#### 原子核物理学連続講義・コースX-2

## Baryonic Matter and Neutron Stars (第2回)

#### T. Takatsuka (Prof. Emeritus of Iwate Univ.)

- 3. Pion condensation (PC)
  - 3-1. Historical overview
  - 3-2. Alternating-Layer-Spin (ALS) model
  - 3-3. ALS model and PC
- 4. Baryonic superfluidity under PC
  - 4.1 Pairing correlation under PC
  - 4-2. Baryonic superfluidity with  $\angle$  effects
- 5. Neutron star phenomena with PC
  - 5-1. Pulsar glitch model based on PC
  - 5-2. PC and *v*-burst from SN1987A

# 3. Pion Condensation(PC)

3. Pion condensation (PC)

#### 3-1. historical overview

Pions:  $\pi(\pi^0, \pi^+, \pi^-)$ , spin (S) =0, isospin ( $\tau$ )=1, boson, mass ( $m_{\pi}$ )  $\rightleftharpoons$  140 MeV

 $\sim$  19<sub>35</sub> OPEP (Important ingredient of nuclear force since Yukawa's work)

1965 In medium, n→ p +  $\pi^-$  (bose condensation with k=0) when  $\mu_n$ (chem. Pot.)≥  $m_\pi$ ; proposed by J.N. Bahcall and R.A. Wolf<sup>\*</sup>) → later on, NO! due to the repulsive effects from  $\pi$ -n S-wave int.

1972 π-condensation with k≠0 is OK! by π-N P-wave int., pointed out by

A.B. Migdal and independently by R.F. Sawyer and D.J. Scalapino $^{*)}$ ;

explicit introduction of meson degrees of freedom in medium

—So many works (including, e.g., ALS<sup>\*)</sup>)

<sup>\*)</sup> A.B. Migdal, Sov. Phys. –JETP34 (1972) 1184.

R.F. Sawyer and D.J. Scalapino, Phys. Rev. D7 (1972) 953.

T. Takatsuka, K. Tamiya, T. Tatsumi and R. Tamagaki, Prog. Theor. Phys. 59 (1978) 1933.



<sup>\*)</sup> S. Suzuki and H. Sakai, Phys. Lett. B455 (1999) 25.



Possibility of solid neutron matter is denied by more detailed investigation the reason:

weaker repulsion and stronger quantum effects as compared with those in He system.

### $\Box$ Can we have another new mechanism? $\rightarrow$ Yes



This configuration can utilize the tensor force attractively to reduce the kinetic energy increase  $(\frac{3}{4}\hbar\omega > \frac{3}{5} \in_F)$ , 3-dim. Localization  $(\frac{3}{4}\hbar\omega)$  $\rightarrow$  1-dim. Localization  $(\frac{1}{4}\hbar\omega)$ 

#### Presentation of the ALS model

T. Takatsuka, K. Tamiya, T. Tatsumi, R. Tamagaki Prg. Theor. Phys. <u>59</u> ('78) 1933





3-3. ALS model and PC

 $ALS \equiv \pi^0 \text{ condensate}^{*)}$ 

) Potential Description (PD) v.s. Field Description (FD)

O (n+ $\pi^0$ ) system ; ( $\sigma \cdot \nabla$ ) coupling O Hamiltonian:

$$H = H_N + H_{\pi} + H_{\pi-N}$$
;  $\hbar = c = 1$  (3-3)

$$H_N = \int d\boldsymbol{\xi} \left( \nabla \psi^{\dagger}(\boldsymbol{\xi}, t) \cdot \nabla \psi(\boldsymbol{\xi}, t) \right) / 2m_N \; ; \; \boldsymbol{\xi} \equiv \{ \boldsymbol{r}, \text{spin} \} \tag{3-4}$$

$$H_{\pi} = \frac{1}{2} \int dr \{ (\dot{\varphi}(r,t))^2 + (\nabla \varphi(r,t))^2 + m_{\pi}^2 \varphi^2(r,t) \}$$
(3-5)

$$H_{\pi-N} = (f/m_{\pi}) \int d\xi \psi^{\dagger} \boldsymbol{\sigma} \psi \cdot \boldsymbol{\nabla} \varphi \tag{3-6}$$

OField eqs.:

$$(\Box - m_{\pi}^{2})\varphi = -\tilde{f}\nabla \cdot \psi^{\dagger}\sigma\psi \qquad ; \tilde{f} \equiv f/m_{\pi} \tag{3-7}$$

$$i\dot{\psi} = \{-\nabla^2/2m_N + \tilde{f}\nabla\varphi \cdot \sigma\}\psi$$

$$(3-8)$$

$$(3-9)$$

$$O G.S. \rightarrow |\Phi_0\rangle = |\Phi_N\rangle \otimes |\Phi_B\rangle, \qquad (3)$$

Taking Mean Field Approx. (MFA):

$$(\Box - m_{\pi}^{2})\varphi = -\tilde{f}\nabla < \Phi_{N} |\psi^{\dagger}\sigma\psi|\Phi_{N} >$$

$$i\dot{\psi} = \{-\nabla^{2}/2m_{N} + \tilde{f}\nabla < \Phi_{B}|\varphi|\Phi_{B} > \sigma\}\psi$$
(3-10)
(3-11)

\*) •T. Takatsuka, K. Tamiya, T. Tatsumi and R. Tamagaki ; Prog. Theor. Phys. 59 ('78) 1933
•T. Takatsuka and J. Hiura; Prog. Theor. Phys. 60 ('78) 1234

$$O \psi = \sum_{\alpha} C_{\alpha} \varphi_{\alpha} e^{-i\varepsilon_{\alpha}t} , \quad |\Phi_{N}\rangle = \prod_{\alpha}^{occ} C_{\alpha}^{\dagger}|0\rangle$$
(3-12)

O Sol. of  $\pi$  field:

$$(\Box - m_{\pi}^{2})\phi = -\tilde{f}\nabla < \psi^{\dagger}\sigma\psi >$$
(3-13)

$$\varphi = \varphi_c + \varphi_q \tag{3-14}$$

$$\varphi = \sum_{k} \{ a_k(t) e^{ikr} + h.c. \} / \sqrt{2\omega_k \Omega}$$
(3-15)

$$\varphi_q = \sum_k \{A_k e^{i(kr - \omega_k t)} + h. c.\} / \sqrt{2\omega_k \Omega} \qquad \text{(non-cond.)} \qquad (3-16)$$

$$\varphi_c = \sum_{k} \{S(k)e^{ikr} + h.c.\} / \sqrt{2\omega_k \Omega} \quad \text{; static} \quad \text{(cond.)} \quad (3-17)$$

Where 
$$S(\mathbf{k}) \equiv \sum_{\alpha}^{occ} S_{\alpha\alpha}(\mathbf{k})$$
 (3-18)

$$S_{\alpha\alpha}(\boldsymbol{k}) \equiv \tilde{f} \int d\boldsymbol{\xi} \phi_{\alpha}^{*}(i\boldsymbol{k}\boldsymbol{\sigma})\phi_{\alpha}e^{-i\boldsymbol{k}\boldsymbol{r}}/\sqrt{2\omega_{\boldsymbol{k}}^{3}\Omega}$$
(3-19)

O This means:

$$a_{k}(t) = A_{k}e^{-i\omega_{k}t} + S(k); \text{ Displaced}$$
(3-20)

O Rewrite *H* by using field eq. :

$$H = \int \frac{d\xi(\nabla\psi^{\dagger} \cdot \nabla\psi)}{2m_N} + \frac{\frac{1}{2} \int dr \{\varphi_q^{\dagger 2} + (\nabla\varphi_q)^2 + m_\pi^2 \varphi_q^2\}}{\sum} - \frac{1}{2} \int dr \{(\nabla\varphi_c)^2 + m_\pi^2 \varphi_c^2\}$$
(3-21)  
Positive definit  $\sum_{k} \omega_k A_k^{\dagger} A_k$ 

 $\rightarrow$  G.S. should be the vaccum with respect to  $\varphi_q$ :

$$0 = A_{k}(0)|\Phi_{B}\rangle = (a_{k}(0) - S(k))|\Phi_{B}\rangle$$
(3-22)

i.e., 
$$a_k |\Phi_B \rangle = S(k) |\Phi_B \rangle$$
 (3-23)

 $\rightarrow$  | $\Phi_B$  > is the coherent state of  $a_k$ 

O Then, by the Glauber transformation:

$$|\Phi_{B}\rangle = e^{\sum_{k} S(k)(a_{k}^{\dagger} - a_{-k})}|0\rangle$$
i.e., 
$$|\Phi_{0}\rangle = |\Phi_{B}\rangle \otimes |\Phi_{N}\rangle = e^{\sum_{k} S(k)(a_{k}^{\dagger} - a_{-k})} \prod_{\alpha}^{occ} c_{\alpha}^{\dagger}|0\rangle$$
(3-24)
(3-25)

O Number of pions with **k** 

$$N_{\pi}(\mathbf{k}) = \langle \Phi_0 | a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} | \Phi_0 \rangle = |S(\mathbf{k})|^2$$
(3-26)

 $\pi^0$  condensation  $\rightarrow$  Macroscopic  $N_{\pi}$  (i.e., S(**k**)) for specific **k**, That is, actualization of "pion cloud" depending on the structure of nucleon system.



#### O Therefore we can see:



Mechanism for the realization of ALS phase

$$O\left(\nabla^{2} - m_{\pi}^{2}\right) < \stackrel{\varphi_{c}}{\varphi} > = -\tilde{f}\nabla < ALS |\psi^{+}\sigma\psi|ALS > = -\tilde{f}\nabla_{z}\rho_{\perp}\sum_{l}(-1)^{l}|\Phi_{l}(z)|^{2}$$

$$\psi = \sum_{\alpha} C_{\alpha} \Phi_{\alpha} e^{-i\varepsilon_{\alpha}t} , \quad |ALS > = \prod_{\alpha}^{(occ)} C_{\alpha}^{\dagger}|0 > , \qquad \stackrel{\uparrow}{\rho d} \qquad (3-31)$$

$$\phi_{\alpha}(\xi) = \frac{1}{\sqrt{\Omega_{\perp}}} e^{iq_{\perp}r_{\perp}} \phi_{l}(z)\chi_{\sigma_{l}}(\text{spin}), \qquad \sigma_{l} = (-)^{l} \qquad (3-34)$$

$$\stackrel{\parallel}{(\frac{a}{\pi})^{1/4}} e^{-\frac{a}{2}(z-dl)^{2}}$$

Sol. 
$$\rightarrow \langle \varphi(z) \rangle = -2\tilde{f}\rho \sum_{\substack{n=1\\ \text{odd}}} (\frac{k_n}{\omega_n^2})e^{-\pi^2 n^2/4\Gamma} \sin k_n z$$
 (3-35)

$$(k_n = \frac{n\pi}{d}, \Gamma \equiv ad^2, \omega_n^2 = k_n^2 + m_\pi^2)$$

Single-mode dominance  $\rightarrow$ 

2

$$\simeq -2\tilde{f}\rho_{\omega_c^2}^{k_c}e^{-\pi^2/4\Gamma} \sin k_c z ; \quad k_c \equiv \pi/d$$
(3-36)

O E = (K. E. of neutrons)
$$-\frac{1}{2}\int dr\{(\nabla < \varphi >)^2 + m_{\pi}^2 < \varphi >^2\}$$
 (3-37)

$$\mathsf{E/N} = \frac{\pi\rho d}{m_N} + \frac{\Gamma}{4m_N d^2} - \tilde{f}^2 \rho \frac{k_c^2}{\omega_c^2} e^{-\pi^2/2\Gamma} \text{ ; funct. of } \Gamma \text{ and } d$$
(3-38)

$$O \triangle E/N = (ALS)-(FG) = E/N - \frac{3}{5} \in_F; \quad \in_F = \frac{\hbar^2 q_F^2}{2m_N}; \quad q_F = (3\pi^2 \rho)^{1/3}$$
(3-39)

### Realization of ALS

Energy Gain







## Charged Pion ( $\pi^c$ ) Condensation

O Simple Model (SM) with :  $H_{\pi-N}$  only ; MFA,  $|\Phi_0\rangle = |\Phi_N\rangle \otimes |\Phi_B\rangle$  (3-40) O Field eqs. :

$$(\Box - m_{\pi}^{2})\varphi_{\pm} = \sqrt{2}\tilde{f}\nabla < \Phi_{N} |\psi^{\dagger}\sigma\tau_{\pm}\psi|\Phi_{N} >$$
(3-41)

$$i\dot{\psi} = \left[-\frac{\nabla^2}{2m_N} - \sqrt{2}\tilde{f}\{\tau_+\nabla < \Phi_B | \varphi_{\pm} | \Phi_B > \sigma + h.c.\}\right]\psi$$
(3-42)

To solve these eqs. Self-consistently under the conditions; charge (Q) and baryon number (N) conservations

$$(\psi \equiv (\psi_p, \psi_n), \ \tau_{\pm} = (\tau_1 \pm i\tau_2)/2, \ \varphi_{\pm} = (\varphi_1 \pm i\varphi_2)/\sqrt{2})$$
 (3-43)

O Source funct.  $\rightarrow$  Isospin flip operator ( $\tau_{\pm}$ )

 $ightarrow \,$  good nucleon mode hould be

$$\eta_{\beta}(t) \equiv \eta_{\beta} e^{-iE_{\eta}(\beta)t} = u_{\beta}^* \tilde{n}_{\beta}(t) - v_{\beta}^* \tilde{p}_{\beta_{-}}(t)$$
(3-44)

$$\zeta_{\beta}(t) \equiv \zeta_{\beta} \ e^{-iE_{\xi}(\beta)t} = u_{\beta} \ \tilde{p}_{\beta}(t) + v_{\beta}\tilde{n}_{\beta}(t)$$
(3-45)

$$(\beta \equiv (q, \sigma), \quad \beta_{-} \equiv (q - k_{c}\hat{z}, \sigma), \quad |u_{\beta}|^{2} + |v_{\beta}|^{2} = 1)$$
 (3-46)

$$O |\Phi_N \rangle = \prod_{\beta}^{occ} \eta_{\beta}^+ |0\rangle \xrightarrow{\text{No } \pi^c - \text{ cond.}} FG \text{ of pure n-matt.}$$
(3-47)

O  $\pi^c$ - cond. of running wave type (<  $\varphi_+ > \propto e^{ik_c z}$ ) with the condensed momentum  $k_c \hat{z}$ 

O coherence of  $|\Phi_B >$  can be shown quite analogously with  $\pi^0$  case :

$$|\Phi_B\rangle = |\Phi_{\pi^-}\rangle \otimes |\Phi_{\pi^+}\rangle \tag{3-48}$$

$$|\Phi_{\pi^{-}}\rangle = exp\{S_{\pi^{-}}(k_{c})(b_{k_{c}}^{\dagger}-b_{k_{c}})\}|0\rangle$$
(3-49)

$$|\Phi_{\pi^+}\rangle = exp\{S_{\pi^+}(k_c)(d_{-k_c}^{\dagger} - d_{-k_c})\}|0\rangle$$
(3-50)

$$\begin{bmatrix} S_{\pi^{-}}(k_c) \\ S_{\pi^{+}}(k_c) \end{bmatrix} = A_c \sqrt{\Omega \omega_c/2} \times \begin{bmatrix} 1+\mu_{\pi}/\omega_c \\ 1-\mu_{\pi}/\omega_c \end{bmatrix}$$
(3-51)

$$\mu_{\pi} = \mu_n - \mu_p$$
,  $\omega_c = (k_c^2 + m_{\pi}^2)^{1/2}$ , (3-52)

$$A_{c} \equiv -\sqrt{2}\tilde{f}k_{c}\Omega^{-1}\sum_{q}^{occ} 2\,u_{q}v_{q}(\omega_{c}^{2}-\mu_{\pi}^{2})$$
(3-53)

O aspect of the condensate :

$$\pi^{-}: (\mathbf{k}_{c} = k_{c} \ \hat{z} \ , \mu_{\pi}): \text{coherent state}$$

$$\pi^{+}: (-\mathbf{k}_{c} \ , -\mu_{\pi}): \text{coherent state}$$

$$N_{\pi^{-}} = S_{\pi^{-}}^{2}, \qquad N_{\pi^{+}} = S_{\pi^{+}}^{2} \qquad (3-54)$$

$$N_{p} = N_{\pi^{-}} - N_{\pi^{+}} (= N_{\pi^{c}}): \text{charge neutrality} \qquad (3-55)$$

$$\mu_{\pi} > 0 \rightarrow "\pi^{-} - \text{dominant" condensate}$$

O E/N = 
$$\frac{3}{5} \in_F + (3\mu_{\pi}^2 - \omega_c^2) A_c^2 / \rho$$
 (3-56)

## Coexistent Pion Condensation\*)

O  $\pi^0$  and  $\pi^c$  condensations are made to coexist by taking their condensed momenta as



 $\pi^c$  -cond. In x-y plane (2-Dim. FG)

ALS structure of  $\eta$ -particles

O By this coexistent condensation, the energy gains from  $\pi^0$  and  $\pi^c$  condensations become additive

Most probable type of pion condensation:

 $\rightarrow \pi^0 \pi^c$  Combined condensation

\*) K. Tamiya and R. Tamagaki; Prog. Theor. Phys. <u>60</u> (1978) 1753

#### Realization of $\pi^c$ -cond. (SM)



#### Additive Energy Gain (SM)



## □ Toward Realistic Treatment

 $O H_{\pi-N}$  only:

$$\rho_t(\pi^0) \simeq \rho_t(\pi^c) \simeq \rho_t \; (\pi^0 \pi^c) \simeq \rho_0$$

O Other effects :

| ° short-range correlation         | $\leftarrow$ |             |
|-----------------------------------|--------------|-------------|
| ° <i>ρ -</i> meson contribution   | $\leftarrow$ | Act against |
| ° quantum correction (exch        | . Effect)    |             |
| ° Isobar ⊿(1232) effect           | <            | Act for     |
| ° N-N int. other than $H_{\pi-N}$ |              |             |
|                                   |              |             |

O Results :

|              | Authors                                                                                                                                                                 | $ ho_t$                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $\pi^0$      | T. Kunihiro and T. Tatsumi ('81)<br>K. Tamiya and R. Tamagaki ('81)<br>T. Takatsuka and J. Hiura ('82)<br>O. Benhar ('83, '85)<br>A. Akmal and V.R. Pandharipande ('98) | $\begin{array}{c} \sim 2 \ \rho_0 \\ (2-3) \ \rho_0 \\ (1.5\text{-}2.6) \ \rho_0 \\ (3\text{-}4) \ \rho_0 \\ \sim 1.2 \ \rho_0 \end{array}$ |
| $\pi^{c}$    | W. Weise and G.E. Brown ('74)<br>T. Tatsumi ('82)                                                                                                                       | $\sim 2.1 \  ho_0$ (1.5-2.2) $ ho_0$                                                                                                        |
| $\pi_0\pi_c$ | T. Muto and T. Tatsumi ('87)                                                                                                                                            | (3-5) $ ho_0$                                                                                                                               |

## 4. Baryonic superfluidity under PC

#### 4. Baryonic superfluidity under PC<sup>\*)</sup>

## □ Motivation:

Neutrons in NS interior are in the superfluid state of  ${}^3P_2$ -type at densities  $\rho\simeq(1-3)\rho_0$  .

On the other hand, pion condensations are considered to set in or develop somewhere in this density region.

The there arises a question:

Whether the nucleon superfluid, shown to be realizable from ordinary Fermi gas, persist or not when pion condensations come into play.

T. Takatsuka, Int. Journal of Modern Phys. : Conference Series 11 (2012) 133.

<sup>\*)</sup> As review articles,

T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl. No. 112 (1993) 107.

## 4.1 Pairing Correlation under PC

(1) Under  $\pi^0$  condensation<sup>\*)</sup>



$$\begin{split} \varphi_{\alpha}^{rel}(\boldsymbol{\xi}) &= \frac{1}{\sqrt{\Omega_{\perp}}} \underbrace{e^{iq_{\perp}r_{\perp}}}_{\sqrt{\Omega_{\perp}}} \varphi_{l}^{rel}(z) \chi_{Sm_{S}^{(1,2)}} & (4-1) \\ \sum_{m_{L}}(i)^{m_{L}} J_{m_{L}}(q_{\perp}r_{\perp}) e^{im_{L}(\varphi_{q_{\perp}} - \varphi_{r_{\perp}})} & (4-2) \\ S &= 1, \quad m_{S} = (-1)^{l} \end{split}$$

**Density localization** 

O Remarks

(i) 1-Dim. Localization  $\rightarrow$  pairing correlation is operative in 2-Dim. FG space, and predominant for the pair in the same layer;

• $(q_{\perp}, l; -q_{\perp}, l)$ -Cooper pair

superfluid of 2-Dim. character

\*) T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. <u>62</u> ('79) 1655; <u>64</u> ('80) 2270; <u>65</u> ('81) 1333; <u>67</u> ('82) 1649.

R. Tamagaki, T. Takatsuka and H. Furukawa Prog. Theor. Phys. <u>64</u> ('80) 1865.

(ii) Pair state is specified by  $\tilde{\lambda} \equiv (S, m_S, m_L)$  instead of  $\lambda \equiv (S, L, J, m_J)$ . (iii)  $\tilde{\lambda}_1 \equiv (S = 1, m_S = m_L = (-1)^l)$  is most effective, where  ${}^{3}P_2$  interaction dominates  $\xrightarrow{} {}^{3}P_2$ -dominant pairing.

Sap Equation : 2-Dim. 
$$\tilde{\lambda}_1 = (S = 1, m_S = m_L = (-1)^l)$$

$$\Delta_{\tilde{\lambda}_{1}}(q_{\perp}) = -\frac{1}{2} \int_{0}^{\infty} q_{\perp}' dq_{\perp}' < q_{\perp}' |V_{\lambda_{1}}(r_{\perp})|q_{\perp} > \Delta_{\tilde{\lambda}_{1}}(q_{\perp}') / \sqrt{\tilde{\varepsilon}^{2}(q_{\perp}') + \Delta_{\tilde{\lambda}_{1}}^{2}(q_{\perp}')}$$
(4-3)

$$q_{\perp}'|V_{\tilde{\lambda}_{1}}(r_{\perp})|q_{\perp}\rangle \equiv \int_{0} r_{\perp}dr_{\perp}J_{1}(q_{\perp}'r_{\perp})V_{\tilde{\lambda}_{1}}(r_{\perp})J_{1}(q_{\perp}r_{\perp})$$
(4-4)

$$V_{\tilde{\lambda}_1}(r_{\perp}) \equiv (\frac{a}{\pi})^{1/2} \int dz \, e^{-\frac{a}{2}z^2} V_{\tilde{\lambda}_1}(r) \tag{4-5}$$

$$V_{\tilde{\lambda}_{1}}(r) \equiv V_{c}(r) + V_{T}(r)(\frac{3z^{2} - r^{2}}{r^{2}}) + V_{LS}(r)m_{S}m_{L}$$
(4-6)

$$\tilde{\varepsilon}(q_{\perp}) = \hbar^2 (q_{\perp}^2 - q_{\perp F}^2) / 2m_N^*$$
(4-7)

(2) Under  $\pi^c$  condensation

O No localization, 3-Dim. Nature holds. But one important difference arises: superfluid is described by quasineutron basis.

$$\eta = u^* \tilde{n} - v^* \tilde{p}, \ \zeta = u \tilde{p} + v \tilde{n} \qquad (4-8)$$
$$(|u|^2 + |v|^2 = 1)$$

O Remarks:

(i) Large band gap

$$\Rightarrow |\Phi_0\rangle = \prod_{\beta}^{occ} \eta_{\beta}^{\dagger} |0\rangle \qquad (4-9)$$

Excitation of  $(\mathbf{q}\sigma; -\mathbf{q}\sigma')$ 

Cooper pair from  $\eta$ -particle states to

 $\zeta$ -particle ones are stately neglected

→ we can restrict ourselves to  $\eta$ -particle (quasineutron) space.



(ii) Isospin is not a good quantum number

→ pair state is specified by  $\lambda' \equiv (S, L, J)$   $\rightarrow \lambda_1' \equiv (S = 1, L = 1, J = 2)$  —pair state is most attractive, which includes  ${}^{3}P_{2}$ -int. ( $\tau = 1$ ) and  $\tau = 0$ -int. with  ${}^{3}P_{2}$ -kinematical factor  $\rightarrow$  means "attenuation" of  ${}^{3}P_{2}$ -int.  ${}^{3}P_{2}$ -int.  $\rightarrow$   ${}^{3}P_{2}$ -int.  $\times \Lambda$  (3) Under  $\pi^0 \pi^c$  condensation

O The characteristics of (1) and (2) join together:

- •2-Dim. Nature due to  $\pi^0$ -cond.
- quasineutron superfluid and "attenuation" due to  $\pi^c$ -cond.

O Most probable type of superfluid at higher densities.

Critical Temperature  $T_c$  of Nucleon Superfluids under  $\pi^0$ ,  $\pi^c$ ,  $\pi^0\pi^c$ condensates (Simple Model)



## 4-2. Baryonic superfluidity with ⊿ effects

#### $\Box$ Under $\pi^0$ condensation with $\angle$ (1232)

 $\bigcirc \pi$ -Cond. ←  $\angle$ -mixing is essential  $\bigcirc n$ -Super  $\rightarrow$  (n+ $\angle d^0$ )-Super

1 Interaction in N-Space  $\rightarrow$  in (N+ $\Delta$ )-Space

$$|N\rangle \equiv \begin{bmatrix} |p\rangle \\ 0|n\rangle \end{bmatrix} \rightarrow |B\rangle \equiv \begin{bmatrix} |p\rangle \\ |n\rangle \\ |\Delta^{++}\rangle \\ |\Delta^{+}\rangle \\ 0|\Delta^{0}\rangle \\ |\Delta^{-}\rangle \end{bmatrix} \stackrel{\leftarrow}{\leftarrow} \frac{1/2}{-1/2} \quad (4-10)$$

$$\stackrel{\leftarrow}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-1/2}{\leftarrow} \frac{-3/2}{\leftarrow} \frac{-3/$$

Extended Operator

$$\mathbf{1} \equiv \begin{bmatrix} 1 & 0 \\ 0 & \kappa_1 \end{bmatrix} , \qquad \mathbf{s} \equiv \begin{bmatrix} \sigma & 0 \\ 0 & \kappa_{\sigma} \Sigma^{\checkmark} \end{bmatrix}$$
 (4-11)  
$$\mathbf{t} \equiv \begin{bmatrix} \tau & 0 \\ 0 & \kappa_{\tau} \theta \end{bmatrix} , \qquad \mathbf{S} \equiv \begin{bmatrix} \sigma \tau & \lambda_{\sigma\tau} S^{\dagger} T^{\dagger} \\ \lambda_{\sigma\tau} ST & \kappa_{\sigma\tau} \Sigma \theta \end{bmatrix}$$
 transition *i*-spin op.   
transition spin op. N  $\rightarrow \Delta$ 

SU(4) quark model  $\rightarrow \kappa_1 = 1$ ,  $\kappa_\sigma = 2$ ,  $\kappa_e = 2$ ,  $\kappa_{\sigma e} = \frac{4}{5}$ ,  $\lambda_{\sigma c} = \sqrt{72/25}$  (4-12)

## 2 Quasi-Neutron ${}^{3}P_{2}$ – dominant Pairing<sup>\*</sup>)

$$|\widetilde{N}_{\alpha}\rangle = u_{\alpha}|n_{\alpha}\rangle - v_{\alpha}|\Delta_{\alpha}^{0}\rangle$$
 (quasi-n) (4-13)

$$|\widetilde{\Delta}_{\alpha}\rangle = u_{\alpha} |\Delta_{\alpha}^{0}\rangle + v_{\alpha} |n_{\alpha}\rangle \qquad (quasi-\Delta^{0})$$
(4-14)

$$|\Phi_F\rangle = \left|\Phi_{ALS}\rangle = \prod_{\alpha}^{(occ)} \widetilde{N}_{\alpha}^{\dagger}\right| 0 >$$
(4-15)

$$\alpha \equiv \{ \boldsymbol{q}_{\perp}, l \}; \quad spin \to \sigma_{\alpha}/2 = \Sigma_{\alpha} = 1/2$$
  
*i*-spin  $\to \tau_{\alpha}/2 = \theta_{\alpha} = -1/2$ 

basis function:

$$\phi_{\alpha}(\boldsymbol{\xi}) = \phi_{lq_{\perp}}(\boldsymbol{\xi}) = \frac{1}{\sqrt{\Omega_{\perp}}} e^{iq_{\perp}\cdot r_{\perp}} (a/\pi)^{1/4} e^{-a(z-dl)^2} \chi_l^{(B)}$$
(4-16)

$$\chi_l^{(B)}(\text{spin, isospin}) = u_l \chi_l^{(n)} - v_l \chi_l^{(\Delta^\circ)}$$

$$u_l \simeq u, \quad v_l \simeq (-1)^l v$$

$$(4-17)$$

$$H_{BB}^{(\text{pair})} = \frac{1}{2} \sum_{lq_{\perp}'q_{\perp}} \langle lq_{\perp}', l-q_{\perp}'|V_{BB}(1,2)|lq_{\perp}, l-q_{\perp} \rangle \qquad (4-18)$$

$$\times N_{lq'_{\perp}}^{\dagger} N_{l-q'_{\perp}}^{\dagger} N_{l-q_{\perp}} N_{lq_{\perp}}$$

$$Most attractive pair$$

$$\Lambda \equiv \{S = 1, m_{S} = (-1)^{l}, m_{L}\}$$

\*) T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. 98 (1997) 393.

$$H_{BB}^{(\Lambda-\text{pair})} = \frac{(2\pi)^2}{\Omega_{\perp}} \sum_{l} \sum_{q_{\perp}'} \sum_{q_{\perp}} \sum_{m_L} \langle q_{\perp}' | V_{BB}^{(\Lambda)} | q_{\perp} \rangle b_{lm_L}^{\dagger}(q_{\perp}') b_{lm_L}(q_{\perp}) \quad (4-19)$$

Pair Operator:  $b_{lm_L}{}^{\dagger}(q_{\perp}) = \frac{1}{\sqrt{2}} \int d\varphi_q \frac{1}{\sqrt{2}} e^{im_L \varphi_q} \widetilde{N}_{lq_{\perp}}{}^{\dagger} \widetilde{N}_{l-q_{\perp}}{}^{\dagger}$  (4-20)

2-dim. Matrix Elements:

$$< q_{\perp}' |V_{BB}^{(\Lambda)}|q_{\perp}> \equiv \int_{0}^{\infty} dr_{\perp} r_{\perp} J_{m_{L}}(q_{\perp}' r_{\perp}) V_{BB}^{(\Lambda)}(r_{\perp}) J_{m_{L}}(q_{\perp} r_{\perp})$$
 (4-21)

2-dim. Pot.

$$\Delta_{ALS} \equiv \Delta_1(q_{\perp F})/\sqrt{2\pi} , \quad \kappa_B T_c \simeq 0.57 \Delta_{ALS}$$
(4-24)

 $\Box$  Under  $\pi^c$  condensation with  $\Delta^{*)}$ 

O Quasibaryon basis

$$|\tilde{n}_{\beta}\rangle = \frac{1}{\sqrt{N}} \{ |n_{\beta}\rangle + y_1| \Delta_{\beta+}^- > \}$$
 (quasi-n) (4-25)

$$|\tilde{p}_{\beta-}\rangle = \frac{1}{\sqrt{N}} \{ |p_{\beta-}\rangle + y_1| \Delta_{\beta--}^{++} \}$$
 (quasi-p) (4-26)

$$N = 1 + |y_1|^2, \beta \equiv \{q, \sigma\}, \beta_{\pm} \equiv \{q \pm k_c, \sigma\}, \beta_{--} \equiv \{q - 2k_c, \sigma\}$$
(4-27)

O BCS-quasiparticles

$$|\eta_{\beta}\rangle = u_{\beta}|\tilde{n}_{\beta}\rangle - v_{\beta}|\tilde{p}_{\beta-}\rangle, \qquad |\zeta_{\beta}\rangle = v_{\beta}^{*}|\tilde{n}_{\beta}\rangle + u_{\beta}^{*}|\tilde{p}_{\beta--}\rangle \qquad (4-28)$$

□ Under  $\pi^0 \pi^c$  condensation with  $\Delta^{**}$ O Quasibaryon basis

$$|\tilde{n}_{\gamma}\rangle = \frac{1}{\sqrt{N}} \{ |n_{\gamma}\rangle + z_1 | \Delta_{\gamma}^0 \rangle + z_2 | \Delta_{\gamma+}^- \rangle \}$$
(4-29)

$$|\tilde{p}_{\gamma-}\rangle = \frac{1}{\sqrt{N}} \{ |p_{\gamma-}\rangle + z_1| \Delta_{\gamma-}^+ \rangle + z_2| \Delta_{\gamma--}^{++} \rangle \}$$
(4-30)

$$N = 1 + |z_1|^2 + |z_2|^2, \quad \gamma \equiv \{l, q_\perp, \sigma\}, \quad \gamma_{\pm} \equiv \{l, q_\perp \pm k_c, \sigma\}, \quad (4-31)$$
$$\gamma_{--} \equiv \{l, q_\perp - 2k_c, \sigma\}$$

O BCS-quasiparticles

$$|\eta_{\gamma}\rangle = u_{\gamma}|\tilde{n}_{\gamma}\rangle - v_{\gamma}|\tilde{p}_{\gamma-}\rangle, \qquad |\zeta_{\gamma}\rangle = v_{\gamma}^{*}|\tilde{n}_{\gamma}\rangle + u_{\gamma}^{*}|\tilde{p}_{\gamma-}\rangle$$
 (4-32)

\*) T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. 101 (1999) 1043.

\*\*) R. Tamagaki and T. Takatsuka, Prog. Theor. Phys. 110 (2006) 573; 117 (2007) 861.

#### Critical Temperature $(T_c)$ of ${}^3P_2$ -dominant Baryon Superfluid under $\pi^0$ -cond. with $\varDelta^0$ effects



W: weak condensate, M: medium, S: strong

# Critical Temperature Baryon ${}^{3}P_{2}$ -superfluid under $\pi^{c}$ condensation with $\Delta$ effects



parameter set from (a) strong  $CPC^{*)}$  and (b) simple model CPC.

\*) T. Muto and T. Tatsumi, Prog. Theor. Phys. 79 (1988) 461.

# Critical Temperature of ${}^{3}P_{2}$ -dominant Baryon Superfluid under $\pi^{0}\pi^{c}$ condensation with $\Delta$ effects



## **5.** Neutron star phenomena with PC

## 5. Neutron star phenomena with PC

## □ Characteristics of Pion-Condensed NS

O 3-points:

1) "Softening":

EOS is remarkably softened by the energy gain due to  $\pi$ -cond. ----- $\pi^0 \pi^c$ ,  $\pi^0 \pi^c$ 

2) "Solid":

Solid-like '1-Dim. Localization) state is provided by the ALS structure -----  $\pi^0, \ \pi^0 \, \pi^c$ 

3) "Pion-Cooling":

Cooling of NS is dramatically accelerated due to the URCA process mediated by pion condensation ----- $\pi^c$ ,  $\pi^0\pi^c$ 



### Effect of $\pi$ condensation on NS cooling<sup>\*</sup>)

e strength of the classical  $\pi^c$  field,  $m_{\pi}^*$  the



\*) H. Umeda, K. Nomoto, S. Tsuruta, T. Muto and T. Tatsumi, ApJ. 431 (1994) 309.

#### 2-5. Relevance to NS phenomena

### Pulsar glitch

Sudden speed-up and macroscopic relaxation time



Macroscopic  $\tau \rightarrow$  evidence for the existence of superfluid Q  $\rightarrow$  Internal structure (superfluid portion) Q~0.9  $\Rightarrow$  necessity of superfluid also in NS cores  $\rightarrow {}^{3}P_{2}$  – superfluid

#### Problems of starquake model



□ M-dep. Of NS structure



5-1. Pulsar glitch model based on  $PC^{*}$ How to overcome the problems  $\cdot$ Crab  $\rightarrow$  Crustquake, Vela $\rightarrow$  Corequake (A) No solid core  $\rightarrow$  "ALS-solid" due to  $\pi^0$ -cond.  $E/N = \alpha (d-d_o)^2 + b$  $E = M = M (q - q_0) + D$   $= \overline{B}_s (\epsilon - \epsilon_0)^2$   $= \overline{B}_s (\epsilon - \epsilon_0)^2$   $\overline{M}_s = \overline{B} / \overline{V}_s \simeq 4 \times 10^{35} dyn/cm^2$ modulus  $\sim 10^5 \overline{M}_c , OK$ shear modulus of Baryon Solid Coulomb solid (B) Heating  $\rightarrow$  Rapid "Pion Cooling" due to  $\pi^{c}$ -cond. By the next glitch, Pion Cooling can get rid of the heat due to the released strain energy

<sup>\*)</sup> T. Takatsuka and R. Tamagaki , Prog. Theor. Phys. 79 (1988) 274; 82 (1989) 945.

![](_page_42_Figure_0.jpeg)

(iii) How long is the cooling time  $\Delta t$  for  $T_f \rightarrow T_i$ ?  $\Delta t = -N \int_{T_f}^{T_i} dT \overline{c} / L_{\pi} \leftarrow Luminosity = \eta \times 10^{57} T^6$   $\approx (1 - 80 \times 10^{-2} \eta^{-1} \text{ yr } \left\{ \begin{array}{c} \eta = 1 \\ \eta = 0.1 \end{array} \right\}^2$   $< 1yr < t_g = (2 - 4) \text{ yr } 0 \text{ K}$ 

#### **Energy Release by Starquake**

![](_page_43_Figure_1.jpeg)

(C) Two exponential terms ( $\tau_1 \sim \text{monthes}, \tau_2 \sim \text{days}$ )

Extend 2-comp. into 3-comp.

$$S_0$$
-Superfluid :  $I_s$ ,  $T_s$ ,  $\Omega_s$  : 1st  
 $3P_2$ -Superfluid :  $I_p$ ,  $T_p$ ,  $\Omega_p$  : 2nd  
Solid core  $J_1$  :  $I_c$   $\Omega_s$  : 3rd

$$F_{g. of motion} = external torgue$$

$$I_{c} \dot{\Omega} = -\alpha - I_{c} (\Omega - \Omega_{s})/T_{s} - I_{c} (\Omega - \Omega_{p})/T_{p}$$

$$I_{s} \dot{\Omega}_{s} = I_{c} (\Omega - \Omega_{s})/T_{s}$$

$$I_{p} \dot{\Omega}_{p} = I_{p} (\Omega - \Omega_{p})/T_{p}$$

Ts is responsible for Ti Tp " Tz

#### $\odot$ Solution :

$$\begin{split} \Omega_{4}(t) &= \Omega_{1}^{n_{0}}(t) + 4 \Omega_{0} \left[ Q_{1} \frac{e^{t/T_{1}}}{long} + \frac{Q_{2}}{short} \frac{e^{t/T_{2}}}{short} + (1 - Q_{1} - Q_{2}) \right] \\ \Delta_{\mu} \dot{\Omega}_{1}(t) &= \dot{\Omega}_{1}(t) - \dot{\Omega}^{n_{0}}(t) \\ &= \Delta_{\mu} \Omega_{0} \left[ \frac{Q_{1}}{T_{1}} e^{-t/T_{1}} + \frac{Q_{2}}{T_{2}} e^{-t/T_{2}} \right] \\ \Delta_{\mu} \dot{\Omega}_{0}(t) &= -\frac{Q_{1}}{I} t + const. \\ T_{1} &= \frac{I_{s}}{I_{c}} T_{s}, \quad T_{2} &= \frac{I_{p}}{I} T_{p}, \quad I = I_{c} + I_{s} + I_{p} \\ Q_{1} &= \frac{I_{s}}{I} \left\{ (1 - \Delta \Omega_{so} / \Delta \Omega_{0}) - \frac{I_{p}}{I} \frac{(1 - \Delta \Omega_{po} / \Delta \Omega_{0})}{(1 - T_{2} / T_{1})} \right\} \\ Q_{2} &= \frac{I_{p}}{I} \left\{ (1 - \Delta \Omega_{po} / \Delta \Omega_{0}) - \frac{I_{s}}{I} \frac{(1 - \Delta \Omega_{so} / \Delta \Omega_{0})}{(1 - I_{c} T_{1} / I T_{2})} \right\} \end{split}$$

- (i) short term not visible in  $\Omega$ 8t) because of  $Q_2 \gg Q_1$ , becomes visible in  $\Delta \dot{\Omega}(t)$ ;  $\tau_2 \ll \tau_1 \rightarrow \frac{Q_1}{\tau_1} \sim \frac{Q_2}{\tau_2}$ .
- (ii) Assuming ang. Mom. Consv. At glitch (t $\simeq$ 0) for respective component ( $\Delta I_i/I_i = -\Delta \Omega_{i0}/\Omega_i$ , i=c, s, p) information of internal structure can be extracted.

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

#### = Example :

• Crab : 
$$I_P / I \sim 0.9 \longrightarrow M \sim 1.2 M_{\odot}$$
  
( (1.1~1.3)M\_{\odot})  
 $\longrightarrow N_{\odot}$  Solid Core  
 $\longrightarrow Crustquake only \Rightarrow \frac{dR_{\odot}}{R_{\odot}} \sim 10^{-8}$ 

That is, consistent with our model setting.

· \* ·

1 .

![](_page_49_Figure_0.jpeg)

\*) T. Takatsuka, Prog. Theor. Phys. 78 (1987) 516; 80 (1988) 361

![](_page_50_Figure_0.jpeg)

 $\Box \Delta E_{obs} \sim (0.9 - 3.5) \times 10^{53}$  erg (K. Sato and H. Suzuki, Phys. Lett. B196 (1987) 267)  $\sim (1.6 - 3.1) \times 10^{53}$  erg (S.H. Kahana, J. Cooperstein and E. Baron, Phys. Lett. B196 (1987) 259)