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FIG. 1.2. The photo-neutron cross section o(y,n) as a function of the photon
energy for the three nuclei 2°®Pb, 12°Sn and ®*Cu. Note that for these nuclei
¢ (7,n) & 0gps(7y). From reference (BERT5).
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The hydrodynamical model consists of incompressible neutron and proton fluids.

Nuclei consist of nucleons, and the population of GR by, for example, y-absorption is
via one-particle operator.

Thus, the presence of quantum-mechanical shell-structure of one-particle levels in
nuclei sets a limitation on the applicability of the hydrodynamical model.

If a collective mode consumes an appropriate sum-rule
—> Possibility of being approximately described by a macroscopic hydrodynamical model

Taking the simplest model for nuclei, namely harmonic-oscillator model,
the above possibility exists if all one-particle excitations by a given operator
have the same energy, one-frequency.

ex. o . L
IVGDR is this example ; all one-particle excitations have AN=1, AE =1ha,

/é@ , since AN=0 and 2.

The hydrodynamical model is not directly applicable to spin-dependent modes.
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GRs in heavier nuclei have often a better resonance shape than those in lighter nuclei.

This may be due to the fact that in heavier nuclei ;

(a) GR can be more collective, since many more 1p-1h configurations are available.
(b) The spread of energies of 1p-1h excitations ( ~ A="3) is smaller, while

the p-h interaction which couples 1p-1h excitations with different energies

has no strong A-dependence.

Thus, building up a collective state out of available 1p-1h configurations is easier.

Lighter nuclei have less clear distinction between the surface and the inside.

This makes a difference, for example, when a probe used is sensitive only to the surface
or GR is of a surface type.
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Neutron-excess gives an essential difference in charge-exchange GR, t, GR,
from the case of N=Z nuclei.

ex. Some t,GR may disappear due to the Pauli principle.

ex. E,(t GR) > E (t,GR) in the presence of neutron excess.

Neutron excess —»  Excitations made by Isoscalar (i.e. isospin-independent) operators
carry an isovector transition density ----- When neutrons and protons
move in the same way in nuclei with N> Z, 6p,—-0p,# 0.



Giant resonances and sum rules

7.1. Introduction
7.2. Sum rules

7.2.1. Sum rules for (1 or t,) excitations

Classical oscillator sum (= energy-weighted sum)
Sume-rule in axially-symmetric quadrupole-deformed nuclei

7.2.2. Sum rules for (t,) charge-exchange excitations

Difference, S_— S, , of non-energy-weighted sums

7.3. Giant resonances of IS or t, type (excitations within the same nuclei)
7.3.1. Isovector giant dipole resonance (IVGDR)
7.3.2. Isoscalar and isovector giant quadrupole resonance (ISGQR and IVGQR)
7.3.3. Isoscalar giant monopole resonance (ISGMR) - compression mode



7.4. Giant resonances of charge-exchange (n—p or p—n ) type
(excitations to the neighboring nuclei)

7.4.1. Fermi transitions (IAS)
7.4.2. Gamow-Teller (GT) resonance (incl. magnetic giant dipole resonance)

7.4.3. Isovector spin giant monopole resonance (IVSGMR)
7.4.4. |sovector spin giant dipole resonance (IVSGDR)

7.5. Giant resonances in nuclei far away from the stability line

7.5.1. ISGQR of nuclei with weakly-bound neutrons
- an example of threshold strength

7.5.2. B-decay to GTGR in drip line nuclei

B~decay to GTGR_ in very neutron-rich light nuclei
B*decay to GTGR, in medium-heavy (N>Z) proton-drip-line nuclei

References:

M.N.Harakeh and A.vander Woude, “Giant Resonances”, 2001, Oxford.
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7. Collective motion based on particle-hole excitations
- giant resonances and sum-rules

7.1. Introduction

Collective motion :

Many nucleons participate coherently in the motion so that a given observable
(transition) is much enhanced compared with a single-particle estimate.

The best-established collective motion in nuclei is rotational motion of deformed nuclei.

The properties of very low-energy collective states are sensitive both to pair correlations
and to the shell-structure around the Fermi levels.
Only those particles close to the Fermi levels contribute to the pair correlation.

In contrast, many (if not all) particles in a nucleus participate in giant resonances (GR), so that
(a) the properties of GR are almost independent of the shell-structure around the Fermi level,
(b) depend on the bulk properties, and

(c) are expressed as a smooth function of Z, N and A.



The total transition strength should be limited by a “sum rule”, which depends on the
ground-state properties.

Due to the collective nature, GR consumes the major part of the sum rule that is defined
for respective collectivity.

—> Then, GR may correspond to a classical picture of collective motion.

Usefulness of sum-rules

If an observed peak consumes the major part of the sum-rule, the peak expresses

a collective mode.

Moreover, there are almost no other collective excitations carrying the strength of

the same operator F,

while the mode created with the operator acting on the ground state is approximately
an eigenstate of the Hamiltonian.



Examples of Giant Resonances experimentally studied in B-stable nuclei are
(a) Excitations in the same nuclei (IS = Isoscalar, IV = Isovector)

spin-parity operator observed peak energy
IS GMR* 0+ >’ 80 A3 MeV (for A >90)
k
IS GDR* 1- > Y, (F)
k
IV GDR 1— >, (KT 79 A3 MeV (for A > 50)
k
IS GQR 2+ > Y, (F) 63 A3 MeV (for A > 60)
k
IV GQR 2+ Zrz(k)rszZy(ﬁ()
k GRs have width of several MeV

IV spin GR 1+ 2.7, (k)G (except IAS) and exhaust the
K major part of respective sum-rule.

(b) Excitations to neighboring nuclei
* compression mode

spin-parity operator
IAS 0+ ;ti(k)
GT GR 1+ 2.t (K)a,
IV GQR 2+ ;ti(k)rszﬂ(fk)
IV spin GMR* 1+ ;ti(k)@(rk2 -(r*) )

IV spin GDR 0—, 1-, 2— 2L (KR (Y.(R)5y),,
k



Examples of selection rules in spherically-symmetric harmonic-oscillator potential
1) Operator rY,, (or x,y,z) —> AN=1(E,= haw, ) excitations

----------- NF + 1
nemepunn NF+ 1 T
'y N
—'N
/_ 5 / Vs N, — 1
Closed-shell configuration Partially-occupied N shell

2) Operator r2Y,, (or x2,y?,z2) => AN=0 or 2 (E,= Ohw, or 27w, ) excitations

......... NF+ 2
(ELEERINEY NF+ 2

s NF+ 1

Py Nt al
y /F

Ne—1
e Neg—1

Ve Ng—2

Closed-shell configuration Partially-occupied N shell

In realistic potentials the above selection rules do not exactly work, but work approximately.



Observed one-particle energies are not well reproduced

by Hartree-Fock calculations using Skyrme interactions with m* (= (0.6-0.8) m ).

In contrast,

observed energy of ISGQR are often reproduced

by RPA based on the Hartree-Fock calculation with the same Skyrme interaction
(so-called self-consistent RPA).

Note that the parameters related to ISGQR are well taken care of, when Skyrme parameters are
determined.

In this lecture we do not further go into detail of [ Skyrme H.F. + RPA ] calculation.

Instead, we try to understand GRs, sometimes using the result of [ Skyrme H.F. + RPA ] calculation,
but mostly using the models which are as simple as possible.



Shape oscillations - typical vibrational excitations when nuclear matter
is incompressible.

Compression modes — information on nuclear compressibility

““““
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|S Monopole

neutron

- compression mode

P (F) s<n\kz:5(r—rk)\0>

= pflr (r)Y,w (f)

radial transition density

G.F.Bertsch and S.F.Tsai

Physics Reports 18, (1975) 125. Tassie model
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Fig. 10. Monopole transition density in 29%Pb. The solid curve
is the result for the transition density operator R2Zjo(r; — R),
for the Skl interaction between the ground and the 20 MeV
state. Units are wfm™!. The dotted curve is the prediction of
the Tassie model, eq. (43b). Here, the overall magnitude of

the curve has no significance.

208,

1.0F
GIANT L=2

0.0

Fig. 9. Isoscalar quadrupole transition-density (X #2) in 29%pp

with the Skl interaction to the giant state predicted at
11.4 MeV. The solid curve is the calculation; the dashed
curve is the collective model. ea. (43a).




In heavier nuclei GR may show a resonance (Lorentzian ?) shape and the properties can be
systematic, while those of GR in medium weight and light nuclei are more individual.
In very light nuclei GR strength distribution is split into several fragments.

") In lighter nuclei the collectivity is weaker, or a number of p-h configurations
to contribute to GR is smaller.

In lighter nuclei the difference of the relevant p-h excitation energies may be large
compared with the interaction between them,

Transition densities of GR with good accuracy is not experimentally available.

Example of transition density of
IS shape oscillation ;

3- state of 208Pp at Ex=2.61 MeV

Experimental data are taken from
(e, €e’) in J.Heisenberg and 1.Sick,
P.L. 32B (1970) 249. e

000

Fig. 1. The upper part represents the radial transition charge I.H g P.L. 66B (1 977) 410

density of the 3 state at 2.61 MeV in 2°3Pb. The solid line
shows the calculated value, while for the experimental values
the dashed band was taken from ref. (4] and the crosspoints
were from ref. [3]. The lower part of the figure expresses the
calculated charge density of the ground state of 208Pb.



7.2. Sum rules

In this lecture we treat nucleons as elementary particles,
neglecting possible contributions from internal degree of freedom of nucleons.

—> Valid in the energy interval, well below internal excitations of nucleons .

7.2.1. Sum rules for (1 or t,) excitations
Classical oscillator sum - sum of energy-weighted transition strength

S(F,)=X(E, - E)B(F,:0>al,) =Y(E,~E,)|alF,|0)

=%<O\[Fﬂ,[H,FA]]\O> where H=Zi:ti+ZVi,- » H|0)=E,|0) * H[a)=E,a)

i<j

‘2

If v; does not explicitly depend on the momentum of particles, Vij(\ﬁk) , and
) —

if one-particle operator F/1 depends only on Fk F, = > F. (%
k

{zvij,a}:o Thus, [HF] = [iZtuFa}

i<j

Then, h? 2
S(F)=(0[Z - —(ViF.())’|0)

k k

Note that the sum is expressed as a ground-state expectation value of one-body operator
- insensitive to the many-body correlation in the ground state — “model independent”.
Sums with other energy weightings involve two- or many-body operators.



In particular, if F,=f(r)Y,() = we obtain

24+1 12, /(df Y’ £y
S(F o = 211 A<(drj +W+1>(7]> (7.1)

where < > expresses the average per particle in the ground state of A particles.

For EA transitions with A = 2, neglecting the correction due to the center of mass
motion,

F.= er’“YM(f) only for protons, then,

2 2
S(E ) = Sy ()
7T m

proton

X

radial average for protons in the ground state

For EO transitions,

F.= er? only for protons, then,

2h°
= FZe2<r2>

S ( Eo)class proton




For E1 transitions ;

Since isoscalar dipole operator corresponds to the center of mass motion that must not
create an excitation, the dipole operator which creates excitations is necessarily of
isovector character.

For example, electric-dipole excitation operator (in the direction of z-axis) should be
(p) () () (n) (p) (p) (n)
ez, — eZ(Zi_%(ZZj_l_szjj = ezzi—%Z(ZZﬁZij
i j i j K

= _ezzi_xezzk spin-parity = 1-

where (p) and (n) express the sum over protons and neutrons.

Then, using (7.1), the classical oscillator sum, which should be the sum rule for IVGDR,

when the interaction has B¢ | (F%) ,and (6-6)_
2 2 2 2
= o5 (3]
A 2m A A

S(E1) >(E, ~Eo)

N & 7
<a\XeiZ(rY1#)i —Ke;(rYlﬂ)km}

class

9 K ,NZ
e
47 2m A

9., 9 n ,NZ
- — =——7e"— e
S(F;L (erYl)p) S(El)class 47 2m 47 2m A
9 n* 7% , : : : :
=———¢ ; oscillator strength associated with the center of mass motion
A 2m A




ex. center of mass motion for E2 operator

Total E2 moment measured with respect to the center of mass
A
D6 (202, - 20 - (%= X" (% - Yo'

14 e for proton
where  Z Exzzk , etc. and g = { P
k=1

0 for neutron

A A A A A
:Zek[zzlf_xlf_ylf] _4Zczekzk+2Xczekxk+2Yczekyk +Zek(zzc2_Xc2_Yc2)
k=1 k=1 k=1 k=1 k=1

|
Ze
A 2 Z 1 Ze
— z{ek(l—xj+e?}(22lf — X[ - ylf) +KZ[_ 2e; - 2g, +2K}(22jzk — XX, — yjyk)

k=1 j<k
(a)

For a single-particle configuration

e(1—3+£2j for proton
& — A A
Z

e— for neutron
A2

For harmonic oscillator wave-functions and low-energy transitions ;
matrix elements of (a) receive no contributions from the recoil term, namely,
the correction term in (b) is exactly cancelled by the 2-body term in (a).




Distribution of S(E2) in axially-symmetric deformed nuclei

rotational excitation (v = 1)
_ p o gamma-vibration (v = £2 )
(1) L?ZvNeznO?rgy IS (r?Y,, ) excitations beta-vibration (v = 0)
(one-particle excitations)

a) rotation excitation — main E2 oscillator strength in the low-energy region

3h% 5
For even-even nuclei  (E,—E;)B(E2Z;K=0,1=0—>K=0,1 =2)==——¢°Q;
3 167
. . 3 5 , .,
For odd-A nuclei  X[E(Kq, 1) = E(Kq, 1) B(E2; Kyly = Kol ) = ————€Q;
| 3 16rx
Observed moments of inertia g 53y —>  S(E2),., =~ (0.05)S(E2).,,

comparable to low-energy 2+ mode in spherical nuclei

b) gamma vibration (r®Y,,, type surface vibration) takes less than a few % of S(E2)

class

beta vibration ( r?,, Type surface vibration) takes less than (0.01)S(E2)

class
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V=0, p-vibration

Ay
-

y =1 rotation

bR o (3 cos?0-1) cos wt dR o sin® cos O cos(Pp fwt)

=*2  Y-vibration
SR o sin?6 cos (20 + wt)

Figure 6-3 Quadrupole shape oscillations -in a spheroidal nucleus. The
figure shows projections of the nuclear shape in directions perpendicular and paraliel to
the symmetry axis.



(2) High-energy (AN=2) excitations
E2 strength will split depending on the quantum number |v| of Y, .
The E2 strength of GR with v =0, £1, £2 is expected to be approximately

1:2:2

> Ex “‘:Ex

prolate shape oblate shape

OBS. L-S doubly-closed spherical nuclei (such as 40-Ca) have only
high-energy (AN=2) collective quadrupole excitations.

Spherical vibrating nuclei have both low- and high-energy collective
quadrupole excitations. The low-energy (AN=0) |S quadrupole modes
have enhanced E2 transitions due to the attractive quadrupole interaction,
but carry less than (0.10) S(E2)

class *



ex. an extra contribution to S(E1) from an exchange interaction

Increase of energy-weighted sum-rules, S(E17), from S(E1) ..
due to the presence of attractive Majorana space-exchange interaction

ex. A proton-neutron pair with 2-body space-exchange ( FI YAR FJ ) interaction

= f (l f‘; — I_’] |) PM PM - Majorana space-exchange operator
PN :_1+ (7,-7;) 1+ (0, - o))
2 2
Vij z,|= PV z, -z, fP" =(z,-z,) fP" z;: proton coordinate

zZ: neutron coordinate

z,,[vu, ,]] [,, Z. —z)fPM]
=z7,(z;-z,)P" —(z,—z,) tPP"z,
=7,(z;,-7)P" —(z,-z,)z, fP"
=—(z;,—z;)* fP"

1
_g(rij)z fp ¥

An attractive Majorana interaction makes an extra contribution to S(E1) .



7.2.2. Sum rules for ( t, ) charge-exchange excitations

There is no sum-rule, which corresponds to the classical oscillator strength for IS operators.

Instead, model-independent and non-energy weighted sum-rules,
for the difference between t_ and t, transitions.

. 1 1 1 )

Isospin of nucleon, t:E tz‘n>=§‘n> tz‘ p>=—§‘ p> t,=t £ Ity
tnp=lp) el tjm=0  t[p)-0

A A . A A .

Suosii]-2Su AnzEeing -z |

k j k i : Basic formulas
Yo (= 4%, = 4(5)" = 43(5+1]) =3
u=1 u=1 2\2

(a) charge-exchange non-spin-flip excitations : CA)i =>t.(k)f(r)
SImO[0)F -SInOJ0)F = N{(rm?), - Z{(F())),

(b) charge-exchange spin-dependent excitations : éi =ZZti(k)aﬂ(k)f(rk)
u k

>fm6 jof - fold.Jof = gN{(rF) ~z{(rmF) |

‘ 2



7.3. Giant resonance of isoscalar (IS) or ¢, type

: the oldest and best known

7.3.1. Isovector giant dipole resonance (IVGDR) Giant Resonance

Systematics of observed IVGDR frequency

Eres
(MeV)

Observed 79 A-"3MeV s in good
agreement with the value estimated
in the harmonic-oscillator model.

30

20 ©

For light nuclei with A <50 a deviation
from the systematics is observed.
--- Other types of GR show the same
tendency.

. . Note that unpertrubed |I™=1- p-h energies in
0 50 oo 200 250 realistic potentials are approximately
degenerate and close to 41 A3 MeV (!)
also in drip-line nuclei !

Fig. 6-19 of A.Bohr & B.R.Mottelson, Nuclear Structure, vol.ll



Well-established IVGDR — observed peak(s) in photo absorption cross section

Photo absorption cross section of "°’Au Figs.6-18 and 6-26 of A.Bohr & B.R.Mottelson, Nuclear Structure, vol.ll
60
Additional dipole strength is observed
50 | on the high-energy side, that appears
= "SeAU :{:‘ ;vvdg - (300 * 30) MeV fm? to be associated with short-range
= w0 T (L1201) 6 50 Mev fm? (velocity-dependent) correlations
3 (£ £
= T BB, (5)? B’ between nucleons.
w30 E,es=13.9 MeV TI':= 4.2 MeV .
@ Ores = 53 fm? pion threshold
g 20|
e 140MeV
10 -[O photoabsdE — 2S(E]—)class
[s) 1
8 10 12 14 16 18 20 22 24
(rn) (rln) (Tln, Ex(Mev) 25MeV
_[ GphotoabsdEy ’ S(E 1) class
0
Photo absorption cross section of 60
where
S0 - 9 n* NZ ,
I S(El)class = €
40 | A7z 2M A
A 30
E -
gaor S(E1).,.= S(E1)....(1+x)
obs ~ class
10
0 X comes from the velocity- and
w (r - 7) - dependent terms in the

nucleonic interactions.




IVGDR is the giant resonance, of which the semi-classical picture is possible.

Goldhaber-Teller model

Steinwedel-Jensen model

Neutron and proton fluids are oscillating within a sphere,
keeping the total density constant.

For simplicity, assuming [IVGDR ~ a standing wave in a nucleus with a fixed boundaries],

the frequency w o« R-?

Then, in contrast to one-peak structure
in spherical nuclei,

in axially-symmetric quadrupole-deformed nuclei 0

-1
@, oC RZ

-1
W oC R,

the strength distribution would have two peaks
corresponding to an oscillation of neutrons vs
protons along the long and short axes,

as observed in 1°°Nd,, .

T
"Tfm2

20

Nd |~ N=90

Nd — N=82

8 10 12 14 16 18 20 I 22
EF (MeV)

Figure 6-21 Photoabsorption cross section for even isotopes of neodymium.



For a prolate (oblate) shape the integrated cross section associated with the vibration
along the symmetry axis (= longer (shorter) axis), which has lower (higher) frequency,
should be about a half of the one along two shorter (longer) axes.

> Ex > Ex

prolate shape oblate shape

The energy splitting is proportional to the deformation O

a)J__a)Z ~ A_ ~ 5

o R

Thus, the ground state of "°°Ndg, is prolately deformed !



Harmonic oscillator potential
<Nf‘x,y,z‘Ni>¢O only for Ny=Nx 1

one-particle energy
A

Nt All excitations are from the last-filled major shell

i A . . . . .

’ oo to the next major shell, with excitation energies,

unoccupied AE =hay ~41A™Y MeV.
N, /7‘ occupied _ o

Many degenerate particle-hole (p-h) excitations,
especially in heavier nuclei.

A schematic model : G.E.Brown, Unified Theory of Nuclear Models, p.29-32 and p.47-49.

(for IVGDR)

a collective state

many degenerate /

p-h excitations

ground state ground state

After including a separable repulsive interaction between the p-h excitations, only one collective
state is pushed up, while all other states remain at the unperturbed excitation-energy, and
the collective state absorbs all transition strength, if one takes

separable interaction @ <+<—> relevant transition operator




Taking the strength of IV dipole-dipole interaction from the symmetry term of
the phenomenological nuclear one-body potential, in the harmonic oscillator potential model
we obtain

unperturbed p-h energy, fiw, = 41A™"° MeV

—— 80AY® MeV for the excitation energy of the collective state,
(= IVGDR)

in agreement with the observed systematics in medium-heavy nuclei.

p-ll ener ieS, 41A_1/3 MeV collective IVGDR at 8OA_1/3 MeV
g
which consumes the IllajOF part of E1 strength.

due to the repulsive p-h interaction

means, |4 (ED)| and |e}(EL)| forlow-energy E1 transitions are much smaller

than the values of (N/A) e and (Z/A) e, respectively (see Sect. 6.1).



In the self-consistent calculations plus RPA for spherical nuclei,

the strength of IVGDR is split into several peaks even for heavier nuclei.

The transition density of lower-lying peaks appears to be closer to the Steinwedel-Jensen
prediction, while that of higher-lying peaks looks more like the Goldhaber-Teller one.

Radial transition density :
do,(r)
Goldhaber-Teller model Par (1) oc 222
dr
inwedel-Jensen model tr
Steinwedel-Jensen mode psw(r) oc rpo(r)
. N TP B IVGDR
Examples of self-consistent calculations plus RPA
—— ISGDR
40 208
20ca20 82 Pb126
80 ' Lt 40 100 il 200
) — — — IV Dipole (a) SkM* ! — — - IV Dipole —
% L = = = IV Dipole with 4=1.0 MeV S = (z=82 N=126) | = == IV Dipole with 4= 1.0 MeV 3
2 (Z=20 N=20) B B ® | " — IS Dipole L 150 =
=807 : | o % "2“ = 7 :: SD:de with A= 1.0 MeV o
‘ZE E .'I‘I | == IS Dipole with 4=1.0 MeV e :.; i T S PeaeMnaH E
240- ry 20 T 10 2
" :1 [ T [
: i 5 : :
Z i :I r: Z w =
& 20 i - 10 = - 50 W
o . 1 *\"' E E E
E l': @ n
' - r—r—t- 0
. 0 10 20 30 40
ENERGY (MeV) ENERGY (MeV)

I.H., H.Sagawa and X.Z.Zhang, PRC 57, R1064 (1998)



ex. “Pigmy dipole resonances” observed at much lower energy than IVGDR

of the A= 140 region consume less than 1 % of S(E1), ... -

T Trrrrrr L L L L

1.2

30 |- 4F Ho3 < !

I I ] [ 1.0

20 [- 4 F 4oz 2 {

o ] E -

“,Elo- 4+ -_n.lag 08
T 0 00 %
= 2Nd “*Na 1 =
=30 - = e
— J _—
- —
& 20 o2 &
=] =]

3 "Eb
rI
i
B
I
IVEWSR [%]
o o
- »

g
2

8
T
L
T
1
)
.-}
o
N
———|
i HH
e
—e—
L= ="
—

or 1F 1* LI

4000 6000 8000 2000 4000 6000 8000 ! . . . .
Energy [keV] Energy [keV] 50 100 150 200

X A
obtained from ™ by folding with a Lorentzian
with a width of 500 keV

( from A. Zilges, 2007 )



7.3.2. Isoscalar and isovector giant quadrupole (ISGQR and IVGQR) resonance

Operator spin-parity observed peak energy
2 ~
ISGQR | XY, (1) 2+ 64 A3 MeV
k
vGear | 2z (K)RY,,(f) 2+ (130 A3 MeV  ?)
k

A schematic model :  (for ISGQR)

many degenerate

p-h excitations T T ' —_—

a collective state

ground state — ground state

After including a separable attractive interaction between the p-h excitations, only one collective state
is pushed down, while all other states remain at the unperturbed excitation-energy, and
the collective state obtains all transition strength, if one takes

separable interaction <+«—— relevant transition operator




Taking the strength of IS quadrupole-quadrupole interaction from the self-consistent
condition that the eccentricity of the potential is the same as that of the density,
in the harmonic oscillator potential model we obtain

A.Bohr and B.R.Mottelson, Nuclear Structure, vol.ll, p.509

unperturbed p-h energy, 2hw, = 82 A3 MeV

—— 2 haw, = 58A"3 MeV

for the excitation energy of the collective state
(= ISGQR)

In stable nuclei the estimate based on the above h-o potential model works well, because
most one-particle levels in the major shell (N, + 2)

one-particle energy are narrow resonances in realistic potentials.
A
Ni +2 A
unbound levels
0 in stable nuclei
bound levels
Ni + 1 A
unoccupied . . .
—7 to —10 MeV : .p In the schematic harmonic oscillator model
N. - / occupied s
W (Ne ey 2N =0
N /1 - only for N;j=N.+2 or N;=N,
874



Using (7.1),

2
S(IS,4=2) s = %;—m A<r2> Energy Weighted Sum Rule (EWSR)

The classical sum-rule for IS giant resonances should work when the interaction is K

In the harmonic-oscillator potential model,
<Nf ‘xz, y?,z[N;)#0  onlyfor N;=N;and N;=N;+2

Thus,

in contrast to IVGDR, the quadrupole operator has N — N matrix elements, in addition to

N — N+2 matrix elements. And, the IS (attractive) coupling between the two kinds of modes,
AN =0 and 2, shifts some transition strength to lower-energy modes.

In open-shell nuclei the N — N transitions are possible within the last filled major shell, while
in medium-heavy nuclei the transitions are present even in the closed-shell nuclei, due to the
presence of the spin-orbit splitting.

For example, in the doubly-closed shell nucleus 4,Pb,,, one finds 4 low-energy excitations;
2 proton-excitations, 1h,,, — 1hy,, 2f,, and 2 neutron-excitations, 1i,5, — 1i,,,, 29, -

Nevertheless, since the sum-rule considered here is the energy-weighted sum-rule,
the observed IS lower-lying quadrupole excitations exhaust only up till 15 percent of EWSR.



Some summary of the observed properties
of ISGQR of medium-heavy nuclei

M.N.Harakeh & A. van der Woude, Giant Resonances, 2001

Observation of the IS giant quadrupole resonance (ISGQR) _ Table 4.4 ISGQR parameters.

- one of the first observations of a giant resonance Nucleus (ni“&r} (MEV) EE’;‘;S)R Reference fﬁj{,’;
other than the well-known IVGDR vy, : —
r
14054025  4.040.25 49  (BUE84) 63
140402  34+02  66+17 (YOU8]) 63
4 8 Ce(e,') By = 63MeV 140404  30+05 111425 (BOR89) 63
& ll‘ZSIl
1365402 36402 55  (BUE84) 66
13.514£0.13 3154023 123+26 (SHAS8) 63
IIGSH
13154025 3.6+03 60  (BUE84) 64
132403 33402 84425 (YOUSl) 64
13.39+£0.14 2944031 134+28 (SHA88) 65
]20811
- 12.75+0.25 3.75+ 0.3 82  (BUES4) 63
127404  35+04 80 (YOU81) 63
13.24+0.13 2884020 135427 (SHA88) 65
2 g 124g,
g 12.35+0.25  3.6+0.3 88  (BUES4) 61
£ 12.3+ 0.4 3.1+£0.3 78 £25 (YOUSI1) 61
8 13.0240.13 280+030 127431 (SHA88) 65
fit, 1 1274035 34405 190+75 (BOR90) 63
fit 2 123+0.35 38+05 225475 (BOR90) 61
144Gy
1225402 25402 50  (BUE84) 64
122402  24+02  45+15 (YOU8l) 64
- 1270+ 0.14 2624020 123+29 (SHAS8) 66
150Sm
12.340.2 3402 76 (BUE84) 65
12754017 2854036 132450 (SHA88) 68
1528
_ 11.95 + 0.2 3+0.2 81  (BUE84) 64
4 6 & 10 12 14 16 18 20 22 24 2% 12.78 £0.17 3.63+£042 183450 (SHA88) 68
E. (MeV) 2{]pr

1060 +0.25  2.8+0.25 100  (BUES4) 63
11402 27403 105+£25 (YOUS1) 65
109403  3.1+03 120170 (BRAS5) 64
110403  33+03 100150 (BRA85) 65

R.Pitthan, Z. Phys. 260 (1973) 283



Experimental information on isovector giant quadrupole resonance (IVGQR) is very limited.

The reason for this can be ; S . . _
ome experimental evidence :

D.Sims et al., Phys.Rev.C55 (1997) 1288;
interference (E1/E2) effects in reactions
involving photons.

T.Ichihara et al., Phys.Rev.Lett. 89 (2002) 142501;
60Nj (13C, 13N) 89Co reaction

(a) Due to the high frequency mode, large background

and possible overlap with many other excitations;
(b) Large width and relatively small excitation cross section;
(c) Lack of a selective experimental tool to excite IVGQR

For reference, the result of a self-consistent HF+RPA calculation is shown below.
,0Ca,, is a stable nucleus, while ,,Ca,, is possibly a neutron-drip-line nucleus.

In both nuclei ISGQR appears as a clean collective peak, while [VGQR spreads over several peaks with
varying form factors. The ‘threshold strength’ in 9Ca comes from the presence of weakly-bound neutrons
in the ground state, which are not present in stable nuclei.

500.0 [ BRI I A A T T T T AT T TN T A R R A 500.0 ce e o b g
1 p) (Z=20 N=20) 1 (p) (Z=20 N=40)
e ] Sk - — N SkM: -
< 400.0 | " = S 400.0 " =
[ T QUADRUPOLE I ) T QUADRUPOLE B
= ] - = ] B
;é 300.0 L - ‘E 300.0 Isoscalar RPA B
a5 ] — — — Isovector RPA B RS i — — — Isovector RPA B
E T Unperturbed i |:E 2 | e Unperturbed i
G 200.0 - J 200.0 -
= 7] B =z N B
Ll N B L T o
i . 3 T . B
o 100.0 - N % 100.0 ] P N
N = - g 0 -
) A : ) " f"} f‘u"\"\ ) B
0.0 N B S B B B = | N e R 0.0 o I B B B ) B B B \‘T'\"j =TT
0.0 10.0 20.0 30.0 40.0 50.0 0.0 10.0 20.0 30.0 40.0 50.0
ENERGY (MeV) ENERGY (MeV)

I.Hamamoto, H.Sagawa and X.Z.Zhang, Nucl.Phys. A626 (1997) 669.

threshold strength



I p-henergies, 82AY2 MeV > collective ISGQR at 58A Y% MeV,

which consumes the major part of IS quadrupole
strength.

due to the attractive p-h interaction

means ; ISGQR makes a considerable amount of positive contribution to e, (E2)

of low-energy E2 transitions.




7.3.3. Isoscalar giant monopole resonance (ISGMR) - compression mode

In 298Pb , observed ISGMR ( E;sgir= 14 MeV, =3 MeV ) exhausts about 100 % of
the energy-weighted sum rule.

160
(b)
140 + {
120 + -
E‘IDU } i
‘. 4
- g
%EO ESWR vs A
“ ¢ ¢ i{ Observed properties of ISGMR
20 4 .
§ r '
° " " ' " D.H.Youngblood, H.L.Clark and Y.W.Lui,
“ — RIKEN Review No.23 (July, 1999) 159.
22 E 3
<* B ol
1| B g
&
16 i 5
14 ] o ;




Examples of experimental data of ISGMR

S.Shlomo and D.H.Youngblood, PRC 47, 529 (1993)

TABLE III. GMR parameters used for compressibility fits.

Corrected® for Values adopted for
systematic difference calculations
E, ol(E,) E, olE,) r a(l')

A Nucleus (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) Ref.©
24 Mg 16.71 0.23 16.71 4.73 Gronl
28 Si® 19.06 0.50 19.06 0.50 6.30 0.50 TAMU1
40 Ca 14.11 0.23 14.11 0.23, Gron2
58 Ni 17.00 0.40 TAMU2
58 Ni 17.08 0.23 17.06 0.20 3.28 0.18 Grenl
64 Zn 18.20 0.50 18.20 0.50 4.30 0.90 TAMU3
66 Zn 18.40 0.70 18.40 0.70 4.10 1.10 TAMU3
90 Zr 16.20 0.50 TAMU3
90 Zr 15.81 0.36 15.95 0.29 3.29 0.20 Gron3
92 Mo 15.98 0.23 15.98 0.23 4.80 0.30 Grenl
112 Sn 15.70 0.30 TAMU4
112 Sn 15.59 0.27 15.64 0.20 3.67 0.19 Gron4
114 Sn 15.51 0.27 15.51 0.27 3.52 0.29 Gron4
116 Sn 15.60 0.30 TAMU3
116 Sn 15.40 0.28 15.50 0.20 3.96 0.24 Gron4
118 Sn 15.50 0.60 15.50 0.60 4.10 0.70 TAMU3
120 Sn 15.20 0.50 TAMU3
120 Sn 15.23 0.27 Gron4
120 Sn 15.18 0.41 15.21 0.21 3.98 0.21 Grenl
124 Sn 14.80 0.40 TAMU3
124 Sn 15.06 0.28 14.98 0.23 3.50 0.30 Gron4
142 Nd 14.80 0.30 14.80 0.30 3.30 0.20 TAMUS
144 Sm 14.60 0.20 : TAMU3
144 Sm 14.84 0.27 14.69 0.16 3.23 0.17 Gron4
146 Nd 15.10 0.20 15.10 0.30 3.30 0.30 TAMUS
148 Sm 14.60 0.20 TAMU6
148 Sm 14.66 0.27 14.62 0.16 3.08 0.23 Gron4
150 Nd 15.40 0.30 15.40 0.30 3.40 0.20 TAMUS
150 Sm 14.68 0.29 14.68 0.29 2.86 0.50 Gron4
152 Sm 15.27 0.29 15.27 0.29 3.13 0.52 Gron4
154 Sm 14.90 0.30 14.90 0.30 2.60 0.40 TAMU3
208 Pb 13.70 0.40 TAMU3
208 Pb 13.63 0.38 Gron5
208 Pb 13.80 0.30 13.73 0.20 2.58 0.20 Juli

232 Th 13.80 0.40 13.80 0.40 3.00 0.50 Juli

238 8) 13.70 0.40 13.70 0.40 3.00 0.50 " Juli



Measured energy of ISGMR (= “breathing mode”), E,;soyr
— information on the compressibility of nuclear matter ( K., ).

Nuclear compressibility is an important information on the equation of state of nuclear matter.

ex. shape of the density distribution, values of the radii, the strength of shock wave following
the collapse of supernovae, etc.

However, the relation, E 5 r < K., Is model-dependent!

. : d*(E/A
K., is defined by Ko = 9,05%‘/)_%
0
An effective compression modulus, K, , for a nucleus with mass number A
in terms of E;ggr(A) is defined by m(EISGMR(A))2<r2>
K, = = m
where <r2>m is the mean-square mass radius.
" ) N-2) Z2
ertlng KA = KvoI + Ksurf A e + Ksym( A ) + KCoul A4/3 LI ($)
lim K, =K , = K if the mode corresponds to a radial scaling of the ground-state
Ao vol nm  density.
IAim K, =(7/10)K,, from a Hartree-Fock calculation with a constraint on the
—>00

r.m.s. radius.



Moreover, various K;values in ($) are poorly determined, since the variations of K, with
N and Z are very small for available nuclei.

Thus, some experts state (for example, Blaizot et al., NPA 591 (1995) 435) :

Phenomenological expansion ($) using measured E, ;,,<(A) values cannot be
used to obtain K.

Microscopic calculations remain the most reliable tool for determining K.
from measured E,;)<(A) values.

K _=210+30 MeV




Comparison of calculated ISGMR using self-consistent Hartree-Fock calculations
plus RPA with various Skyrme interactions, which have different K__ values.
K..,= 217,256 and 355 MeV for SkM*, SGI and SlII, respectively.

|.H., H.Sagawa & X.Z.Zhang, PRC 56, 3121 (1997)

40 208
20 CaZO 82 Pb126
30 1 | | 2500 - TS N TN N N TR DU SO T (N S T S 1
-~ (@) — Skm* . 1 @) r —— SKM® Z
2 1 (z=20n= J S 1  (z-82 N=126) - -
> (Z=20 N=20) sl 3 s
= IS Monopole RPA . --SGI g 2000 1S Monopole RPA :?.' ....... sl N
;.:E‘:. £ 1500 7] ,'i Z_
n - = ] " -
= T : ' :
2 10 - N 55 1000 1% s
1] =z . B C
o % ] ' -
= . 500 \: —
0 T : : g s
0 40

o
—
o

20

w
o

Calculated ISGMR in medium weight and Calculated ISGMR in heavy nuclei is
light nuclei usually does not have obtained as a well defined resonance and

a clean one-peak shape. exhausts the sum rule.

(In the above calculation the particle decay width of GR is fully taken into account, while
the spreading width, coming from the coupling to 2p-2h configurations, is not included.)



The effective charge of EO transitions, e, (EQ) , for low-energy EO transitions has not
really been studied.

In heavier nuclei self-consistent calculations plus RPA produce a relatively clean
resonance peak. Nevertheless, the calculated peak energy is not so different from
averaged unperturbed p-h energies in the potential based on harmonic-oscillator.

—> Calculated values of EO polarization charge, € ol (EO) , for low-energy EO

transitions due to ISGMR may not be large and may depend sensitively on
the models and parameters used.

ex. A recent information on e (E0) from the dataon ‘?Be,

S.Shimoura et al., Phys. Lett. B654 (2007) 87;
I.H. and S.Shimoura, J. of Phys. G34 (2007) 2715.

2251 —— 0, Measured partial life 7(0; - 0;;) = 402+16 ns
- (0

— 0 T ex (EO) = e (EQ) = 0.076 ¢

ex (EO)r’

01+> = 0.87 e fm?

pol

The presence of weakly-bound neutrons in the deformed potential
is duly taken into account.

OBS. The polarization charge for EO transitions obtained from subtracting the center of mass motion
is analogous to that of E2 transitions described in Sect.7.2.1. and is

e (E0) = (Z/A%)e = (0.028)e for 12Bg



Comparison of IS and IVGR in 208 Pb
calculated by self-consistent Hartree-Fock
plus RPA using SKM* interaction.

Particle decay width is fully taken into account,
though spreading width coming from the coupling
to 2p-2h configurations is not included.

I.Hamamoto., H.sagawa and X.Z.Zhang, J.Phys.G 24 (1998)1417.
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Figure 3. Unperturbed and RPA response functions of 208p to monopole (r2Ye and 'r;rz Yoo for
the IS and IV operator, respectively), compression dipole (¥} and 7,r*Y)o) and quadrupole
(r2Y20 and 1,72Ys) operators. The SkM* interaction is used both in HF and RPA.



7.4. Giant Resonances of charge-exchange type (AT,= 1)

z
Various isospin states, which can be excited by acting
an isovector excitation operator on a nucleus with T +1 ’
— 0
T=T,#0.
Excitation strengths o~ [C(T,1T; T,, AT,, Ty+ AT,) ]2 (2To+ 1) (To+ 1)
T, +1 1
T,+ 1 To 1
To+ 1
2T,—1
2T, +1
1
AT,=+1
Z—1, N+1 Z#N Z+1, N-1
N-Z N-Z N-Z
TZ= + 1 TO =T = T,= — 1



E.(t. GR) < E4(t. GR) in the presence of neutron excess

p-h excitation energy Ey measured from the ground state of mother nuclei

A [ A ([
t
E0 t+ E0
AE I AE
v v .
Z N 7 N
E,(t,) = E,—AE E,(t) = E,+ AE

- ~ A-1/3
Eo~ahwy~ A
AE ~ A?3 for neutron-excess in stable neutron-rich nuclei

Ey (t,) becomes monotonically smaller as A — larger.

This relation, E, (t, GR) < E, (t. GR), is present in all charge-exchange (t, ) GRs.

In N>Z nuclei towards neutron-drip-line
E,(t, GR) << E (t_ GR) E, in respective final nuclei



Some expected features unique in spin-isospin ( o t, ) Giant Resonances

1) [t,o,] — Not almost all strength under the GR peak.

Instead, a considerable amount of high-energy tail above the peak is expected,
with the tensor correlation responsible for the highest energy components.

Dependence of the high-energy tail on respective GRs ?

2) [0,] — Relatively large width (or large spread) of GR

) a) Unperturbed 1p-1h excitations have already an energy spread of 2 AEES
where the spin-orbit splitting of high-j orbit is expressed by AEes (= 7-9 MeV),
except for GTGR and some IVSGDR where the spread = AE,

b) Due to the same sign of the couplings to a particle and a hole;

the coupling of 1p-1h to 2p-2h configurations is strong, . .
in contrast to spin-independent modes. and



Examples of charge-exchange Giant Resonances studied in B-stable nuclei
spin-isospin modes
* compression mode

spin-parity operator (0,)
IAS 0+ ;ti(k)
GT GR 1+ 2.L. (k)3
IV GQR 2+ ;ti(k)rszﬂ(fk)
IV spin GMR* 1+ >t (k)G (K _<r2>excess)
IV spin GDR 0—, 1-, 2— k;t(k)rk(Yl(fk)&k)M

Direct and systematic experimental data are available only for IAS and GTGR.

IAS = Isobaric Analogue State

IV = IsoVector
GMR = Giant Monopole Resonance

GDR = Giant Dipole Resonance




A . .
Allowed B decay; Yt (k) = F, Fermi transitions : (4, 1), < (4, ),
k

i&(k)ti(k) = GT, Gamow-Teller transitions :
k
(M#i%jp «— (€,j=€i%]n and (6”':“3”
Isospin of nucleon, t:% tz‘n>=% n> tz‘p>:—%‘p>
tn)=|p) tlp)=In)  tfn)=0 tp)=0

ex. In the L-S doubly-closed-shell N=Z nucleus, ;‘(?Cazo , one expects

gti(k)\ gr)=~0 and Z:‘,O'ﬂ(k)ti(k)\gr> ~0

F, operators are raising and lowering operators of the z-component of total isospin (T)
without changing the total isospin, AT=0;

St (k) =T, T[T, T,)=|T.T,£1) In particular, T[T =T,=0)=0
K

GT, operators may change the total isospin, AT =-1,0,+1 | but T=0=J=0



B-decay can populate only the states with Ex < Qg, in daughter nuclei.

g.s. \ That means, in B-stable nuclei

B-decays of ground states can populate only
Q the low-energy tail of GTGR in daughter nuclei.
Bt Thus, those B-decays are considerably hindered.

mother daughter
nucleus nucleus

In contrast, using charge-exchange reactions on mother nuclei,

(P, n), (*He, t) for t (n— p in target nuclei)

(n, p), (d, 2He), (t, 3He) for t, (p — n in target nuclei)

the response is obtained up till high excitation energy in daughter nuclei.

The price which one must pay is ; the analysis of data to obtain nuclear matrix elements is
much more complicated than in 3 decays.

In those charge-exchange reactions, Gamow-Teller Giant Resonance (GTGR) was found !



7.4.1. Fermitransitions; (F, =) (Si=2ti(k)
k

XI(m[O_[0)F ~XI{n[C. [0)F
(£5-S,) = (N-2)

spin-parity of the operator = 0*

The sum rule for Fermi transitions is usually
exhausted by the transition to the

Isobaric Analogue State (IAS),

which has a very narrow width.

[1AS) =T, |0)

That means, Isospin is a good quantum number,
in general, in both light nuclei and medium-heavy
nuclei with neutron excess.

Isospin of the ground state is maximum broken
for N=Z nuclei with Z — large.

ex. For N>Z
IAS —— T =(N-2)/2
yA
T = (N-2)/2 g.s?
g.s: T = (N-Z)/21
(N,2) (N-1, Z+1)
T,=(N-2)/2 T,=(N-Z)/2-1

In this example F+‘T :TZ = (N _Z)/2>:0

") [T=(N-2Z)/2) cannothave
T, = (N-2)/2+1 component.

S -8 =N-Z




7.4.2. Gamow-Teller resonance ; (GT, =) éi =2 t.(k)o,(k)
k

S 3(m|G_[0) - 3 3 |(n|6.|0)F ¢

spin-parity of the operator = 1*

S-S,)= 3(N-2)

#=1m #=1n
Some experimental observation In order to observe GTGR, the incident energy
; - s of proton or 3He beams must be chosen
L ;". . . . .
b oy 57200 | - carefully. (Thg pgpulatlon of spin-isospin modes
z \ - U relative to excitations of other types depends on
S o — - ' . .
Bl ", s | the incident energy.)
':_;T‘;:i of -————”j\ —-—"""J\—w R »
o 40cq o7, 250 )
Ko 160 180 200 40 160 180 200 2
Ep (MeV) 150 | <)
Fig. 5. Neutron t.0.f. spectra at 200 MeV and § = 0° for the indicated targets. The spectra are normalized 2000 |- 0
to show relative cross sections. —= 1100-23235?5 )
C.Gaarde et al., Nucl.Phys.A369 (1981) 258. § 1900 - g s0f yi‘
1000° |- &= Tz [?1-18 449 450 451
G |
10% “I"'Hn(p.n;-a&m “Wég(p,n)“:‘nl | 0 mm z
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0 | |
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k J The 0° "'Ga(®*He,t)"'Ge spectrum at 450 MeV.

rob #0571 (p,n)* P [ 8 (p.n)“Np ;
- IAS IAS
5 -

] 10 20 o0 10 20

v M.Fujiwara et al., Nucl.Phys.A599 (1996)223c.

Excitation Energy (MeV)

J.Rapaport and E.Sugarbaker, Ann.Rev.Nucl.Part.Sci., 44 (1994) 109.



ex. Observed properties of IAS and GTGR in

2§§Pb126 (3He,t) 2§§Bi125 with E(SHe) = 450 MeV

H.Akimune et al., PRC 52, 604 (1995).

(T =22) (T=21)
“IAS” “GTGR”
“IAS” =T_|gr of 208Pb>
Ex (MeV) 18.8 19.2 . . o
Width (MeV) 0.232 3.7 GTGR” = GT_|gr of 208Pb>
Sum rule (%) 100 ~60 —

From the (*He,t) reaction; only the GTGR
peak region is included and S, =0
was assumed due to Pauli blocking.

Missing (GT) _ strength used to be a problem in 1980s.

| FRACTION of GT-SUMRULE OBSERVED in (p,n)
100 =

%,

19 39
14 26 42 54
Laloauy

90 2
A

144 165 205208 238

FIGURE 4

Fraction of Gamow-Teller sumrule strength observed in (p,n) reactions.
Three different regions in A are discussed in the text. In the p- and sd-
shell the strength is most often in a few sharp states. In the fp-shell a
multipole decomposition is attempted. For heavier nuclei the dots (with
error bars) represent strengths in peaks (low lying + giant), whereas the
cross hatched region also includes strength under the collective state.
Possible strength above (larger E,) the collective state is not included.

C.Gaarde, Niels Bohr centennial Conf., 1985.

1) Back-ground subtraction problem ;
- broad GT bump is located on top of a continuum.

Including this continuum or not makes a large difference
in the extracted strength.

- GTGR has a clean resonance shape ?

2) S, may not be negligible even for medium-heavy nuclei.

3) Possible missing GT strength is carried by the excitation,

[nucleon — A resonance at 1232 MeV] ?
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{ MD analysis
— Rijsdijk et al. 1
(folded)

IVSM m
A~

B((np);:GT+IVSM) B((p,n);GT+IVSM)

1
T T
90
Zr(n,p) IVSM
shifted A
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Fig. 3. GT plus IVSM strength distributions obtained by the MD
analysis of the {}UZr(p, n) and 20Zr(n, p) reactions (in GT unit). The
00Zr(n, p) spectrum is shifted by +18 MeV. The curves are taken
from Ref. [29]. The energy regions of [VSM excitation are indicated
by braces. See text for details.

IVSM = IsoVector Spin Monopole

modes are expected around the place
indicated.

Are IVSM_ or IVSM, modes populated in
these reactions ?

The direct measurement of S_and S, , performing both (p,n) and (n,p) reactions;

K.Yako and H.Sakai et al., Phys.Lett. B615 (2005) 193.
0Zr (p,n)  E, =295 MeV
%Zr (n,p) E, =293 MeV
S, was carefully measured !

A multipole decomposition technique was applied to
extract the GT component from the continuum.

GT quenching factor extracted from Ex < 50 MeV :

Q=ﬁ = 0.88 + 0.06
S 3N-2) T

1) The coupling to non-nucleonic degrees of freedom
(ex. A-resonance !?) in nuclei is presumably
very small.

2) An appreciable amount of GT strength is found in the
energy region much higher than the peak energy of
GTGR.

A prediction by G.F.Bertsch and I.H., PRC 26 (1982) 1323 ;

Due to the spin-isospin character of GT operator, some unperturbed 1p-1h GT strength is
shifted to the higher-lying (10-45 MeV) 2p-2h states, with the tensor correlation responsible for
the highest energy components.




T=

5_

To=4—5—

AM (®Nb)

90

41 N b49
(AM = —82.66)
(b.e.=777.006)

{ ECoul (i)Nb) - ECoul (2?)Y) }_ 2Anp

=23.9-1.6=223 MeV

90

40 Zr50
(AM =—88.77)
(b.e.=783.899)

K.Yako and H.sakai et al., Phys.Lett. B615 (2005) 193.

90
39Y51
(AM = —86.49)
(b.e.=782.400)

1) The T=6 part of GTGR_ is only a fraction, 1/66, of
the total GTGR_ strength.

2) All GTGR, strength in Y has T=6, which is however
expected to be very small.

3) The total strength S, of IVSM, (all with T=6) on %Zr is
not small and about 70 % of that S of IVSM_ on 90Zr.

_ 2 _ 2 _
A, =[AM (n)—AM (*H)Jc* = (m,—-m_ —-m,)c* =0.78 MeV

22.3-54=16.9

T=4  T=6
—~ 25 r T —T ]
5 [PZr(pn)
220 ‘
=) . ﬂ t MD analysis

|
2 sf [“| {J — Rijsdijk et al ]
% I | ’ v . (folded) T=4
Siof |} NN e— -
Nl |
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_ [ s
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= O’t+* | i
é 0.0 L 1 atdt® | I aThe,.d
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Fig. 3. GT plus IVSM strength distributions obtained by the MD
analysis of the [’UZr{p, n) and *0Zx(n, p) reactions (in GT unit). The
90Zr(n, p) spectrum is shifted by +18 MeV. The curves are taken
from Ref, [29]. The energy regions of IVSM excitation are indicated
by braces. See text for details.



The energy of GTGR is pushed up from unperturbed (proton-hole) (neutron) or (proton) (neutron-hole)
energies, due to the repulsive interaction in the 07 channel.

— Effective GT operator, (GT),, = (0.6 —0.7) (GT),.

M1GR

(M1) o i Xt,(K)o, (k) = [AT,=0] partof GT operator, (GT). = X Xt.(K)o,(K)

Spin-dependent part of magnetic dipole (M1) operator is approximately

5.58 for proton

") 3 eh
oMY u)=,———\g,/,+9S :{ 1 = {
A 2mc( o ”) 9, 0 g —3.82 for neutron

9,0, +0.5, = %(ﬁ,, +(gP+ g?)%)—%(& +(9?-9")s, ),

1.76 9.40

Cf. In %C, (s,=15.96, S,=18.72 MeV)
E, (1%, T=0) = 12.7, E (1%, T=1) = 15.1 MeV

In heavy nuclei the strength of M1 GR is highly fragmented.

M1 strength for E, < S, (= 7.37 MeV)
measured by Zogpb(y,y)

(i _
{ neutron : (' 3/2'11/2)1+ €p-h = 5.57 MeV using highly polarized tagged photons

ex. 208Pb (aj-j closed shell nucleus)

[ (T=1) 1562
[ (T=0) 19u)?

proton (b1 h ). Epn =5.85MeV

B

B(MI) (1) 2)

n

Giant M1 resonance centered around 7.3 MeV,
with a full width of about 1 MeV.

L

FEFEFE B RSP LI e
5 6 T 8 9
Photon Energy (MeV)

— geff =~ (0.7) gf“"e for low-energy M1 transitions.
S S R.M.Laszewski et al., PRL 61, (1988) 1710




7.4.3. IsoVector Spin Giant Monopole Resonance (IVSGMR) ; CA)i = Zti(k)aﬂ(k)rk2
k

3 2 3 2 4 4 spin-parity of the operator = 1*
ZI(mG|0)f ~ZI{n[G.|0)F - 3N(re) ~z(r >p)

This [VSM operator has the same spin, isospin and parity as those of GT operator,

though IVSM mode is a compression mode while GT is not.

Moreover, the GT strength extends to the continuum energy region much higher than that of
the main peak, in the high energy region it may be experimentally difficult to differentiate
IVSM strength from higher-lying GT strength.

Taking into account the orthogonality to GT operator, theoretically one needs to use

-~ 2
Owsu = Zti(k)%(k)(rk —<r? >) .H. and H.Sagawa, PRC 62 (2000) 024319.
k

in order to obtain only the strength of IV Spin Monopole mode.

However, IVSM mode has a form factor quite different from that of GT transitions.

— (*He,t) with appropriate incident energies may excite IVSMR more easily than (p,n) ?

The dependence of cross sections on incident energies or
a comparison of (p,n) with (3He,t)
may differentiate the strength of IVSM from that of GT.



In nuclei with a larger neutron excess E(GR_) > E(GR,)

less (if not zero) GT, strength is expected due to Pauli blocking (namely, the neutron level
in p—n by GT, operator is already occupied).
&> Excitation energy of IVSGMR, in daughter nuclei becomes considerably lower,
compared with that of [VSGMR_ in daughter nuclei.

[ Maximum energy of relevant p-h configurations estimated from the ground state of mother nuclei]

(The collective peak may appear just above the max p-h energy, when unperturbed p-h excitations are
spread over a broad energy region, compared with the strength of relevant p-h interactions.)

For stable nuclei (N —Z2); qape 6x10°A"° — (NE _ N,f)ha)o ~0.183A23 MeV

IVSM, p-h excitations. IVSM_ p-h excitations.
n+1, j=£-1/2 n+1, j=-1/2
AE, AE
- n+1, j=t+1/2 = n+1, j=t+1/2
2hw,
2hw,
I 0.183 A3 I 0.183 A%3
n, j=t+1/2 |o v n, j=t+1/2 |‘-'---- o
Z N Z N
E (IVSM,) = 2hia, —0.183A*° + AE,, E (IVSM_) = 2h@, +0.183A*"° + AE,,

0.183A*° =6.42 MeV ~1hiw,
for 2®Pp

[E, (IVSGMR_)-E, (IVSGMR ,)]>2x0.183 A?3,

since IVSGMR_is more collective than IVSGMR, due to the neutron excess.




The relation [E, (t, GR) < E, (t_GR))] in nuclei with neutron excess is valid for all types of
t, GRs, though the actual energy difference depends also on the collectivity of modes.

In nuclei which are much more neutron-rich than 3-stable nuclei, one has
1)  (N-=-2Z) > 6x10°A"
2) The ground state of t, daughter nuclei becomes much higher than that of mother nuclei.

Then, possible IVSGMR, may have even lower E, in daughter nuclei.

Or, some appreciable 17 strength may be found at lower E, , when GT, transitions should
be forbidden.

One may try reactions such as (n,p) or (t, 3He) on such neutron-rich nuclei
in the inverse kinematics, and find out the lower-lying spin-dependent strength ?

Some comments:

1) Knowing that even the simplest compression mode, ISGMR, has not a simple resonance
shape in the light-medium mass region, IVSM strength may not be concentrated on
one collective resonance.

In the schematic harmonic oscillator model ;
unperturbed p-h excitations for ISGMR are totally degenerate at 2@, , while

those for IVSGMR are spread over 2fiw, £ AE, ~80A™Y3+8 MeV .

2) Similarto GTGR or the GT strength distribution, VSGMR may have a considerable
amount of strength tail at the energy higher than the major peak, since it is also a
spin-isospin mode.



|.H. and H.sagawa, PRC 62, 024319 (2000)

Ex. of calculated charge-exchange spin monopole (t , SMR) modes

208 208
82 PDios = g1y t, mode . . .
HF plus TDA with a Skyrme interaction
208 208y ;
oo PP — "33 Bligs t_mode
Response functions Radial part of transition density of IVSGMR,
(compression modes !)
10000 T
2 T & -
(c) initial state **Pb 4 initial state ™Pb e
m—_— spin-monopole spin-monopole -’ .\‘.
i e, : /
S 6000 :'.E —_t, .';‘DA E 0 T
g El't ----- t_ unperturbed :g
'*g E 'l — t TDA % 4
o 4000 ‘54 E -§
1 Ll 5 2
2000 1 ! 8 ! e---e Ex=15.3MeV fort,
\ 3t o Ex=39.8MeV for t_
% 10 } 20 .:3'0 20 70 -4 -
Ex (MeV) 0 2 4 6 8 10 12

E, is measured from the ground state of
the mother nucleus

Possible high-energy tail of the strength is not obtained in this kind of calculations
(namely, [HF plus TDA] or [HF plus RPA]).




7.4.4. IsoVector Spin Giant Dipole Resonance (IVSGDR); CA)i =3t (K)r (Y,(F) ®5(k))Jﬂ
k

(There are a considerable amount of experimental data.)

Defining 8. = X (m[Xt. ()1 (Y,(R) ® 5(K)),,[0) F where Jmr = 0, 1—and 2—,

onecbtains 575 =2 N (1) 2 (1)
J J 9 2 )
T 678 = [N(ET) -2 (5| &

ex. Using experimental data from °0Zr(p,n) and %°Zr(n,p) on the l.h.s. of (&), the difference between

2 . . .
(r?) and (%) can be obtained, if (') is known from the
observed charge radius. (Harakeh & Woude, Giant Resonances, 2001)

K.Yako, H.Sagawa and H.Sakai, Phys.Rev.C 74, 051303(R) (2006)

20 T T T T
ng’?—) ¢ P7r(pn) 00
% T Drozdz et al The ground state of ,;ZI,, has
5‘; 10}
] “vero, T=T,(=T,)=(50-40)/2=5
S g : f : f f . — i 90 90
O ey s "z IVSD_: T=4,5,6 in 02, (P,N), Nb,
5 L~ dE <hifte P ) 90 9
a N . u('fh:t e IVSD, : T=6 In 4OZr50(n, p) 3gY51
J J 1 ) . ..&TT“.* A multipole decomposition analysis at 8=4.6° (= max of SD mode)
°% 10 20 30 40 50 was performed, and the SD strengths up to 40 MeV in the left figure
E, (MeV)

were included. _ N<r2>—z<r2> = 207 +17 fm?2

n p
neutron skin thickness :

FIG. 1: Charge exchange SD strength da[:g_] (upper panel)

and %ﬂ (lower panel). The circles and squares are

the experimental data. The %’—) spectra are shifted by

2 2
417 MeV. The curve is the results of the second RPA calcu- \/<r >n - \/<r >p = 007 i 004 fm
lation by Drozdz et al. [33].




7.5. Giant resonances in nuclei far away from the stability line

very different N/Z ratio, compared to stable nuclei with the same A,
in addition to the presence of weakly-bound nucleons.

drip-line nuclel

B stable nuclei proton-drip-line nuclei neutron-drip-line nuclei

V(r) r
r</-\ [ r r</\ k r r::/\ Vf(k) > T
7 AN

protons neutrons protons neutrons protons neutrons

W

Since the Fermi levels for protons and neutrons are very different in drip line nuclei,
this binding energy difference of least-bound protons and neutrons will produce
interesting phenomena in charge-exchange reactions or 3 decays.



«— extra contribution by weakly-bound neutrons in the ground state to <r2>.

Threshold strength couples very little with other p-h configurations

— threshold strength contributes very little to €, (E2).

7.5.1. ISGQR of nuclei with weakly-bound neutrons
(an example of weakly-bound neutrons — threshold strength)
Ex. Calculated GQR of (-stable nuclei Calculated GQR of neutron-drip-line nuclei
500.0 IR R B A T T N T R A A S R B 500.0 RN T T I I T T T O SO N B

1 p) (Z=20 N=20) 1 (p) (Z=20 N=40)
S 400.0 S - S 400.0 - SkM+ 5
@ 7] QUADRUPOLE B b} 7] QUADRUPOLE B
= g - = ’ -
;é 300.0 Isoscalar RPA B ‘E 300.0 Isoscalar RPA B
a5 ] — — — Isovector RPA B RS i — — — Isovector RPA B
E T Unperturbed i |:E 2 | e Unperturbed i
< 200.0 - - < 200.0 -
= 7] B e . B
L 7] B L T B
o ] i cC i B
& 1000 3 5 1000 .

- AR M - E g ,..' :’-‘ f"“‘l'\ E

0.0 [ B B B B B |-“T T T \U\ \_\__\_\ T 0.0 o I s e |”\ e |.-\-'_|'\'"| =TT
0.0 10.0 20.0 30.0 40.0 50.0 0.0 10.0 20.0 30.0 40.0 50.0
ENERGY (MeV) ENERGY (MeV)
threshold strength
: 50 #?
Increase of energy-weighted sum-rules, S(IS,4=2)_.., = om A< > , by the threshold strength
7 2m



Ex. ISGQR of a possibly neutron-drip-line nucleus with weakly-bound neutrons, 5 Ca,,
(calculated results only)

Compared with ISGQR in 3-stable nuclei, the frequencies of possible
neutron p-h configurations are lower, while the frequencies of proton
p-h configurations remain nearly the same or become larger.

lower frequency

ISGQR has
= broader width

However, collective correlation structure

. _ } are similar to those of [-stable nuclei.
transition density

Hartree-Fock potentials and one-particle energy levels Unperturbed neutron response to rZYzﬂ

20
Proton (@) %Cas Neutron ZFI(JJO
SkM* | |I
10 SR | S, 150 I N N O 0 N o O O Yl O [ ) D | [ B O I
i R (L
%le:![aw_ o (20 - (Z=20 N=4O) -
0 - e N SkM:= (1ds2")(19s2) L
) p— - |
10 - R v L S | QUADRUPOLE i i
| _ Q unperturbed neutron response A : -
= p i
& A — - =100 4 g I m
D 7 e E B -1 ‘ I B
< -30 — e - = . i f“ proton -
5 i | I | eremee 2p3‘.\2 | |: response B
@ -40 — o - 5 | —— 1" | i
5 B p=d 50 - it gy | | ...
-50 - % ] v D8 1.'|: I
I = 1 == 1ds | | i
e - » i
i Vi) h I
=70 A Veln)eVelr) e '
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4 ===~ Unoccupied states 0 5 10 15 20 25 30
90 . . : ENERGY (MeV)
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I.H., H.Sagawa and X.Z.Zhang, PRC 64, 024313 (2001).



7.5.2. B-decay to GTGR in drip line nuclei

=Z
::
B*decay to GTGR, 5o
I"#:..
oo +
S o G
- WO it
o (Sn) 50 iy
(AT R O
— v 1 %&a £ e ]26
. ﬂe\,uon""‘p (magic number)
(Ni) 28 e 82
(Ca) 20 kRS
;i ‘_.Tr 50
(O) 8 ::h Ih_
' - 28
He) 2 20
2 Neutrons —»

B-decay to GTGR_

(Isotopes)




1) B_ decay in nuclei with N > 7 H.Sagawa, |.H. and M.Ishihara, PLB 303, 215 (1993)

B stable nuclei very neutron-rich light (Z < 7) nuclei

The relative energy between IAS and GTGR is a
function of (N-Z)/A. The larger (N-Z)/A, the lower
GTGR.

GTGR Ty—1, Ty, Ty+1

IAS_ T

(p.n)
AEcouI_Anp
To g.s. g.s.
"4 g.s. To—1
M@ZN+1)~M@Z+1N) - A, B
(Z, N+1) (Z+1, N) - 9
N+1-Z
T,= (Z, N+1) (Z+1, N)

Anp = (AM(n)— AM("H)) c2 = 0.78 MeV
AECouI(Z+1) = ECouI(Z+1) - ECoul (Z) oC ((Z+1 )2 - 22 ) A_1/3 oc Z A_1/3
Energy difference of different T states in a given nucleus

T+1/2 |N-Z|
oC

E(A,T +1,MT:T)_E(A1T’MT :T)z4bsym A




Dependence of the energy difference between IAS_and GTGR_ on (N-Z)/A

ks

E(GT) - E(IAS)=7.0-57.8 N=-2

Egr-Ee  (MeV)
by
i
——0—7’. -
I i
-

=

#-\ Note N-Z
] 1 \ ! A
010 Qa2 o4 016 o1} 020 022

(N-2)/A
Fig. 1. Plot of Eqyp — Ef versus (V — Z)/A. The experimental 240 0.3333

data were taken from ref. [81 for %0Zz. from ref. 101 for
20C 0.4000
K.Nakayama, A.Pio Galeao and F.Krmpotic, PLB114, 217 (1982) 22C 0.4545
8He 0.5000
208Pp 0.2115




2) B+ decay in nuclei with N > 7 F.Frisk, I.H. and X.Z.Zhang, PRC 52 (1995) 2468.

B stable nuclei medium-heavy proton-drip-line nuclei (Z > 50)
To+ 1 $ Tor !
7%# GTGR, To+ 1 BEcou™ boy
(n.p)
Ty g.s. p 90
A g.s. To+1 GTGR,
(Z+1,N) (Z, N+1) M(ZH1N) ~ MEZN+1) + A,
Ny vV Vv < g.s. ¢Sp
T. =
0 2
(Z+1,N) (Z, N+1)  (Z-1, N+1)

The mass difference, M(Z+1,N) — M(Z,N+1), increases rapidly, as stable — proton-drip-line nuclei.

— GTGR, comes easily into the scope of B* decays, namely below the ground state of mother nuclei.



