Nuclear structure probed by hyperons with Antisymmetrized Molecular Dynamics

Masahiro Isaka (Hosei University)

Hypernucleus

Grand challenges of hypernuclear physics

Interaction: "baryon-baryon interaction"

- •2 body interaction between baryons (nucleon, hyperon)

 - hyperon-nucleon (YN)
 hyperon-hyperon (YY) Major issues in hypernuclear physics

Structure: "many-body system of nucleons and hyperon"

- Adding hyperon(s) shows new aspects of nuclear structure *e.g.* structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from NN

Hyperon as an impurity in nuclei

"impurity effects": nuclear structure change by hyperon(s)

Grand challenges of hypernuclear physics

Interaction: "baryon-baryon interaction"

- •2 body interaction between baryons (nucleon, hyperon)

hyperon-nucleon (YN) hyperon-hyperon (YY) Major issues in hypernuclear physics

Structure: "many-body system of nucleons and hyperon"

"impurity effects": nuclear structure change by hyperon(s)

Grand challenges of hypernuclear physics

Interaction: "baryon-baryon interaction"

- •2 body interaction between baryons (nucleon, hyperon)

 - hyperon-nucleon (YN)
 hyperon-hyperon (YY) Major issues in hypernuclear physics

Structure: "many-body system of nucleons and hyperon"

- Adding hyperon(s) shows new aspects of nuclear structure *e.g.* structure change by hyperon(s)
 - No Pauli exclusion between N and Y
 - YN interaction is different from NN

Hyperon as an impurity in nuclei

"impurity effects": nuclear structure change by hyperon(s)

Structure of Λ hypernuclei

♦A hypernuclei observed so far

- Concentrated in light Λ hypernuclei
- Most have well-developed cluster structure

Structure of Λ hypernuclei

- ♦A hypernuclei observed so far
 - Concentrated in light Λ hypernuclei
 - Most have well-develope

Developed cluster

Λ Hyp

Changes of cluster structure

Example: ⁷/_ALi Motoba, *et al.*, PTP**70**,189 (1983) Hiyama, *et al.*, PRC**59** (1999), 2351. Tanida, *et al.*, PRL**86** (2001), 1982.

- Λ reduces inter-cluster distance between $\alpha + d$
- Confirmed through B(E2) reduction

Toward heavier and exotic Λ hypernuclei

How does a Λ modify structures of *p-sd* shell/n-rich nuclei?

Structure study based on recent achievements

♦Knowledge of Λ **N interaction: from** Λ **hypernuclei**

- Few-body calculation techniques
- AN G-matrix effective interactions
- Increase of experimental data

Hiyama, NPA **805** (2008) Yamamoto, *et al.*, PTP Suppl. **117** (1994) Hashimoto and Tamura, PPNP **57** (2006)

Developments of nuclear structure models

•Example: Antisymmetrized Molecular Dynamics (AMD)

- In structure studies on stable and n-rich nuclei
- Describe dynamical changes of various structure
- \bullet No assumption on α clustering and specific deformation

Recent developments enable us to study structure of Λ hypernuclei

Kanada-En'yo *et al.*, PTP **93** (1995) HyperAMD: Antisymmetrized Molecular Dynamics for hypernuclei

Hamiltonian

$$\hat{H} = \hat{T}_N + \hat{V}_{NN} + \hat{T}_\Lambda + \hat{V}_{\Lambda N} - \hat{T}_S$$

Wave function

• Nucleon part : Slater determinant Spatial part of s.-p. w.f. is described as Gaussian packets

• Single-particle w.f. of Λ hyperon: Superposition of Gaussian packets

• **Total w.f.**:
$$\psi(\vec{r}) = \sum_{m} c_m \varphi_m(r_\Lambda) \otimes \frac{1}{\sqrt{A!}} \det[\varphi_i(\vec{r}_j)]$$

NN : Gogny D1S ΛN : YNG interaction (NF, NSC97f, ESC08c)

$$\varphi_{N}(\vec{r}) = \frac{1}{\sqrt{A!}} \det[\varphi_{i}(\vec{r}_{j})]$$
$$\varphi_{i}(r) \propto \exp\left[-\sum_{\sigma=x,y,z} V_{\sigma}(r-Z_{i})_{\sigma}^{2}\right] \chi_{i}\eta_{i}$$
$$\chi_{i} = \alpha_{i}\chi_{\uparrow} + \beta_{i}\chi_{\downarrow}$$
$$\varphi_{\Lambda}(r) = \sum c_{m}\varphi_{m}(r)$$

$$\begin{aligned} & \stackrel{m}{\varphi_m(r) \propto \exp\left[-\sum_{\sigma=x,y,z} \mu v_\sigma (r-z_m)_\sigma^2\right] \chi_m \\ & \chi_m = a_m \chi_\uparrow + b_m \chi_\downarrow \end{aligned}$$

Theoretical Framework: HyperAMD

Variation

M.I., *et al.*, PRC**83**(2011) 044323 M. I., *et al.*, PRC**83**(2011) 054304

 $\kappa < 0$

Procedure of the numerical calculation

- Imaginary time development method: $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$
- Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Theoretical Framework: HyperAMD

M.I., *et al.*, PRC**83**(2011) 044323 M. I., *et al.*, PRC**83**(2011) 054304

 $\kappa < 0$

Procedure of the numerical calculation

• Imaginary time development method: $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation: Constraint on nuclear quadrupole deformation

- Deformation param.: β (& γ)
- Parity-projection
- Variation at each β

Energy surface as a function of β

Theoretical Framework: HyperAMD

M.I., *et al.*, PRC**83**(2011) 044323 M. I., *et al.*, PRC**83**(2011) 054304

Procedure of the numerical calculation

• Imaginary time development method: $\frac{dX_i}{dt} = \frac{\kappa}{\hbar} \frac{\partial H^{\pm}}{\partial X_i^*}$ $\kappa < 0$ • Variational parameters: $X_i = Z_i, z_i, \alpha_i, \beta_i, a_i, b_i, v_i, c_i$

Actual calculation: Constraint on nuclear quadrupole deformation

- Deformation param.: β (& γ)
- Parity-projection
- Variation at each β

Energy surface as a function of β

1. Deformation changes by Λ particle

How does Λ change the energy surface?

Examples: ${}^{13}_{\Lambda}C$ (, ${}^{9}_{\Lambda}Be$, ${}^{20}_{\Lambda}Ne$, ${}^{21}_{\Lambda}Ne$) -80 e.g.) ${}^{12}C$ (POS) -85 -85

General trend of impurity effects by a Λ particle M. I., et al., PRC**83**,044323(2011)

0.6

0.4

Nuclear quadrupole deformation β

-90

0.0

0.2

Deformation change by Λ in $\mathit{s}\text{-orbit}$

Deformation change by Λ in $\mathit{s}\text{-orbit}$

Many authors predicted the deformation changes by Λ in s-orbit

Relativistic mean-field (RMF)

B.N. Lu, et al., PRC**84**, 014328 ('11)

Skyrme-Hartree-Fock (SHF)

X.R. Zhou, et al., PRC**76**, 034312('07)

RMF & SHF

H. J. Schulze, et al., PTP**123**, 569('10)

Deformations/level structure with beyond-mean-field

J.W. Cui, X.R. Zhou, H.J. Schulze, PRC**91**,054306('15)H. Mei, K. Hagino, J.M. Yao, T. Motoba, PRC**91**, 064305('15)

Deformation change by Λ in *s*-orbit

Reason for deformation changes

♦Behavior of Λ binding energy

Λ binding energy as difference of the curves: $b_{\Lambda} = E(^{12}C) - E(^{12}C \otimes \Lambda)$

Λ in *s*-orbit is deeply bound at smaller deformation
 Λ in *p*-orbit is deeply bound at larger deformation
 "competition between Λ binding energy and core energy curves"

Reason for deformation changes

Overlap of Λ and nucleons is essential for Λ binding energy

Reason for deformation changes

Overlap of Λ and nucleons is essential for Λ binding energy

2. Examples of impurity effects by Λ (Theoretical predictions)

²¹_ANe Coexistence of mean-field like and cluster structures

M. I., et al., PRC83,054304(2011)

Difference of impurity effects depending on structures

¹²_ABe Exotic cluster structure of n-rich hypernucleus

Homma, Isaka, Kimura, PRC89,014314(2015)

Using hyperon as a probe to study nuclear structure **"Overlap between Λ and nucleons" is the key!**

Coexistence of mean-field like and cluster structures

What is difference in structure changes by adding a Λ particle ? " Λ binding energy (B_{\Lambda})" and "shrinkage"

Results: excitation spectra of ${}^{21}_{\Lambda}$ Ne

Results: excitation spectra of ${}^{21}_{\Lambda}$ Ne

Various states appear by "²⁰Ne $\otimes \Lambda$ s" and "²⁰Ne $\otimes \Lambda$ p"

Difference of Λ binding energy B_{Λ}

• B_{Λ} is smaller in $\alpha + {}^{16}O + \Lambda$ state than the ground state • Λ is localized around ${}^{16}O$ in $\alpha + {}^{16}O + \Lambda$ cluster state

Localization of Λ in α + ¹⁶O + Λ states

• Λ prefers ¹⁶O cluster where Λ is deeply bound than in ⁵ $_{\Lambda}$ He

Shrinkage

Reduction of nuclear r.m.s. radii

- •Shrinkage is larger in the $\alpha + {}^{16}O + \Lambda$ cluster states
- -> This is mainly due to the reduction of inter-cluster distance

Ground state (Ground band) 0+					$\overbrace{1^{-}}^{Cluster states}$				
²⁰ Ne	r _{RM}	$^{21}{}_{\Lambda}$ Ne	r _{RM}	∆r _{RMS}	²⁰ Ne	r _{RM}	$^{21}\Lambda$ Ne	r _{RM}	∆r _{RMS}
0+	2.97	(1/2)+	2.92	-0.05	1-	s 3.27	(1/2)-	3. 1 5	-0.11
2+	2 96	(3/2)+	2.91	-0.05			(3/2)-	3.15	-0.11
2 '	2.30	(5/2)+	2.91	-0.05	3–	3.24	$(5/2)^{-}$	3.13	-0.11
4+	2 93	(7/2)+	2.87	-0.06			(9/2)	3.14	-0.12
	2.00	(9/2)+	2.88	-0.04	5-	3.23	(11/2)-	3.11	-0.13
6+	2.87	(11/2)+	2.81	-0.05	7_	3.23	(13/2)-	3.06	-0.17
		(13/2)+	2.83	-0.04	/-		(15/2)-	3.05	-0.18
8+	2.82	(15/2)+	2.77	-0.04					
		(17/2)+	2.77	-0.05					

Results: B(E2) reduction

Ground band

$\alpha + {}^{16}O + \Lambda$ cluster band

Larger B(E2) reduction in the cluster band

2. Examples of impurity effects by Λ (Theoretical predictions)

²¹_ANe Coexistence of mean-field like and cluster structures

M. I., et al., PRC83,054304(2011)

Difference of impurity effects depending on structures

¹²_ABe Exotic cluster structure of n-rich hypernucleus

Homma, Isaka, Kimura, PRC89,014314(2015)

Using hyperon as a probe to study nuclear structure **"Overlap between Λ and nucleons" is the key!**

Example: ¹¹Be with parity-inverted ground state

●¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as ground state → Vanishing of the magic number N=8

Example: ¹¹Be with parity-inverted ground state

 ●¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as ground state → Vanishing of the magic number N=8

MO explains parity inversion, but difficult to see difference of 2α clustering $\rightarrow \Lambda$ particle can be a probe to identify the difference

Example: ¹¹Be with parity-inverted ground state

 ●¹¹Be ground state is 1/2⁺, while ordinary nuclei have a 1/2⁻ state as ground state → Vanishing of the magic number N=8

MO explains parity inversion, but difficult to see difference of 2α clustering $\rightarrow \Lambda$ particle can be a probe to identify the difference

Results: parity reversion of the ${}^{12}_{\Lambda}$ Be ground state

•Ground state of ${}^{12}_{\Lambda}Be$

Results: Deformation and Λ binding energy

 $\bullet \Lambda$ slightly reduces deformations, but they are still different

- Λ in $1/2^{-} \otimes \Lambda$ state is deeply bound than $1/2^{+} \otimes \Lambda$ state
 - Due to the difference of the deformation between $1/2^{-}$ and $1/2^{+}$

Results: parity reversion of the ${}^{12}_{\Lambda}$ Be ground state

•Ground state of ${}^{12}_{\Lambda}$ Be

• Parity reversion due to difference of deformation from 2α clustering • Difference of 2α clustering can be confirmed from parity reversion "Impurity effects": nuclear structure change by a hyperon ●HyperAMD was applied to several p-sd shell hypernuclei "Overlap between Λ and nucleons" is the key!

Deformation changes

- Λ in p orbit enhances the deformation, while Λ in s orbit reduces it
- ²¹_{Λ}Ne: Coexistence of structures
 - Small B_{Λ} in α + ¹⁶O + Λ band related to the localization of Λ
 - Larger shrinkage effects in α + ¹⁶O + Λ band and B(E2) reduction
- ${}^{12}_{\Lambda}$ Be: Λ as a probe to investigate difference of cluster structure
 - Parity-inverted ground state of ¹¹Be is reverted in ${}^{12}_{\Lambda}$ Be

Future works

Impurity effects & structure study of hypernuclei

e.g. ${}^{19}{}_{\Lambda}$ F, K hypernuclei, hypernuclei in *p*-shell mass regions