Sum rule and Giant Resonances
Sum rule and giant resonances

Giant resonances are typical collective modes of excitation at high energy, and exhaust major portion of the sum rule.

<table>
<thead>
<tr>
<th>Isoscalar (T=0)</th>
<th>Monopole (0(^+))</th>
<th>Quadrupole (2(^+))</th>
<th>Octupole (3(^-))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isovector (T=1)</td>
<td>Monopole (0(^+))</td>
<td>Dipole (1(^-))</td>
<td>Quadrupole (2(^+))</td>
</tr>
<tr>
<td></td>
<td>Gamow-Teller (1(^+))</td>
<td>Spin-monopole (1(^+))</td>
<td>Spin-dipole (0(^-), 1(^-), 2(^-))</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\sum_{\lambda} Y_{\lambda \mu} &= f_{\lambda}(r)Y_{\lambda \mu} \\
\sum_{\lambda} \tau_i f_{\lambda}(r)Y_{\lambda \mu} &= \tau_i \sigma_{ij} f_0(r) \\
\sum_{\lambda} \tau_i f_0(r) (\vec{\sigma} \times Y_1)_{I\mu} &= \tau_i f_0(r) (\vec{\sigma} \times Y_1)_{I\mu}
\end{align*}
\]
Sum rule

\[m_1 = \sum_n E_n \langle n | F | 0 \rangle^2 \Rightarrow \text{(Energy - weighted) Sum Rule} \]

\[m_p = \sum_n E_n^p \langle n | F | 0 \rangle^2 \]

Odd-\(p\) moments can be expressed by the ground-state expectation value.

\[m_1 = \sum_n E_n \langle n | F | 0 \rangle^2 = \frac{1}{2} \langle 0 | [F, [H, F]] | 0 \rangle \]

\[m_p = \sum_n E_n^p \langle n | F | 0 \rangle^2 = \frac{1}{2} \langle 0 | [[F, H], [H, [H, F]]] | 0 \rangle \]

If \(\hat{F} = \sum_i f(\vec{r}_i) \) and the Hamiltonian does not have momentum dependence,

\[m_1 = \frac{1}{2m} \langle 0 | \sum_{i=1}^A (\nabla f_i)^2 | 0 \rangle \]

\[m_3 = \frac{1}{2} \left(\frac{2}{m} \right)^2 \frac{\partial^2}{\partial \eta^2} E(\eta) \bigg|_{\eta=0} \]

\[E(\eta) = \langle 0 | e^{-\eta^G} He^{\eta^G} | 0 \rangle, \quad G = -\frac{m}{2} [H, F] \]
Physical meaning of sum rule

Nucleons under an impulse external field

\[V(t) = F \delta(t) = \delta(t) \sum_{i=1}^{A} f(\vec{r}_i) \]

Nucleons \(i \) change its momentum by \(\Delta \vec{p}_i = -\nabla_i f(\vec{r}_i) \)

The nucleon at \(t<0 \) has zero velocity expectation value, then this field creates the velocity field:

\[\vec{v}(\vec{r}) = -\frac{\nabla f(\vec{r})}{m} \]

Energy transferred to nucleon \(i \) is

\[\Delta \varepsilon_i = \frac{|\nabla_i f(\vec{r}_i)|^2}{2m} \]

Thus, the energy weighted sum rule has the following physical meaning.

\[\sum_n E_n |n|F|0\rangle^2 = \frac{1}{2m} \langle 0| \sum_{i=1}^{A} (\nabla f_i)^2 |0\rangle \]

The energy absorbed by nucleus:

(Exc. energy) x (probability)

The energy transferred to nucleons in the nucleus
Meaning of m_3

$$m_3 = \frac{1}{2} \left(\frac{2}{m} \right)^2 \frac{\partial^2}{\partial \eta^2} E(\eta) \bigg|_{\eta = 0}$$

$$E(\eta) = \langle 0 | e^{-\eta^G} H e^{\eta^G} | 0 \rangle, \quad G = -\frac{m}{2} [H, F]$$

If $f(\vec{r}) = r^\lambda Y_{\lambda\mu} (\hat{r})$ and the Hamiltonian does not have momentum dependence,

$$G = -\frac{m}{2} [H, F] = \frac{1}{2} \sum_i \left(\nabla r^\lambda Y_{\lambda\mu} (\hat{r}) \right)_i \cdot \nabla_i$$

The state $e^{\eta^G} | 0 \rangle$ introduces the velocity field $\vec{v}(\vec{r}) \sim \nabla r^\lambda Y_{\lambda\mu} (\hat{r})$

Its energy curvature with respect to the “deformation” is directly related to m_3.
E1 sum rule

Isovector dipole operator

\[\hat{F} = e \sum_{i=1}^{A} (r_z)_i (z_i - R_z) = \sum_{i=1}^{N} \frac{Ze}{A} z_i - \sum_{i=N+1}^{N+Z} \frac{Ne}{A} z_i \]

Assuming the ground state has \(l=0 \),

\[m_1 = \frac{NZ}{2Am} (1 + \kappa) \]

The interaction usually contains the isospin-dependent terms.

\(\kappa > 0 \)

This includes effects of meson exchange current.

\(\kappa = 0 \Rightarrow \) Thomas-Reiche-Kuhn (TRK) sum rule
Isoscalar giant resonance

\[\hat{F} = \sum_i f(\vec{r}_i) \quad f(\vec{r}) = r^\lambda Y_{\lambda 0}(\hat{r}) \]

The previous formulae lead to

\[m_1 = \frac{1}{2m} \lambda (2\lambda + 1) \left\langle \sum_{i=1}^{A} r_i^{2\lambda - 2} \right\rangle \quad m_3 = \frac{1}{2} \left(\frac{2}{m} \right)^2 \frac{\partial^2}{\partial \eta^2} E(\eta) \bigg|_{\eta = 0} \]

\[E(\eta) = \left\langle 0 \left| e^{-\eta G} He^{\eta G} \right| 0 \right\rangle \quad G = \frac{1}{2} \sum_{i=1}^{A} \left((\nabla r^\lambda Y_{\lambda 0}) \cdot \nabla \right)_i \]

For instance, for the quadrupole operator,

\[m_3 = \frac{1}{2} \left(\frac{2}{m} \right)^2 \frac{5}{16\pi} \cdot 8\langle T \rangle \quad \langle T \rangle: \text{Kinetic energy expectation value} \]

Giant quadrupole resonance energy

\[\omega_2^{2+} \sim \frac{m_3}{m_1} = \frac{4\langle T \rangle}{mA\langle r^2 \rangle} \approx 2\omega_0 \quad \therefore \langle T \rangle \approx m\omega_0^2 A\langle r^2 \rangle / 2 \]
Fermi Liquid Properties

\[m_3 \propto \frac{1}{2} \left. \frac{\partial^2 E(\eta)}{\partial \eta^2} \right|_{\eta=0} \propto \langle T \rangle \]

The density change of the ISGQR is a surface type, however, the restoring force for ISGQR originates from the kinetic energy.

The vibration leads to a deformation in the momentum distribution

This is different from low-lying surface vibrations and different from the classical (incompressible) liquid model.
Four-current sum rule

\[\sum_n \langle 0 | \vec{j}(\vec{r}) | n \rangle \langle n | \rho(\vec{r}) | 0 \rangle = -\frac{i}{2m} \rho_0(\vec{r}) \nabla \delta(\vec{r} - \vec{r}') \]

Using the continuity equation \(\nabla \cdot \vec{j}(\vec{r}) = i[\rho(\vec{r}), H] \)

and a property of the density operator \(\int \rho(\vec{r}) f(\vec{r}) d\vec{r} = \sum_{i=1}^{A} f(r_i) \)

we can obtain the energy-weighted sum rule for the density operator

\[\sum_n E_n \langle 0 | \rho(\vec{r}) | n \rangle \langle n | F | 0 \rangle = -\frac{1}{2m} \nabla \cdot \rho_0(\vec{r}) \nabla f(\vec{r}) \]

The normal \(m_1 \) sum rule can be easily derived from this formula.

Taking the photoexcitation operator \(f(\vec{r}) = r^\lambda Y_{\lambda \mu}(\hat{r}) \)

\[\sum_n E_n \langle 0 | \rho(\vec{r}) | n \rangle \langle n | F | 0 \rangle = -\frac{\lambda}{2m} r^{\lambda-1} \frac{d\rho_0}{dr} Y_{\lambda \mu}(\hat{r}) \]

\[\langle 0 | \rho(\vec{r}) | n \rangle \sim r^{\lambda-1} \frac{d\rho_0}{dr} Y_{\lambda \mu}(\hat{r}) \]

Transition density of the Tassie model for the giant resonance
Time-Dependent Density Functional Theory (TDDFT)
Basic ideas of the unified (collective) model

• Nucleons are *independently* moving in a potential that *slowly* changes.
 – Collective motion induces oscillation/rotation of the potential.
 – The fluctuation of the potential changes the nucleonic single-particle motion.

Consistent with the idea of Time-Dependent Mean-Field Theory or Time-Dependent Density-Functional Theory
Time-dependent density-functional theory (TDDFT)

- Basic theorem of DFT (Hohenberg-Kohn)
- Basic theorem of TDDFT (Runge-Gross)
- Perturbative regime: Linear response and random-phase approximation
 - Matrix formulation
 - Green’s function method
 - Real-time method
 - Finite amplitude method
- Non-perturbative regime
 - Theories of large-amplitude collective motion
Density Functional Theory

- Quantum Mechanics
 - Many-body wave functions;
 \[\Psi (\vec{r}_1, \cdots, \vec{r}_N) \]

- Density Functional Theory
 - Density clouds;
 \[F[\rho (\vec{r})] \]

The many-particle system can be described by a functional of density distribution in the three-dimensional space.
Hohenberg-Kohn Theorem (1)

The first theorem

Hohenberg & Kohn (1964)

Density $\rho(r)$ determines $\nu(r)$, except for arbitrary choice of zero point.

A system with a one-body potential $\nu(\vec{r})$

$$H_v = H + \sum_i \nu(\vec{r}_i)$$

$$= \sum_i \frac{\vec{p}_i^2}{2m} + \sum_{i<j} w(\vec{r}_i, \vec{r}_j) + \sum_i \nu(\vec{r}_i)$$

Existence of one-to-one mapping: $\nu(\vec{r}) \leftrightarrow \Psi^gs_v \leftrightarrow \rho_v(\vec{r})$

Strictly speaking, one-to-one or one-to-none v-representative
① \(v(\vec{r}) \leftrightarrow \Psi_{gs} \)

Here, we assume the non-degenerate g.s.

Reductio ad absurdum: Assuming different \(v(\vec{r}) \) and \(v'(\vec{r}) \) produces the same ground state \(\Psi_{gs}^v \)

\[
(H + V)\Psi_{gs}^v = E_{gs}^v \Psi_{gs}^v \quad \quad \quad \quad \quad V = \sum_i v(\vec{r}_i)
\]

\[
- \quad (H + V')\Psi_{gs}^{v'} = E_{gs}^{v'} \Psi_{gs}^{v'} \quad \quad \quad \quad \quad V' = \sum_i v'(\vec{r}_i)
\]

\[
(V - V')\Psi_{gs}^v = (E_{gs}^v - E_{gs}^{v'})\Psi_{gs}^v
\]

\(V \) and \(V' \) are identical except for constant. → Contradiction
\(\Psi_{gs}^v \leftrightarrow \rho_v \)

\[
(H + V)\Psi_{gs}^v = E_{gs}^v \Psi_{gs}^v
\]

\[
(H + V')\Psi_{gs}^{v'} = E_{gs}^{v'} \Psi_{gs}^{v'}
\]

Again, *reductio ad absurdum*

assuming different states \(\Psi_{gs}^v, \Psi_{gs}^{v'} \) with \(v(\vec{r}), v'(\vec{r}) \) produces the same density

\[
E_{gs}^v = \langle \Psi_{gs}^v | H + V | \Psi_{gs}^v \rangle < \langle \Psi_{gs}^{v'} | H + V | \Psi_{gs}^{v'} \rangle
\]

\[
H + V = H + V' + (V - V')
\]

\[
E_{gs}^v < E_{gs}^{v'} + \int d\vec{r}[v(\vec{r}) - v'(\vec{r})] \rho_v(\vec{r})
\]

\[
\langle \Psi_{gs}^v | V | \Psi_{gs}^v \rangle = \int d\vec{r} v(\vec{r}) \rho_v(\vec{r})
\]

Replacing \(V \leftrightarrow V' \)

\[
E_{gs}^{v'} < E_{gs}^v + \int d\vec{r}[v'(\vec{r}) - v(\vec{r})] \rho_v(\vec{r})
\]

\[
\therefore E_{gs}^v + E_{gs}^{v'} < E_{gs}^v + E_{gs}^{v'} \quad \text{Contradiction!}
\]

Here, we assume that the density \(\rho_v \) is \(v \)-representative.

For degenerate case, we can prove one-to-one \(v(\vec{r}) \leftrightarrow \rho_v(\vec{r}) \)
Hohenberg-Kohn Theorem (2)

The second theorem

There is an energy density functional and the variational principle determines energy and density of the ground state.

Any physical quantity must be a functional of density.

From theorem (1) \(\nu(\vec{r}) \leftrightarrow \Psi^{\nu} \leftrightarrow \rho^{\nu} \)

Many-body wave function \(\Psi [\rho(\vec{r})] \) is a functional of density \(\rho(\vec{r}) \).

Energy functional for external potential \(\nu(\vec{r}) \)

\[
E_v[\rho^{\nu}] = E^{gs}_v < E_v[\rho \right]
\]

Variational principle holds for \(\nu \)-representative density

\[
E_v[\rho \right] = F_{HK}[\rho \right] + \int \rho(\vec{r})\nu(\vec{r})d\vec{r} \\
F_{HK}[\rho \right]: \nu\text{-independent universal functional}
\]
The following variation leads to all the ground-state properties.

\[
\delta \left\{ F[\rho] + \int \rho(\vec{r})v(\vec{r})d\vec{r} - \mu \left(\int \rho(\vec{r})d\vec{r} - N \right) \right\} = 0
\]

In principle, any physical quantity of the ground state should be a functional of density.

Variation with respect to many-body wave functions \(\Psi(\vec{r}_1, \cdots, \vec{r}_N) \)

\[\downarrow\]

Variation with respect to one-body density \(\rho(\vec{r}) \)

\[\downarrow\]

Physical quantity \(A[\rho(\vec{r})] = \langle \Psi[\rho] | \hat{A} | \Psi[\rho] \rangle \)
v-representative \rightarrow N-representative

Levy (1979, 1982)

The “N-representative density” means that it has a corresponding many-body wave function.

Ritz’ Variational Principle

$$\text{Min} \left\langle \Psi \left(r_1, \ldots, r_N \right) \left| H \right| \Psi \left(r_1, \ldots, r_N \right) \right\rangle \Rightarrow \Psi_{gs} \left(r_1, \ldots, r_N \right)$$

$$H \Psi_{gs} \left(r_1, \ldots, r_N \right) = E_{gs} \Psi_{gs} \left(r_1, \ldots, r_N \right)$$

Decomposed into two steps

$$\text{Min} \left\langle \Psi \left| H \right| \Psi \right\rangle = \text{Min} \left[\text{Min} \left\langle \Psi \left| H \right| \Psi \right\rangle \right]$$

$$F \left[\rho \left(\vec{r} \right) \right] \equiv \text{Min} \left\langle \Psi \left| H \right| \Psi \right\rangle$$
One-to-one Correspondence

External potential

Minimum-energy state

Density

$V(\vec{r})$

$|\Psi\rangle$

$|\Psi\rangle_V$

$\rho_V(\vec{r})$
Time-dependent “HK” theorem

Runge & Gross (1984)

One-to-one mapping between time-dependent density $\rho(r,t)$ and time-dependent potential $v(r,t)$

except for a constant shift of the potential

Condition for the external potential:

Possibility of the Taylor expansion around finite time t_0

$$v(r, t) = \sum_{k=0}^{\infty} \frac{1}{k!} v_k(r)(t - t_0)^k$$

The initial state is arbitrary.

This condition allows an impulse potential, but forbids adiabatic switch-on.
Schrödinger equation:
\[i \frac{\partial}{\partial t} \langle \Psi(t) \rangle = H(t) \langle \Psi(t) \rangle \]

Current density follows the equation
\[i \frac{\partial}{\partial t} \mathbf{j}(\mathbf{r}, t) = \langle \Psi(t) \rangle \left[\hat{\mathbf{j}}(\mathbf{r}), H(t) \right] \langle \Psi(t) \rangle \quad (1) \]

Different potentials, \(v(\mathbf{r}, t), v'(\mathbf{r}, t) \), make time evolution from the same initial state into \(\Psi(t) \), \(\Psi'(t) \)

\[v_k(\mathbf{r}) - v'_k(\mathbf{r}) \neq c \quad \text{for } k \neq k' \]

\[\left(\frac{\partial}{\partial t} \right)^{k+1} \{ \mathbf{j}(\mathbf{r}, t) - \mathbf{j}'(\mathbf{r}, t) \}|_{t=t_0} = -\rho(\mathbf{r}, t_0) \nabla \mathbf{w}_k(\mathbf{r}) \]

\[\mathbf{w}_k(\mathbf{r}) = \left(\frac{\partial}{\partial t} \right)^{k} \{ \mathbf{v}(\mathbf{r}, t) - \mathbf{v}'(\mathbf{r}, t) \}|_{t=t_0} = v_k(\mathbf{r}) - v'_k(\mathbf{r}) \neq c \]

\[\therefore \mathbf{j}(\mathbf{r}, t) \neq \mathbf{j}'(\mathbf{r}, t) \quad \text{Continuity eq.} \quad \rho(\mathbf{r}, t) \neq \rho'(\mathbf{r}, t) \quad \text{at } t > t_0 \]
Problem 1: Two external potentials are different, when their expansion

\[v(r, t) = \sum_{k=0}^{\infty} \frac{1}{k!} v_k(r)(t - t_0)^k \]

has different coefficients at the zero-th order

\[v_0(r) - v'_0(r) \neq c \]

Using eq. (1), show

\[\frac{\partial}{\partial t} \left\{ j(r, t) - j'(r, t) \right\}_{t=t_0} = -\rho(r, t_0) \nabla w_0(r) \]

\[w_0(r) = \left\{ v(r, t) - v'(r, t) \right\}_{t=t_0} = v_0(r) - v'_0(r) \neq c \]

Next, if \(v_0(r) - v'_0(r) = c \), but \(v_1(r) - v'_1(r) \neq c \), then, show

\[\left(\frac{\partial}{\partial t} \right)^2 \left\{ j(r, t) - j'(r, t) \right\}_{t=t_0} = -\rho(r, t_0) \nabla w_1(r) \]
Problem 2: Using the continuity equation and the following equation

\[\left(\frac{\partial}{\partial t} \right)^{k+1} \{ \mathbf{j}(\mathbf{r}, t) - \mathbf{j}'(\mathbf{r}, t) \} \bigg|_{t=t_0} = - \rho(\mathbf{r}, t_0) \nabla w_k(\mathbf{r}) \]

\[w_k(\mathbf{r}) = \left(\frac{\partial}{\partial t} \right)^k \{ \mathbf{v}(\mathbf{r}, t) - \mathbf{v}'(\mathbf{r}, t) \} \bigg|_{t=t_0} = v_k(\mathbf{r}) - v'_k(\mathbf{r}) \neq c \]

prove that

\[\left(\frac{\partial}{\partial t} \right)^{k+2} \{ \rho(\mathbf{r}, t) - \rho'(\mathbf{r}, t) \} \bigg|_{t=t_0} = \nabla \cdot \{ \rho(\mathbf{r}, t_0) \nabla w_k(\mathbf{r}) \} \]

Then, show that the right-hand side cannot vanish identically, with

\[\nabla w_k(\mathbf{r}) \neq 0 \]
One-to-one Correspondence

External potential

Time-dependent state starting from the initial state

|\Psi (t_0)\rangle

Time-dependent density

\[V(\vec{r}, t) \]

TD state

|\Psi (t)\rangle_{V(t)}

v-representative density

\[\rho_v(\vec{r}, t) \]
The universal density functional exists, and the variational principle determines the time evolution.

From the first theorem, we have \(\rho(r,t) \leftrightarrow \Psi(t) \). Thus, the variation of the following function determines \(\rho(r,t) \).

\[
S[\rho] = \int_{t_0}^{t_1} dt \langle \Psi[\rho](t) | i \frac{\partial}{\partial t} - H(t) | \Psi[\rho](t) \rangle
\]

\[
S[\rho] = \bar{S}[\rho] - \int_{t_0}^{t_1} dt \int d\mathbf{r} \rho(\mathbf{r},t) v(\mathbf{r},t)
\]

The universal functional \(\bar{S}[\rho] \) is determined.

\(v \)-representative density is assumed.
Real interacting system

Virtual non-interacting system

TD Kohn-Sham Scheme

$V(\vec{r},t)$

$|\Psi(t)\rangle_V$

$\rho(\vec{r},t)$

$V_s(\vec{r},t)$

$|\Psi(t)\rangle_S$

$\rho(\vec{r},t)$
Time-dependent KS theory

Assuming non-interacting v-representability

\[\rho (\vec{r}, t) = \sum_{i=1}^{N} |\phi_i(\vec{r}, t)|^2 \]

Time-dependent Kohn-Sham (TDKS) equation

\[i \frac{\partial}{\partial t} \phi_i(\vec{r}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + v_s[\rho](\vec{r}, t) \right) \phi_i(\vec{r}, t) \]

\[v_s[\rho](\vec{r}, t) = \frac{\delta}{\delta \rho(\vec{r}, t)} \bar{S}[\rho] \]

\[\bar{S}[\rho] \equiv S[\rho] - \int_{t_0}^{t_1} \langle \Phi_D[\rho](t) | i \frac{\partial}{\partial t} - T | \Phi_D[\rho](t) \rangle \]

Solving the TDKS equation, in principle, we can obtain the exact time evolution of many-body systems.

The functional depends on \(\rho(\vec{r}, t) \) and the initial state \(\Psi_0 \).
Time-dependent quantities
→ Information on excited states

\[|\Psi(0)\rangle = \sum_n c_n |\Phi_n\rangle \quad \Rightarrow \quad |\Psi(t)\rangle = \sum_n c_n e^{-iE_n t} |\Phi_n\rangle \]

Energy projection

\[\frac{1}{2\pi} \int_{-\infty}^{\infty} |\Psi(t)\rangle e^{iEt} dt = \sum_n c_n |\Phi_n\rangle \delta (E - E_n) \]

Finite time period \(T \sim 1/\Gamma \) → Finite energy resolution

\[\frac{1}{2\pi} \int_{-\infty}^{\infty} |\Psi(t)\rangle e^{iEt} e^{-\frac{\Gamma}{2} |t|/2} dt = \sum_n \frac{c_n}{\pi} \frac{\Gamma/2}{(E - E_n)^2 + (\Gamma/2)^2} |\Phi_n\rangle \]
TDHF(TDDFT) calculation in 3D real space

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an 16O+16O collision at $E_{cm}=105$ MeV and incident angular momentum $L=13\hbar$. The times t are given in units of 10^{-22} sec.
Small-amplitude limit
(Random-phase approximation)

One-body operator under a TD external potential

\[i \frac{\partial}{\partial t} \rho (t) = [h_{KS}[\rho (t)] + V_{ext}(t), \rho (t)] \]

Assuming that the external potential is weak,

\[\rho (t) = \rho_0 + \delta \rho (t) \quad h(t) = h_0 + \delta h(t) = h_0 + \left. \frac{\delta h}{\delta \rho} \right|_{\rho_0} \cdot \delta \rho (t) \]

\[i \frac{\partial}{\partial t} \delta \rho (t) = [h_0, \delta \rho (t)] + [\delta h(t) + V_{ext}(t), \rho_0] \]

Let us take the external field with a fixed frequency \(\omega \),

\[V_{ext}(t) = V_{ext}(\omega)e^{-i\omega t} + V_{ext}^+(\omega)e^{+i\omega t} \]

The density and residual field also oscillate with \(\omega \),

\[\delta \rho (t) = \delta \rho (\omega)e^{-i\omega t} + \delta \rho^+ (\omega)e^{+i\omega t} \]
\[\delta h(t) = \delta h(\omega)e^{-i\omega t} + \delta h^+ (\omega)e^{+i\omega t} \]
The linear response (RPA) equation

\[\omega \delta \rho (\omega) = [h_0, \delta \rho (\omega)] + [\delta h(\omega) + V_{\text{ext}}(\omega), \rho_0] \]

Note that all the quantities, except for \(\rho_0 \) and \(h_0 \), are non-hermitian.

\[\delta \rho (t) = \sum_{i=1}^{A} \left(|\delta \psi_i(t)\rangle \langle \phi_i | + |\phi_i \rangle \langle \delta \psi_i(t) | \right) \]

\[\delta \rho (\omega) = \sum_{i=1}^{A} \left(|X_i(\omega)\rangle \langle \phi_i | + |\phi_i \rangle \langle Y_i(\omega) | \right) \]

This leads to the following equations for \(X \) and \(Y \):

\[\omega \left| X_i(\omega) \right\rangle = (h_0 - \varepsilon_i) \left| X_i(\omega) \right\rangle + \hat{Q} [\delta h(\omega) + V_{\text{ext}}(\omega)] \left| \phi_i \right\rangle \]

\[\omega \left\langle Y_i(\omega) \right| = - \left\langle Y_i(\omega) \right| (h_0 - \varepsilon_i) - \left\langle \phi_i \right| [\delta h(\omega) + V_{\text{ext}}(\omega)] \hat{Q} \]

\[\hat{Q} = \sum_{i=1}^{A} (1 - |\phi_i \rangle \langle \phi_i |) \]

These are often called “RPA equations” in nuclear physics. \(X \) and \(Y \) are called “forward” and “backward” amplitudes.

If we start from the TDHF with a “density-independent” Hamiltonian (not from the energy functional), then, there is other ways to formulate the RPA. (see TextBooks)
Matrix formulation

\[\omega \left| X_i(\omega) \right\rangle = (h_0 - \varepsilon_i) \left| X_i(\omega) \right\rangle + \hat{\mathcal{Q}} \left[\delta h(\omega) + V_{\text{ext}}(\omega) \right] \left| \phi_i \right\rangle \]
\[\omega \left\langle Y_i(\omega) \right| = -\left\langle Y_i(\omega) \right| (h_0 - \varepsilon_i) - \left\langle \phi_i \right| \left[\delta h(\omega) + V_{\text{ext}}(\omega) \right] \hat{\mathcal{Q}} \]

Taking overlaps of Eq.(1) with particle orbitals

\[\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} X_{mi}(\omega) \\ Y_{mi}(\omega) \end{pmatrix} = - \begin{pmatrix} V_{\text{ext}}_{mi} \\ V_{\text{ext}}_{im} \end{pmatrix} \]

\[A_{mi,nj} = (\varepsilon_m - \varepsilon_n) \delta_{mn} \delta_{ij} + \left\langle \phi_m \right| \left. \frac{\partial h}{\partial \rho_{nj}} \right|_{\rho_o} \left| \phi_i \right\rangle \]
\[B_{mi,nj} = \left\langle \phi_m \right| \left. \frac{\partial h}{\partial \rho_{n}} \right|_{\rho_o} \left| \phi_i \right\rangle \]

In many cases, setting \(V_{\text{ext}} = 0 \) and solve the normal modes of excitations:

\[\rightarrow \text{Diagonalization of the matrix} \]
Lowest negative-parity states (SGII functional)
Green’s function method

\[\omega \delta \rho (\omega) = [h_0, \delta \rho (\omega)] + [(\delta h(\omega) + V_{\text{ext}}(\omega), \rho_0] \]

(2)

Multiply Eq. (2) with \(|\phi_i\rangle\langle\phi_i|\) from the right and from the left:

\[\delta \rho (\omega) |\phi_i\rangle\langle\phi_i| = (\omega + \epsilon_i - h_0)^{-1}[V_{\text{scf}}, \rho_0]|\phi_i\rangle\langle\phi_i| \]

(3-1)

\[|\phi_i\rangle\langle\phi_i| \delta \rho (\omega) = |\phi_i\rangle\langle\phi_i|[V_{\text{scf}}, \rho_0](\omega - \epsilon_i + h_0)^{-1} \]

(3-2)

Sum up with respect to occupied orbitals \(i\), then, add (3-1) and (3-2), using the orthonormalization condition for KS orbitals \((\rho^2 = \rho)\):

\[\delta \rho (\omega) = \sum_i {G_0(\epsilon_i + \omega) V_{\text{scf}}|\phi_i\rangle\langle\phi_i| + |\phi_i\rangle\langle\phi_i|[V_{\text{scf}} G_0(\epsilon_i - \omega)]} \]

\[G_0(E) \equiv (E - h_0)^{-1} \]

If the \(V_{\text{scf}}\) is local, we can rewrite this as follows:

\[\delta \rho (\mathbf{r}; \omega) = \sum_i \int d\mathbf{r} \left[G_0(\mathbf{r}, \mathbf{r}'; \epsilon_i + \omega) V_{\text{scf}}(\mathbf{r}') \phi_i(\mathbf{r}') \phi_i^*(\mathbf{r}) + \phi_i(\mathbf{r}) \phi_i^*(\mathbf{r}') V_{\text{scf}}(\mathbf{r}') G_0(\mathbf{r}', \mathbf{r}; \epsilon_i - \omega) \right] \]

\[= \int d\mathbf{r} \Pi_0(\mathbf{r}, \mathbf{r}'; \omega) V_{\text{scf}}(\mathbf{r}'; \omega) \]

where the independent-particle response function is defined by

\[\Pi_0(\mathbf{r}, \mathbf{r}'; \omega) \equiv \sum_i \int d\mathbf{r} \left[\phi_i(\mathbf{r}) G_0^*(\mathbf{r}, \mathbf{r}'; \epsilon_i - \omega) \phi_i^*(\mathbf{r}') + \phi_i^*(\mathbf{r}) G_0(\mathbf{r}, \mathbf{r}'; \epsilon_i + \omega) \phi_i(\mathbf{r}') \right] \]
Green’s function method (cont.)

An advantage of the Green’s function method is that we can treat the continuum exactly. Shlomo and Bertsch, NPA243 (1975) 507.

\[\omega \rightarrow \omega + i\eta \]

\[\Pi_0(r, r'; \omega + i\eta) = \sum_i \int d\mathbf{r}' \left\{ \phi_i(r)G_0^{(+)*}(r, r'; \omega)\phi_i^*(r') + \phi_i^*(r)G_0^{(+)}(r, r'; \omega + i\eta)\phi_i(r') \right\} \]

\[G_0^{(\pm)}(E) \equiv (E \pm i\eta - h_0)^{-1} \]

In case \(h_0 \) is spherical, the Green’s function can be easily obtained by the partial-wave expansion:

\[G_0^{(+)}(E) = 2m \frac{1}{rr'} \sum_{lm} \frac{u_l(r_s)v_l^{(+)}(r_s)}{W[u_l, v_l^{(+)}]} Y_{lm}(\hat{r})Y_{lm}^{*}(\hat{r}') \]

In case \(h_0 \) is deformed, we can construct the Green’s function by using the following identity: T.N. and Yabana, JCP114 (2001) 2550; PRC71 (2005) 024301.

\[G_{\text{def}}^{(\pm)}(E) = G_{\text{sph}}^{(\pm)}(E) + G_{\text{sph}}^{(\pm)}(E)(h_{\text{def}} - h_{\text{sph}})G_{\text{def}}^{(\pm)}(E) \]
Real-time method

In the RPA calculations (matrix formulation & Green’s function method), the most tedious part is the calculation of the residual induced fields:

\[
\delta h(\omega) = \frac{\delta h}{\delta \rho} \bigg|_{\rho_o} \cdot \delta \rho(\omega)
\]

In the original time-dependent equations, this effect is included in the self-consistent potential:

\[
h[\rho(t)] = h_0 + \delta h(t), \quad \delta h(t) = \frac{\delta h}{\delta \rho} \bigg|_{\rho_o} \cdot \delta \rho(t)
\]

Therefore, in principle, the RPA can be achieved by solving the TD Kohn-Sham equations, starting from the ground state with a weak perturbation.

\[
i \frac{\partial}{\partial t} \phi_i(\mathbf{r}, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V_s[\rho](\mathbf{r}, t) + V_{\text{ext}}(t) \right) \phi_i(\mathbf{r}, t)
\]
Skyrme TDDFT in real space

Time-dependent Hartree-Fock equation

\[i \frac{\partial}{\partial t} \psi_i(r; \sigma \tau, t) = \left(h_{Sk}[\rho, \tau, j, s, \tilde{J}](t) + V_{ext}(t) \right) \psi_i(r; \sigma \tau, t) - i \tilde{\eta}(r) \]

3D space is discretized in lattice

Single-particle orbital:

\[\varphi_i(r, t) = \{ \varphi_i(r_k, t_n) \}_{k=1, \ldots, Mr, \, n=1, \ldots, Mt}^{n=1, \ldots, Mt} \]

- \(N \): Number of particles
- \(Mr \): Number of mesh points
- \(Mt \): Number of time slices

Spatial mesh size is about 1 fm.

Time step is about 0.2 fm/c

Calculation of time evolution

Time evolution is calculated by the finite-order Taylor expansion

\[\psi_i(t + \Delta t) = \exp\left(-i \int_t^{t+\Delta t} h(t')dt'\right)\psi_i(t) \]

\[\approx \sum_n \frac{(-i\Delta t h(t + \Delta t/2))^n}{n!} \psi_i(t) \]

Violation of the unitarity is negligible if the time step is small enough:

\[\Delta t \varepsilon_{\text{max}} << 1 \]

\[\varepsilon_{\text{max}} \quad \text{The maximum (single-particle) eigenenergy in the model space} \]
Real-time calculation of response functions

1. Weak instantaneous external perturbation
 \[V_{\text{ext}} (t) = \eta \hat{F} \delta (t) \]

3. Calculate time evolution of
 \[\langle \Psi (t) | \hat{F} | \Psi (t) \rangle \]

5. Fourier transform to energy domain
 \[\frac{dB(\omega ; \hat{F})}{d\omega} = - \frac{1}{\pi \eta} \text{Im} \int \langle \Psi (t) | \hat{F} | \Psi (t) \rangle e^{i\omega t} dt \]
Real-time dynamics of electrons in photoabsorption of molecules

1. External perturbation \(t = 0 \)

\[
V_{\text{ext}}(\mathbf{r}, t) = -\varepsilon r_i \delta(t), \quad i = x, y, z
\]

2. Time evolution of dipole moment

\[
d_i(t) \propto \int r_i \rho(\mathbf{r}, t)
\]
Comparison with measurement (linear optical absorption)

TDDFT accurately describe optical absorption
Dynamical screening effect is significant

\[\text{TDDFT} \]

\[\text{PZ+LB94} \]

\[\text{C}_2\text{H}_4 \]

\[\text{Photoabsorption oscillator strength} \]

\[\text{Exp} \]

\[\text{TDDFT} \]

\[\text{Without dynamical screening} \]

\[\text{(frozen Hamiltonian)} \]

\[\text{i\hbar} \frac{\partial}{\partial t} \psi_i(\mathbf{r}, t) = \hbar [n(\mathbf{r}, t)] \psi_i(\mathbf{r}, t) \]

with

Dynamical screening

\[\text{without} \]

\[\text{i\hbar} \frac{\partial}{\partial t} \psi_i(\mathbf{r}, t) = \hbar [n_0(\mathbf{r})] \psi_i(\mathbf{r}, t) \]

\[\text{E}_{\text{ext}}(t) \]

\[\text{E}_{\text{ind}}(t) \]

Photoabsorption cross section in C_3H_6 isomer molecules

- TDLDA cal with LB94 in 3D real space
- 33401 lattice points ($r < 6$ Å)
- Isomer effects can be understood in terms of symmetry and anti-screening effects on bound-to-continuum excitations.
Neutrons

\[\delta \rho_n(t) = \rho_n(t) - (\rho_0)_n \]

Time-dep. transition density

Protons

\[\delta \rho_p(t) = \rho_p(t) - (\rho_0)_p \]
Finite Amplitude Method

A method to avoid the explicit calculation of the residual fields (interactions)

\[
\omega \left| X_i(\omega) \right\rangle = (h_0 - \varepsilon_i) \left| X_i(\omega) \right\rangle + \hat{Q} \left\{ \delta h(\omega) + V_{\text{ext}}(\omega) \right\} \left| \phi_i \right\rangle
\]

\[
\omega \left\langle Y_i(\omega) \right| = -\left\langle Y_i(\omega) \right| (h_0 - \varepsilon_i) - \left\langle \phi_i \right| \left\{ \delta h(\omega) + V_{\text{ext}}(\omega) \right\} \hat{Q} \quad (1)
\]

Residual fields can be estimated by the finite difference method:

\[
\delta h(\omega) = \frac{1}{\eta} \left(h[\langle \psi \mid , \mid \psi \rangle] - h_0 \right)
\]

\[
\left| \psi_i \right\rangle = \left| \phi_i \right\rangle + \eta \left| X_i(\omega) \right\rangle, \quad \left\langle \psi_i \right| = \left\langle \phi_i \right| + \eta \left\langle Y_i(\omega) \right| \]

Starting from initial amplitudes \(X^{(0)} \) and \(Y^{(0)} \), one can use an iterative method to solve eq. (1).

Programming of the RPA code becomes very much trivial, because we only need calculation of the single-particle potential, with different bras and kets.
Fully self-consistent calculation of E1 strength distribution

Inakura, T.N., Yabana, in preparation

$R_{\text{box}} = 15 \text{ fm}$

$\Gamma = 1 \text{ MeV}$

SkM^*
Large Amplitude Collective Motion
Beyond the small-amplitude approximation

• In the small-amplitude limit, the normal modes are obtained by diagonalizing the RPA matrix.
 → “Quantization” is on hand.

• Large amplitude collective motion
 – Real-time approach to non-linear response
 – Adiabatic TDHF
 – Self-consistent collective coordinate method
Real-time approach to non-linear response

• In principle, non-linear response can be studied with the real-time method.
 – Accuracy
 – Applicability
TDHF(TDDFT) calculation in 3D real space

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an 16O+16O collision at $E_{\text{cm}}=105$ MeV and incident angular momentum $L=13\hbar$. The times t are given in units of 10^{-22} sec.
Ionization by Laser

Electrons in a strong electric field
- Laser field, $E \sim$ Electric field of ions binding electrons
- Laser frequency $\omega \sim$ HOMO-LUMO gap

Re-scattering process: A new probe for electronic structure

Wave packet split by the laser field
- Re-accelerated toward the origin
- Scattered by the remaining part of itself

Keldysh parameter $\gamma = \tau_{\text{tunnel}} \omega_{\text{laser}}$

$\gamma \ll 1$
Higher-order harmonic generation

\[\psi(t) = \alpha \phi + \beta e^{i \vec{k} \cdot \vec{r} - i E_k t / \hbar} \]

\[d(t) = \langle \psi(t) | z | \psi(t) \rangle \approx \alpha^* \beta \langle \phi | z \rangle e^{i \vec{k} \cdot \vec{r} - i E_k t / \hbar} + cc \]

\[I(\omega) \propto \int dte^{i \omega t} d_A(t)^2 \]

![Graph and diagram of harmonic generation](image)
Tomographic imaging of molecular orbitals

J. Itatani1,2, J. Levesque1,3, D. Zeidler1, Hiromichi Niikura1,4, H. Pépin3, J. C. Kieffer3, P. B. Corkum1 & D. M. Villeneuve1

1National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
2University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
3INRS- Énergie et Matériaux, 1650 boulevard Lionel-Boulet, CP 1020, Varennes, Québec J3X 1S2, Canada
4PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Japan

HOMO orbital in N_2

(Molecular tomography)

Ab initio calculation
N₂ molecule
2x10¹⁴ W/cm², 800nm laser

Calculated by Yabana

50fs

ψ

\[iE_k t/\hbar \] + cc
Comparison with experiments

Figure 3 High harmonic spectra were recorded for N$_2$ molecules aligned at 19 different angles between 0 and 90° relative to the polarization axis of the laser. For clarity, only some of the angles have been plotted above. The high harmonic spectrum from argon is also shown; argon is used as the reference atom. Clearly the spectra depend on both the alignment angle and shape of the molecular orbital.
Large amplitude collective motion (LACM) in nuclei

- Fission

- Decay of superdeformed band

- Shape-coexistence phenomena

\[|\Phi\rangle = c_1 |\text{ellipsoid}\rangle + c_2 |\text{sphere}\rangle \]
Adiabatic theories of LACM

• Baranger-Veneroni, 1972-1978

\[\rho (t) = e^{i\chi(t)} \rho_0 e^{-i\chi(t)} \]

• Expansion with respect to \(\chi \)

• Villars, 1975-1977

• Eq. for the collective subspace
 (zero-th and first-order w.r.t. momenta)

\[\delta \left\langle \Phi (q) \right| H - \frac{\partial V}{\partial q} Q(q) \left| \Phi (q) \right\rangle = 0 \]

\[\delta \left\langle \Phi (q) \right| [H, Q(q)] + iM(q)^{-1} \frac{\partial}{\partial q} \left| \Phi (q) \right\rangle = 0 \]

• Non-uniqueness problem
 “Validity condition”
 (Goeke-Reinhard, 1978-)

Goeke, Reinhard, Rowe, NPA359 (1981) 408
Approaches to Non-uniqueness Problem

(1) Yamamura-Kuriyama-Iida, 1984
 Requirement of “analyticity”
 (ex) Moya de Guerra-Villars, 1978)

 Therefore, in principle, we can determine a unique collective path in the ATDHF. The higher-order in \(p \) can be systematically treated.

 In practice, it is only applicable to simple models.

(2) Rowe, Mukhejee-Pal, 1981
 Requirement of “Point transf.” and equations up to \(O(p^2) \)

 There is no systematic way to go beyond the second order in \(p \).

 In practice, the method is applicable to realistic models as well.
Non-adiabatic theories of LACM

• Rowe-Bassermann, Marumori, Holzwarth-Yukawa, 1974-
 • Local Harmonic Approach (LHA)
 • Curvature problem
 • Correspondence between, Q,P ↔ Infinitesimal generator, is not guaranteed.

\[
\delta \left(\phi (q)|H - \frac{\partial}{\partial q} Q(q)\right) \phi (q) = 0
\]
\[
\delta \left(\phi (q)|[H,Q(q)] + iM(q)^{-1} P(q)\right) \phi (q) = 0
\]
\[
\delta \left(\phi (q)|[H,P(q)] - iC(q)Q(q)\right) \phi (q) = 0
\]

• Marumori et al, 1980-
 • Self-consistent collective coordinate (SCC) method
 • The problems of LHA are solved.
 • The SCC equation is solved by the expansion with respect to (q,p).

\[
\delta \left(\phi (q,p)|H - \frac{\partial}{\partial q} Q - \frac{\partial}{\partial p} P\right) \phi (q) = 0
\]
\[
\mathcal{H} \equiv \left(\phi (q,p)|H|\phi (q,p)\right)
\]

• “Adiabatic” approx. → LACM
 (Matsuo, TN, Matsuyanagi, 2000)
The TDHF(B) equation can be described by the classical form.

For instance, using the Thouless form

$$|z\rangle = \exp \left(\frac{1}{2} z_{\mu v} a_\mu^+ a_v^+ \right) \Phi_0$$

The TDHF(B) equation becomes in a form

$$i\dot{z} = 2(1+zz^+) \frac{\partial \mathcal{H}}{\partial z^+} (1+z^+z)$$

$$i\dot{z}^+ = -2(1+z^+z) \frac{\partial \mathcal{H}}{\partial z} (1+zz^+)$$

The Holstein-Primakoff-type mapping

$$\beta_{\mu v} = [z(1+z^+z)^{1/2}]_{\mu v}$$

leads to

$$i\dot{\beta} = 2 \frac{\partial \mathcal{H}}{\partial \beta^+}$$

$$i\dot{\beta}^+ = -2 \frac{\partial \mathcal{H}}{\partial \beta}$$

$$\beta_{\mu v} = (\xi + i\pi)_{\mu v} / \sqrt{2}$$

$$\xi_{\mu v} = \frac{\partial \mathcal{H}}{\partial \pi_{\mu v}}$$

$$i\pi_{\mu v} = -\frac{\partial \mathcal{H}}{\partial \xi_{\mu v}}$$

TDHF(B) \rightarrow Small amplitude limit

Small fluctuation around the HF(B) state

\[
\langle \xi, \pi | H | \xi, \pi \rangle = \langle \Phi_0 | H | \Phi_0 \rangle - \frac{1}{2} \text{Tr} A + \frac{1}{2} \left(a^+ a^+, a a\right) \left(\begin{array}{cc}
A & B \\
B^* & A^*
\end{array} \right) \left(a^+ a^+ \right)
\]

\[A_{\alpha \beta} = \langle \Phi_0 | [(a a)_\alpha, [H, (a^+ a^+)_\beta]] | \Phi_0 \rangle, \quad B_{\alpha \beta} = \langle \Phi_0 | [(a a)_\alpha, [H, (a a)_\beta]] | \Phi_0 \rangle\]

Rewriting the last term in terms of variables \((\xi^a, \pi_a)\)

\[
\langle \xi, \pi | H | \xi, \pi \rangle = E_{\text{RPA}} + \frac{1}{2} \left(\bar{\kappa}^*, \bar{\kappa} \right) \left(\begin{array}{cc}
A & B \\
B^* & A^*
\end{array} \right) \left(\begin{array}{c}
\bar{\kappa} \\
\bar{\kappa}^*
\end{array} \right), \quad \bar{\kappa} \equiv \beta (1 - \beta^+ \beta) \approx \beta
\]

\[
= E_{\text{RPA}} + \frac{1}{2} (A + B)_{\alpha \beta} \xi^a \xi^\beta + \frac{1}{2} (A - B)_{\alpha \beta} \pi_a \pi_\beta
\]

Linear point transformation \((\xi^a, \pi_a) \rightarrow (q^\mu, p_\mu)\) leads to

\[
= E_{\text{RPA}} + \frac{1}{2} \sum_n \left[p_\mu^2 + \omega_n^2 (q^\mu)^2 \right]
\]

\[
q^\mu = \sqrt{\frac{1}{\omega_\mu} \sum_a \left(X^\mu + Y^\mu \right)_a \xi^a}, \quad p_\mu = \sqrt{\omega_\mu} \sum_a \left(X^\mu - Y^\mu \right)_a \pi_a
\]

\[
\delta^{\mu \nu} = \frac{\partial q^\mu}{\partial \xi^a} (A - B)^{a \beta} \frac{\partial q^\nu}{\partial \xi^\beta}, \quad \omega_\mu^2 \delta^{\mu \nu} = \frac{\partial \xi^a}{\partial q^\mu} (A + B)^{a \beta} \frac{\partial \xi^\beta}{\partial q^\nu}
\]
Decoupled classical motion within the point transformation

Expanding the classical Hamiltonian w.r.t. momentum up to 2nd order

\[H(\xi, \pi) = \frac{1}{2} B^a_\beta \pi_a \pi_\beta + V(\xi), \quad B^a_\beta = \left. \frac{\partial^2 H}{\partial \pi_\alpha \partial \pi_\beta} \right|_{\pi = 0} \]

Point transformation \((\xi, \pi) \rightarrow (q, p)\)

\[
q^\mu = f^\mu(\xi), \quad \xi^a = g^a(q) \\
p_\mu = g^a_\mu \pi_a, \quad \pi_a = f^\mu_\alpha p_\mu
\]

Point transformation conserves the quadratic form in momenta.

\[
\overline{H}(q, p) = \frac{1}{2} \overline{B}^{\mu \nu} p_\mu p_\nu + \overline{V}(q), \quad \overline{B}^{\mu \nu} \equiv f^\mu_\alpha B^a_\beta f^\nu_\beta
\]

Metric tensor: \(B^a_\beta\) : defined by \(B^a_\gamma B^\gamma_\beta = \delta^\beta_\alpha\)

Shift-up and down of indexes:

\[V^a_\alpha \equiv B^a_\beta V^{,\beta} \]

Chain rules:

\[g^a_\mu f^\mu_\beta = \delta^\beta_\alpha, \quad f^\mu_\alpha g^a_\gamma = \delta^\mu_\gamma \quad (=\text{canonical variable cond.}) \]
Assuming that there is a decoupled path (1-dim. collective submanifold)

\[q^1 : \text{Collective coordinate}, \quad q^n : \text{Non-collective coord.} \]

Decoupling condition: \(q^n = p_n = 0 \Rightarrow \dot{q}^n = \dot{p}_n = 0 \)

\[
\begin{align*}
(1) & \quad \bar{V}_{,n} = 0 \\
(2) & \quad \bar{B}^{11} = 0 \\
(3) & \quad \bar{B}_{,n}^{11} = 0
\end{align*}
\]

\[
\begin{align*}
(1) & \quad V_{,a} = \bar{V}_{,1} f^1_a \\
(2) & \quad B^{a\beta} f^{1 \beta}_a = \bar{B}^{11} g^{a}_{,1} \\
(3) & \quad \bar{B}_{,a}^{11} = \bar{B}^{11}_{,1} f^1_a
\end{align*}
\]

Decoupling condition (1) \(\leftrightarrow \) HF(B) with the constraint \(q^1 = \langle \Phi (q^1) | \hat{Q}(q^1) | \Phi (q^1) \rangle \)

\[
\begin{align*}
\delta \left(V(\xi) - \frac{\partial V}{\partial q^1} q^1 \right) & = \delta \left[H(\xi, \pi = 0) - \lambda q^1(\xi) \right] = \delta \langle \Phi (q^1) | H - \lambda \hat{Q}(q^1) | \Phi (q^1) \rangle = 0
\end{align*}
\]

Using the decoupling conditions (2) and (3), we may construct the constraint operator \(Q(q) \). More precisely speaking, we can determine the 2qp parts of \(Q(q) \).
Differentiating the chain relation \(V_\alpha = \overline{V},_\mu f^\mu_\alpha \)

\[
V_{\alpha \beta} = \overline{V},_\mu v f^\mu_\alpha f^v_\beta + \overline{V},_\mu f^\mu_\alpha
\]

The last term indicates that the second derivative of the potential is not covariant. This can be rewritten in a covariant derivative

\[
V_{\alpha \beta} = \overline{V},_\mu v f^\mu_\alpha f^v_\beta \quad \quad V_{\alpha \beta} \equiv V_{\alpha \beta} - \Gamma^\gamma_{\alpha \beta} V_{,\gamma}, \quad \overline{V},_\mu v \equiv \overline{V},_\mu v - \overline{\Gamma}^\rho_{\mu v} \overline{V},_\rho
\]

Here, two different definitions of the metric tensor are possible:

(i) **Riemannian type**

Mass tensor as the metric tensor

\[
\Gamma^\gamma_{\alpha \beta} \equiv \frac{1}{2} B^\gamma_\delta \left(B^{\beta \alpha}_{\delta \alpha} + B^{\delta \beta}_{\alpha \alpha} - B^{\alpha \beta}_{\alpha \delta} \right) \quad \text{Affine connection}
\]

(ii) **Symplectic type**

Metric tensor \(K^{\alpha \beta} = \sum f^\mu_\alpha f^\mu_\beta, \quad K^{\alpha \beta} = \sum g^{\alpha}_\mu g^\beta_\mu, \quad K^{\alpha \beta} = B^{\alpha \beta} \)

\[
\Gamma^\gamma_{\alpha \beta} \equiv \frac{1}{2} K^\gamma_\delta \left(K^{\beta \alpha}_{\delta \alpha} + K^{\delta \beta}_{\alpha \alpha} - K^{\alpha \beta}_{\alpha \delta} \right) = g^{\gamma}_\mu f^\mu_\alpha
\]

With this metric, the *decoupled* space is assumed to be "flat".

Note:

Unfortunately, the LaTeX code for the metric tensor definitions is not fully rendered here. The expressions for the Riemannian and Symplectic types are provided as per the text.
A certain combination of the decoupling conditions (1-3) leads to the following Local Harmonic Equation (LHE) (with metric tensor K_{ij}):

$$V_{;\alpha}^{\beta} f_{,\beta}^{1} = \omega^{2} f_{,\alpha}^{1} \quad \quad \quad V_{;\alpha}^{\beta} \equiv B_{\gamma}^{\beta} V_{;\alpha \gamma} \quad , \quad V_{;\alpha \beta} \equiv V_{;\alpha \beta} - \Gamma_{\alpha \beta}^{\gamma} V_{;\gamma}$$

(i) Riemannian LHE

The condition (3) is equivalent to that the decoupled collective path is geodesic with metric tensor of $B_{a \beta}$

$$\delta \int \sqrt{B_{11}(q^{1})} dq^{1} = 0 \Rightarrow f_{,\alpha \beta}^{1} - \Gamma_{\alpha \beta}^{\gamma} f_{,\gamma}^{1} + \Gamma_{11}^{1} f_{,\alpha}^{1} f_{,\beta}^{1} = 0$$

Then, using the condition (2), we can derive the LHE above.

$$\omega^{2} = \overline{V}_{;1}^{1} = \overline{B}_{11}^{1} \left(\overline{V}_{,11} - \Gamma_{11}^{1} \overline{V}_{,1}\right)$$

(ii) Symplectic LHE

Without the condition (3), we can derive the LHE.

$$\omega^{2} = \overline{V}_{;1}^{1} = \overline{B}_{11}^{1} \overline{V}_{,11}$$

Either neglect, or determine by a certain condition, the curvature $f_{,\alpha \beta}^{1}$
Riemannian LHE vs Symplectic LHE

Symplectic LHE is (almost) identical to the “adiabatic” approximation of the Self-consistent Collective Coordinate (SCC) Method

We believe that the Symplectic LHE (ASCC) is superior to the Riemannian LHE in the following reasons:

- Extension to lift the restriction to the point transformation can be consistently achieved.
- Both formalisms coincide with the RPA at equilibrium. However, in case of superconducting nuclei, the “extended” symplectic LHE naturally becomes identical to the QRPA.
- Nambu-Goldstone modes are automatically separated from the decoupled collective variables, as zero-energy solutions.
Separation of Nambu-Goldstone modes

Extended “point” transformation

\[q^a = f^\mu (\xi) + \frac{1}{2} f^{(1)\mu a \beta} \pi_a \pi_\beta + O(\pi^4) \]

\[\xi^a = g^a (q) + \frac{1}{2} g^{(1) a \mu \nu} p_\mu p_\nu + O(p^4) \]

\[p_\mu = g_{,\mu}^a \pi_a + O(\pi^3) \]

\[\pi_a = f_{,\mu}^a p_\mu + O(p^3) \]

This extension leads to the modification of mass parameter, but the other formulation is kept invariant.

\[\tilde{B}^{a \beta} \equiv B^{a \beta} - \bar{V}_{,\mu} f^{(1)\mu a \beta} \]

(1) Symmetry operator \(S = \text{momentum} \)

\[p_s = g_{,s}^a \pi_a + O(\pi^3) \quad \{p_s, H\}_{PB} = 0 \]

\[g_{,s}^a V_{,a} = 0 \quad \Rightarrow \quad V_{;a \beta} g_{,s}^a = 0 \]

(2) Symmetry operator \(S = \text{coordinate} \)

\[q^s = f^s (\xi) + \frac{1}{2} f^{(1)sa \beta} \pi_a \pi_\beta + O(\pi^4) \]

\[\tilde{B}^{a \beta} f^s_{,\beta} = B^{a \beta} f^s_{,\beta} - \bar{V}_{,\mu} f^{(1)\mu a \beta} f^s_{,\beta} \]

\[= B^{a \beta} f^s_{,\beta} - \bar{V}_{,\mu} f^{(1)sa \beta} f^s_{,\beta} \quad (\because \{q^s, q^v\}_{PB} = 0) \]

\[= B^{a \beta} f^s_{,\beta} - V_{,\beta} f^{(1)sa \beta} = 0 \quad (\because \{q^s, H\}_{PB} = 0) \]

TN, Walet, DoDang, PRC61 (1999) 014302
Collective path and re-quantization

Solve the constrained MF eq. and LHE to obtain self-consistent solutions

<table>
<thead>
<tr>
<th>Symplectic LHE</th>
<th>Adiabatic SCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CMF) $V_{,a} = \bar{V}{,1} f{,a}^1$</td>
<td>(CMF) $\delta \langle \phi (q)</td>
</tr>
<tr>
<td>(LHE) $V_{,a}^{, \beta} f_{,\beta}^1 = \omega^2 f_{,a}^1$</td>
<td>(LHE) $\delta \langle \phi (q)</td>
</tr>
<tr>
<td>$V_{,a}^{, \beta} \equiv B^{, \beta \gamma} \left(V_{,a \lambda}^{, \gamma} - \bar{V}{,1} f{,a \gamma}^1 \right)$</td>
<td>$\delta \langle \phi (q)</td>
</tr>
<tr>
<td>$- \frac{1}{2B(q)} [[\hat{H},(\partial V / \partial q) \hat{Q}(q)], \hat{Q}(q)]</td>
<td>\phi (q) \rangle = 0$</td>
</tr>
</tbody>
</table>

We obtain a series of “Slater determinants”, as the solutions.

$|\phi (q_1)\rangle, |\phi (q_2)\rangle, |\phi (q_3)\rangle, \cdots \rightarrow$ GCM

$\mathcal{B}(q_1), \mathcal{B}(q_2), \mathcal{B}(q_3), \cdots$

$\bar{V}(q_1), \bar{V}(q_2), \bar{V}(q_3), \cdots$

"Collective Hamiltonian"

$$\bar{H}(q, p) = \frac{1}{2} \bar{B}(q) p^2 + \bar{V}(q) \Rightarrow \frac{1}{2} \sqrt{\bar{B}(q)} \left(\frac{\partial}{i \partial q} \right) \sqrt{\bar{B}(q)} \left(\frac{\partial}{i \partial q} \right) + \bar{V}(q)$$
Applications to simple models
Applications to O(4) models

Model Hamiltonian

\[H = h_0 - \frac{1}{2} G_0 \left(P_0^+ P_0 + P_0 P_0^+ \right) - \frac{1}{2} G_2 \left(P_2^+ P_2 + P_2 P_2^+ \right) - \frac{1}{2} \chi Q^2 \]

\[P_0 \equiv \sum_j \sum_{m>0} c_{j-m} c_{jm}, \quad P_2 \equiv \sum_j \sum_{m>0} \sigma_{jm} c_{j-m} c_{jm}, \quad Q \equiv \sum_j d_j \sum_{m} \sigma_{jm} c_{jm} c_{jm}^+ \]

\[\sigma_{jm} = \begin{cases}
1 & |m| < \Omega_j / 2 \\
-1 & |m| > \Omega_j / 2
\end{cases} \]

Parameters

\[\epsilon_1 = 0, \epsilon_2 = 1.0, \epsilon_3 = 3.5 \]

\[d_1 = 2.0, d_2 = 1.0, d_3 = 1.0 \]

\[\Omega_1 = 14, \Omega_2 = 10, \Omega_3 = 4 \]
Hinohara, TN, Matsuo, Matsuyanagi, PTP115 (2006) 567

Potential

Mass: $M = 1/B$

Cranking Mass

Larger G_0

$D(q) \equiv \langle \phi(q) | Q | \phi(q) \rangle$

Effects of time-odd MF
Exact

Adiabatic SCC

CHB with M_{cranking}

Time-odd effects are neglected in the cranking mass!
Curvature effects

\[\hat{Q}(q) = \sum_{\mu \nu} Q^A_{\mu \nu} \left(a^\dagger_\mu a^\dagger_\nu + \text{h.c.} \right) + \sum_{\mu \nu} Q^B_{\mu \nu} a^\dagger_\mu a^\dagger_\nu \]

In this model, requiring the gauge invariance, we can determine them.

The curvature effects are weak.
Model of protons and neutrons

T.N. & Walet, PRC58 (1998) 3397

\[H = H_n + H_p + H_{np}, \]
\[H_n = \sum_{i \in n, m_i} \epsilon_i c_{i,j,m_i}^\dagger c_{i,j,m_i} - G_n P_n^\dagger P_n - \frac{1}{2} \kappa Q_n^2, \]
\[H_p = \sum_{i \in p, m_i} \epsilon_i c_{i,j,m_i}^\dagger c_{i,j,m_i} - G_p P_p^\dagger P_p - \frac{1}{2} \kappa Q_p^2, \]
\[H_{np} = -\kappa Q_n Q_p, \]

Neutrons

\[\text{Protons} \]

Upper orbital has a larger quadrupole moment
Adiabatic vs Diabatic Dynamics

Review: Nazarewicz, NPA557 (1993) 489c

The problem has been discussed since the paper by Hill and Wheeler (1953)

The pairing interaction plays a key role for configuration changes at level crossings.

"Specialization energy"

Spontaneous fission lifetime is much larger for odd nuclei.
Applications to more realistic models:
Separable-force model

Calculations carried out by Dr Nobuo Hinohara (YITP, Japan)
Shape coexistence in \(N \sim Z \sim 40 \) region

- \(Z,N = 34,36 \) (oblate magic numbers)
- \(Z,N = 38 \) (prolate magic number)

- oblate–prolate shape coexistence
- oblate ground state
- shape coexistence/mixing

Microscopic theory to describe shape coexistence

- Large-Scale Shell Model Calculation
 - Dimension becomes too large for medium-heavy nuclei (10^{13} dim for ^{80}Zr, ^{40}Ca core)
 - Model Space: ^{56}Ni core, fpg-shell 1.6×10^8 dim

- GCM
 - Skyrme interaction
 - Generator Coordinate: axial symmetric deformation
 - The triaxial deformation is ignored.

- Adiabatic TDHF
 - Adiabatic Self-consistent Collective Coordinate Method
 - ^{68}Se, ^{72}Kr: Kobayasi et al. (Prog.Theor.Phys.\textbf{112}(2004), \textbf{113}(2005))
 - Importance of triaxial deformation is discussed
Microscopic Hamiltonian

SP energy + Pairing (Monopole, Quadrupole) + Quadrupole interaction

Model Space

two major shells ($N_{sh}=3,4$) (40Ca core)

Parameters

sp energy: Modified Oscillator
interaction strength

monopole pairing and quadrupole int. strength:
adjusted to the pairing gaps and deformations of Skyrme-HFB
(Yamagami et al. NPA693(2001))

quadrupole pairing strength G_2:

- $G_2 = 0$
- $G_2 = (G_2)_{self}$ (self-consistent value) Sakamoto and Kishimoto PLB245 (1990) 321.

$(G_2)_{self}$ restores the Galilean invariance in RPA order,
which was broken by the monopole pairing.
Triaxial deformation connects two local minima
Enhancement of the collective mass and MoI by the quadrupole pairing

Due to the contribution from the time-odd component
Collective path in 72Kr

G2=0: Kobayasi et al., PTP113(2005), 129.

Collective potential

Collective mass

Moment of Inertia

- Bifurcation of the path
- Triaxial degrees of freedom: important
- Enhancement of the collective mass and MoI by the quadrupole pairing
3rd Step: Requantize the collective Hamiltonian.

Collective wave function

$$\Psi_{IMK}(q, \Omega) = \sum_{K=0}^{I} \Phi_{IKK}(q) \langle \Omega | IMK \rangle$$

Collective Hamiltonian

$$\left(-\frac{1}{2} \frac{\partial^2}{\partial q^2} + \sum_{i=1}^{3} \frac{1}{2} J_i^{-1}(q) \hat{I}_i^2 + V(q) \right) \Psi_{IM,k}(q, \Omega) = E_{I,k} \Psi_{IM,k}(q, \Omega)$$

boundary conditions for collective wave functions

- periodic boundary condition at $\gamma=0^\circ$ and 60° for ^{68}Se
- box boundary condition for ^{72}Kr

4th Step: Calculate EM transitions

E2 transitions, spectroscopic quadrupole moments ...
two rotational bands

0^+_2 state

quadrupole pairing reduces ex. energy

$B(E2)$ e^2 fm4

effective charge: $e_{pol} = 0.904$

Collective Wavefunctions of ^{68}Se

- $I = 0$: oblate and prolate shapes are strongly mixed via a triaxial degree of freedom
- Ground band: mixing of different K states, excited band: $K=0$ dominant
- Oblate-prolate mixing: strong in 0^+ states, reduced as angular momentum increases
Energy Spectra of 72Kr

- Two rotational bands
- Small inter-band B(E2): shape mixing rather weak

- Effective charge is adjusted to this value

Collective wavefunctions of 72Kr

- 0^+_1 state: well localized around oblate shape
- 0^+_2 state: weak oblate-prolate shape mixing
- other states: well defined shape character
Spectroscopic quadrupole moment

\[Q(Ik) \text{ e fm}^2 \]

\(I(\text{g.s.}) \)
\(I(1\text{st}) \)

\(^{68}\text{Se} \)
\(^{72}\text{Kr} \)

\(G_2 = 0 \)
\(G_2 = \tilde{G}_2^{\text{self}} \)
Fission

- Optimal path to fission
- Diabatic vs Adiabatic dynamics
- Collective mass parameters

Self-consistent, self-determined, microscopic description of nuclear fission

Staszczak et al.
Summary

- Liquid-drop, shell, unified models, cranking model
- Nuclear structure at high spin and large deformation
- Sum-rule approaches to giant resonances
- Basic theorem for the Time-dependent density-functional theory (TDDFT)
- Linearized TDDFT (RPA) and elementary modes of nuclear excitation
- Theories of large-amplitude collective motion
- Anharmonic vibrations, shape coexistence phenomena