-closed-shell N=Z nucleus, 20
40
20Ca ,  one expects
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k
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F± operators are raising and lowering operators of the z-component of total isospin (T)
without changing the total isospin,  ∆T=0 ;

∑ ±± =
A

k
Tkt )( 1,, ±=± zz TTTTT 00 ===± zTTTIn particular,

GT± operators may change the total isospin,    ∆T = –1, 0, +1 ,  but   T=0 → T=0



β-decay can populate only the states with  Ex ≤ Qβ± in daughter nuclei.

That means, in β-stable nuclei
β-decays of ground states can populate only
the low-energy tail of GTGR in daughter nuclei.

Thus, those β-decays are considerably hindered.
β±

g.s.

Qβ±

g.s.

mother
nucleus

daughter 
nucleus

In contrast, using charge-exchange reactions on mother nuclei,

(p, n),         (3He, t)         for t– (n → p  in target nuclei)

(n, p),         (d, 2He),         (t, 3He)           for t+   (p → n in target nuclei)

the response is obtained up till high excitation energy in daughter nuclei. 
The price which one must pay is ; the analysis of data to obtain nuclear matrix elements is 
much more complicated than in β decays.
In those charge-exchange reactions, Gamow-Teller Giant Resonance (GTGR) was found !



∑ ±± =
k

ktO )(ˆ(F± = )7.4.1.   Fermi transitions ; spin-parity of the operator  =  0+

2 2ˆ ˆ| 0 | | 0 |
m n

m O n O− +−∑ ∑

( ≡ S– – S+ )   =  (N – Z)

ex.  For  N>Z

g.s.

IAS

g.s.

T = (N-Z)/2

T = (N-Z)/2–1
T = (N-Z)/2

F–

(N,Z) (N-1, Z+1)

Tz = (N-Z)/2 Tz = (N-Z)/2–1

In this example 02/)( =−==+ ZNTTF z

∴
ZNSS −=− +−

The sum rule for Fermi transitions is usually 
exhausted by the transition to the 
Isobaric Analogue State (IAS), 
which has a very narrow width.

0IAS T±=

That means, Isospin is a good quantum number,
in general, in both light nuclei and medium-heavy
nuclei with neutron excess.

)∵ 2/)( ZNT −=

12/)(
cannot have

Isospin of the ground state is maximum broken
for N=Z nuclei with Z → large.

component.+−= ZNTz



7.4.2. Gamow-Teller resonance ;      (GT± = ) )()(ˆ kktO
k
∑ ±± = µσ

3 3
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ˆ ˆ| 0 | | 0 |
m n

m O n O
µ µ

− +
= =

−∑∑ ∑∑

spin-parity of the operator  =  1+

( ≡ S– – S+ ) = )(3 ZN −

Some experimental observation

C.Gaarde et al., Nucl.Phys.A369 (1981) 258.

In order to observe GTGR, the incident energy
of proton or 3He beams must be chosen 
carefully.  (The population of spin-isospin modes 
relative to excitations of other types depends on 
the incident energy.)

The 0° 71Ga(3He,t)71Ge spectrum at 450 MeV.

M.Fujiwara et al., Nucl.Phys.A599 (1996)223c.

J.Rapaport and E.Sugarbaker, Ann.Rev.Nucl.Part.Sci., 44 (1994) 109.



126
208
82 Pb 125

208
83 Bi )(3HeE),(3 tHeex.  Observed properties of IAS and GTGR in  with = 450 MeV

H.Akimune et al., PRC 52, 604 (1995).

(T = 22) (T ≈ 21)
“IAS” “GTGR”

Ex (MeV)                            18.8                           19.2
Width (MeV)                         0.232                         3.7
Sum rule (%)                     100                           ~ 60

“IAS” = T- |gr of 208Pb>

“GTGR” = GT- |gr of 208Pb>

From the (3He,t) reaction;  only the GTGR
peak region is included and S+ = 0
was assumed due to Pauli blocking.

Missing (GT) – strength used to be a problem in 1980s.

1) Back-ground subtraction problem ;  
- broad GT bump is located on top of a continuum.  
Including this continuum or not makes a large difference 
in the extracted strength.
- GTGR has a clean resonance shape ?

2) S+ may not be negligible even for medium-heavy nuclei.

3) Possible missing GT strength is carried by the excitation, 
[nucleon → ∆ resonance at 1232 MeV]  ?

C.Gaarde, Niels Bohr centennial Conf., 1985.



The direct measurement of S- and S+ , performing both (p,n) and (n,p) reactions;

K.Yako and H.Sakai et al., Phys.Lett. B615 (2005) 193.

90Zr (p,n)      Ep = 295 MeV
90Zr (n,p)      En = 293 MeV

S+ was carefully measured !

A multipole decomposition technique was applied to
extract the GT component from the continuum.

GT quenching factor extracted from Ex < 50 MeV :

Q ≡
S- – S+

3(N – Z)
=  0.88 ± 0.06

1) The coupling to non-nucleonic degrees of freedom
(ex.  ∆-resonance !?) in nuclei is presumably 
very small.

2) An appreciable amount of GT strength is found in the
energy region much higher than the peak energy of 
GTGR.

IVSM = IsoVector Spin Monopole 
modes are expected around the place 
indicated.

Are  IVSM– or IVSM+  modes populated in
these reactions ?

A prediction by G.F.Bertsch and I.H., PRC 26 (1982) 1323 ;

Due to the spin-isospin character of GT operator, some unperturbed 1p-1h GT strength is 
shifted to the higher-lying (10-45 MeV) 2p-2h states, with the tensor correlation responsible for 
the highest energy components.



K.Yako and H.sakai et al., Phys.Lett. B615 (2005) 193.
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1) The T=6 part of  GTGR– is only a fraction, 1/66,  of 
the total  GTGR– strength.

2) All  GTGR+  strength in  90Y  has T=6, which is however 
expected to be very small.

3) The total strength  S+ of  IVSM+ (all with T=6) on  90Zr  is
not small and about 70 % of that  S– of  IVSM– on  90 Zr .

90 51
41 39( ) ( )M Nb M Y∆ −∆ = 5.4 MeVnp∆+ 2
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(b.e.=777.006) (b.e.=783.899) (b.e.=782.400)
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T=6

MeV



The energy of GTGR is pushed up from unperturbed  (proton-hole) (neutron) or (proton) (neutron-hole)
energies, due to the repulsive interaction in the τσ GG channel.

⇒ Effective GT operator,  (GT)eff ≈ (0.6 – 0.7) (GT)free

M1GRSpin-dependent part of magnetic dipole (M1) operator is approximately
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2
1
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1.76 9.40

Cf.  In 6
12
6C (Sp =15.96, Sn =18.72 MeV)

Ex (1+ , T=0) = 12.7,  Ex (1+ , T=1) = 15.1 MeVIn heavy nuclei the strength of M1 GR is highly fragmented.

ex.   208Pb   (a j-j closed shell nucleus)

using highly polarized tagged photons

M1 strength for Ex < Sn (= 7.37 MeV) 

),(208 γγPbmeasured by( ) +−
12/11

1
2/13 ii{ hp−ε =  5.57 MeVneutron :

( ) +−
12/9

1
2/11 hhproton :

hp−ε = 5.85 MeV

⇒ Giant M1 resonance centered around 7.3 MeV,
with a full width of about 1 MeV.

⇒ eff
sg free

sg for low-energy M1 transitions.≈ (0.7)
R.M.Laszewski et al., PRL 61, (1988) 1710



2)()(ˆ
k

k
rkktO µσ∑ ±± =7.4.3. IsoVector Spin Giant Monopole Resonance  (IVSGMR) ;
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OnOm 22 |0ˆ||0ˆ| ( )
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rZrN 443 −=
spin-parity of the operator = 1+

This IVSM operator has the same spin, isospin and parity as those of GT operator, 
though IVSM mode is a compression mode while GT is not. 

Moreover, the GT strength extends to the continuum energy region much higher than that of 
the main peak, in the high energy region it may be experimentally difficult to differentiate 
IVSM strength from higher-lying GT strength. 

Taking into account the orthogonality to GT operator, theoretically one needs to use

( )∑ ><−= ±
k

kIVSM rrkktO 22)()(ˆ
µσ

in order to obtain only the strength of IV Spin Monopole mode.

I.H. and H.Sagawa, PRC 62 (2000) 024319.

However, IVSM mode  has a form factor quite different from that of GT transitions.

→ ),(3 tHe with appropriate incident energies may excite IVSMR more easily than  (p,n)  ?

The dependence of cross sections on incident energies or
a comparison of (p,n) with (3He,t) 
may differentiate the strength of IVSM from that of GT.



In nuclei with a larger neutron excess Ex(GR– ) > Ex(GR+ )

less  (if not zero) GT+  strength is expected due to Pauli blocking (namely, the neutron level 
in  p→n by  GT+  operator is already occupied). 

↔ Excitation energy of IVSGMR+ in daughter nuclei becomes considerably lower, 
compared with that of IVSGMR– in daughter nuclei.

[ Maximum energy of relevant p-h configurations estimated from the ground state of mother nuclei]

(The collective peak may appear just above the max p-h energy, when unperturbed p-h excitations are 
spread over a broad energy region, compared with the strength of relevant p-h interactions.)

For stable nuclei 3/53106)( AZN stable
−

− ×≈− β ⇒ 3/2
0 183.0)( ANN p

F
n
F ≈− ω= MeV

IVSM+ p-h excitations. IVSM– p-h excitations.

Z N

2ħω0

∆Eℓ s

0.183 A2/3

Dn, j=ℓ+1/2

n+1, j=ℓ+1/2

n+1, j=ℓ-1/2• n+1, j=ℓ–1/2
∆Eℓs

n+1, j=ℓ+1/2

2ħω0

0.183 A2/3

n, j=ℓ+1/2

Z N

2 / 3
0( ) 2 0.183x sE IVSM A Eω− = + + ∆ A=2 / 3

0( ) 2 0.183x sE IVSM A Eω+ = − + ∆ A=

Pb208

42.6183.0 3/2 =A MeV 01 ω=≈

since IVSGMR– is more collective than IVSGMR+  due to the neutron excess.

∴ [ Ex (IVSGMR– ) – Ex (IVSGMR + ) ] > 2 x 0.183 A2/3 ,
for



The relation [Ex (t+ GR ) < Ex (t– GR )]  in nuclei with neutron excess is valid for all types of
t± GRs, though the actual energy difference depends also on the collectivity of modes.

In nuclei which are much more neutron-rich than β-stable nuclei, one has

)( ZN − > 3/53106 A−×1)
2)  The ground state of  t+ daughter nuclei becomes much higher than that of mother nuclei.

Then, possible IVSGMR+ may have even lower  Ex in daughter nuclei.
Or, some appreciable  1+  strength may be found at lower  Ex , when  GT+ transitions should
be forbidden.

One may try reactions such as  (n,p) or  (t, 3 He)  on such neutron-rich nuclei
in the inverse kinematics, and find out the lower-lying spin-dependent strength ?

Some comments:

1) Knowing that even the simplest compression mode, ISGMR, has not a simple resonance 
shape in the light-medium mass region, IVSM strength may not be concentrated on
one collective resonance. 

In the schematic harmonic oscillator model ; 
unperturbed p-h excitations for ISGMR are totally degenerate at 02 ω= ,  while
those for IVSGMR are spread over sEA= ∆±02 ω 880 3/1 ±≈ −A MeV .  

2) Similar to GTGR  or  the GT strength distribution, IVSGMR may have a considerable 
amount of  strength tail at the energy higher than the major peak, since it is also a 
spin-isospin mode.



I.H. and H.sagawa, PRC 62, 024319 (2000)

Ex. of calculated charge-exchange spin monopole (t ± SMR) modes

126
208
82 Pb → 127

208
81Tl t+  mode

126
208
82 Pb → 125

208
83 Bi t– mode

HF plus TDA with a Skyrme interaction

Response functions Radial part of transition density of IVSGMR±

(compression modes !)

t–t+

Ex is measured from the ground state of 
the mother nucleus

Possible high-energy tail of the strength is not obtained in this kind of calculations 
(namely, [HF plus TDA] or [HF plus RPA]).
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G7.4.4. IsoVector Spin Giant Dipole Resonance  (IVSGDR) ;
(There are a considerable amount of experimental data.)
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π σGDefining where Jπ =  0–, 1– and 2– ,
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0,1,2
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=
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ex.  Using experimental data from 90Zr(p,n) and 90Zr(n,p) on the l.h.s. of (&), the difference between

K.Yako, H.Sagawa and H.Sakai, Phys.Rev.C 74, 051303(R) (2006)

IVSD– : T = 4, 5, 6 90 90
40 50 41 49( , )Zr p n Nbin

IVSD+ :    T = 6
90 90
40 50 39 51( , )Zr n p Yin

pn
rr 22 − =  0.07 ± 0.04 fm

The ground state of 50
90
40 Zr has

0( ) (50 40) / 2 5zT T T= = = − =

2
nr

2
prand can be obtained, if 2

pr

observed charge radius.

neutron skin thickness :

is known from the
(Harakeh & Woude, Giant Resonances, 2001)

A multipole decomposition analysis at  θ=4.6º (= max of SD mode) 
was performed, and the SD strengths up to 40 MeV in the left figure 
were included. 22

pn rZrN − =   207 ± 17   fm2 →



7.5.  Giant resonances in nuclei far away from the stability line

drip-line nuclei very different N/Z ratio, compared to stable nuclei with the same A,
in addition to the presence of weakly-bound nucleons.

rr

V(r)

β stable nuclei

protons neutrons

r r

V(r)

proton-drip-line nuclei

protons neutrons

r r

V(r)

neutron-drip-line nuclei

protons neutrons

Since the Fermi levels for protons and neutrons are very different in drip line nuclei,
this binding energy difference of least-bound protons and neutrons will produce 
interesting phenomena in charge-exchange reactions or β decays.



7.5.1.  ISGQR of nuclei with weakly-bound neutrons
(an example of weakly-bound neutrons → threshold strength)

Ex.  Calculated GQR of  β-stable nuclei Calculated GQR of neutron-drip-line nuclei

threshold strength

Increase of energy-weighted sum-rules, 2
2

24
50)2,( rA

m
ISS class

=
π

λ ==

← extra contribution by weakly-bound neutrons in the ground state to 2 .r

,  by the threshold strength

Threshold strength couples very little with other p-h configurations

→ threshold strength contributes very little to ).2(Eepol



Ex.  ISGQR of a possibly neutron-drip-line nucleus with weakly-bound neutrons, 40
60
20Ca

(calculated results only)

Compared with  ISGQR  in β-stable nuclei, the frequencies of possible 
neutron p-h configurations are lower, while the frequencies of proton
p-h configurations remain nearly the same or become larger. } ⇒ {ISGQR has

lower frequency
broader width

However,  collective correlation structure
transition density } are similar to those of  β-stable nuclei.

2ħω0

proton
response

Unperturbed neutron response to µ2
2YrHartree-Fock potentials and one-particle energy levels

I.H., H.Sagawa and X.Z.Zhang, PRC 64, 024313 (2001).



7.5.2.   β-decay to GTGR  in drip line nuclei

N=Z

β– decay to GTGR–

β+ decay to GTGR+



H.Sagawa, I.H. and M.Ishihara, PLB 303, 215 (1993)1)  β– decay in nuclei with  N > Z

β stable nuclei very neutron-rich light (Z < 7) nuclei

GTGR–

IAS–

g.s.T0

T0

T0 – 1, T0 , T0 + 1

g.s. T0 – 1

(p,n)

β–

(Z, N+1) (Z+1, N)

T0 =
N+1–Z

2

IAS–

GTGR–

g.s.

g.s.
β–

β–

(p,n)∆Ecoul – ∆np

M(Z,N+1) – M(Z+1,N) – ∆np

f (N-Z
A )

The relative energy between IAS and GTGR is a 
function of  (N-Z)/A.  The larger (N-Z)/A, the lower
GTGR.

(Z, N+1) (Z+1, N)

∆np = (∆M(n) – ∆M(1H)) c2  = 0.78  MeV

∆ECoul(Z+1) = ECoul(Z+1) – ECoul (Z) ∝ ((Z+1)2 – Z2 ) A–1/3 ∝ Z A–1/3

Energy difference of different T states in a given nucleus

A
ZN

A
TbTMTAETMTAE symTT

−
∝

+
≈=−=+

2/14),,(),1,(



Dependence of the energy difference between IAS– and GTGR– on (N–Z)/A

N – Z
E(GT) – E(IAS) = 7.0 – 57.8

2A

Note N – Z
A

24O 0.3333
20C 0.4000

K.Nakayama, A.Pio Galeao and F.Krmpotic, PLB114, 217 (1982) 22C 0.4545
8He 0.5000

208Pb 0.2115



F.Frisk, I.H. and X.Z.Zhang, PRC 52 (1995) 2468.2)  β+ decay in nuclei with  N > Z

β stable nuclei medium-heavy proton-drip-line nuclei (Z > 50)

T0 + 1

GTGR+

g.s.

g.s.
β+

β+

(Z+1,N) (Z, N+1) (Z-1, N+1)

T0 + 1

∆ECoul – ∆npGTGR+ T0 + 1

(n,p)

β+

T0 g.s.

p

g.s. T0 + 1

(Z+1, N) (Z, N+1)
M(Z+1,N) – M(Z,N+1) + ∆np

Sp

N – Z – 1
T0 = 

2

The mass difference, M(Z+1,N) – M(Z,N+1), increases rapidly, as stable → proton-drip-line nuclei.
⇒ GTGR+ comes easily into the scope of  β+  decays, namely below the ground state of mother nuclei.


