Gluon saturation effects on single spin asymmetries

Daniël Boer
Free University Amsterdam

SSA in $pp \uparrow \rightarrow hX$ at moderately large p_T are naturally described with k_T-odd TMDs (Sivers; Collins; Anselmino et al.; Mulders et al.; ...)

k_T-odd TMDs essentially probe the derivative of the cross section

Changes in underlying physics \Rightarrow changes in cross section \Rightarrow changes in SSA

This talk: small-x effects on SSA in forward hadron production at RHIC

Based on: D.B., Dumitru, Hayashigaki, hep-ph/0609083
Single transverse-spin asymmetries

\[A_N = \frac{\sigma(p p^\uparrow \rightarrow \pi X) - \sigma(p p^\downarrow \rightarrow \pi X)}{\sigma(p p^\uparrow \rightarrow \pi X) + \sigma(p p^\downarrow \rightarrow \pi X)} \]

SSA have been observed in \(p p^\uparrow \rightarrow \pi X \) \(E704 \) Collab. (’91); AGS (’99); STAR (’02); …

STAR data is for \(\sqrt{s} = 200 \) GeV and rapidities up to \(y_h \sim 4 \)

This talk is restricted to the Sivers effect \((\Delta^N f_{q/p}^\uparrow, f_{1T}^\perp) \)

Since it is \(k_T \)-odd, it essentially probes the derivative of the cross section
Probing the derivative

\[A_N \propto d\sigma(p^\uparrow p \to hX) - d\sigma(p^\downarrow p \to hX) \]

\[\propto \int d^2k_t \Delta^N f_{q/p^\uparrow}(x, \vec{k}_t) \, d\sigma^{qp \to q'X}(\vec{q}_t - \vec{k}_t) \]

\[= \int_{\text{h.p.}} d^2k_t \Delta^N f_{q/p^\uparrow}(x, \vec{k}_t) \left[d\sigma^{qp \to q'X}(\vec{q}_t - \vec{k}_t) - d\sigma^{qp \to q'X}(\vec{q}_t + \vec{k}_t) \right] \]

\[\approx \Delta^N f_{q/p^\uparrow}(x) \left[d\sigma^{qp \to q'X}(q_t - \langle k_t \rangle) - d\sigma^{qp \to q'X}(q_t + \langle k_t \rangle) \right] \]

\[\approx \Delta^N f_{q/p^\uparrow}(x) \left(-2\langle k_t \rangle \right) \frac{d\sigma^{qp \to q'X}(q_t)}{dq_t} \]

Here \(q_t \gg \langle k_t \rangle \approx 200 \text{ MeV} \)
Gluon saturation - Color Glass Condensate

If y_h is sufficiently large, then one can probe small x values in the unpolarized proton. One probes mainly gluons and resummation of logarithms in $1/x$ may be necessary. The gluon distribution is thought to display saturation (characterized by a scale Q_s). For $p_T \sim Q_s$ saturation effects modify the cross section, important for SSA.

In $p p \rightarrow h X$ at RHIC: $y_h \sim 4 \Rightarrow x \sim 10^{-4}$

HERA data: $x \sim 10^{-4} \Rightarrow Q_s \sim 1$ GeV (a perturbative scale \Rightarrow CGC formalism)

Despite the relatively low Q_s, small-x effects for $p_t \sim Q_s$ in $p p$ scattering do lead to a modification w.r.t. standard pQCD treatment.
Small-x evolution

For $Q_s \lesssim p_t \lesssim Q_s^2/\Lambda$ (the 'extended geometric scaling' region) quark-CGC scattering is well-described by

$$d\sigma^{qp\rightarrow q'X} \otimes g(x, q_t) \rightarrow N_F(x, q_t) \propto Q_s^2(x) \text{ F.T.} (r_t^2)\gamma(x, r_t)$$

Alters the slope of the cross section w.r.t. standard pQCD

At large p_T, $\gamma \rightarrow \gamma_{\text{DGLAP}} = 1 - \mathcal{O}(\alpha_s)$

The anomalous dimension γ follows partly from theory and partly from phenomenology

$$\gamma(x, r_t) = \gamma_s + (1 - \gamma_s) \frac{\log(1/r_t^2Q_s^2(x))}{\lambda y + d\sqrt{y} + \log(1/r_t^2Q_s^2(x))}$$

with $\gamma_s \approx 0.627$ (BFKL+saturation b.c.), $y = \log 1/x$, $\lambda \approx 0.3$ (GBW), $d \approx 1.2$ (dAu)

Dumitru, Hayashigaki, Jalilian-Marian, NPA 770 (2006) 57

Note: overall p_T-independent K-factors do not alter the derivative of the cross section
Extended geometric scaling region

γ_{DHJ} works well in dAu at RHIC, it describes the slope of the cross section well. That is very important for SSA, but are these small-x effects relevant for pp?

Using typical RHIC kinematics & Q_s from HERA phenomenology:

\[
Q_s(x) = \left(\frac{3 \cdot 10^{-4}}{x}\right)^{0.3} \text{GeV}
\]

\[
Q_{gs}(x) \simeq Q_s^2(x)/\Lambda
\]

D.B., Dumitru, Hayashigaki, hep-ph/0609083
For very forward rapidities the slope seems to deviate from NLO pQCD
pp phenomenology: CGC formalism

CGC formalism forms a good starting point for fits of Sivers functions.

International Workshop on RHIC Spin Physics, September 29-30, 2006, RIKEN, Wako, Japan
Single transverse-spin asymmetry

Data can be described reasonably by the Sivers function parameterization for valence quarks of Anselmino & Murgia (PLB 442 (1998) 470) times 2

Such quantitative adjustment not surprising for fits from fixed target data
Conclusions

• The CGC formalism can describe RHIC data (cross section and derivative) very well: $d\ Au \rightarrow h\ X$ from mid to forward rapidities and $p\ p \rightarrow h\ X$ at forward rapidities.
 The slope changes are well described by the small-x anomalous dimension.

• This is important for the extraction of Sivers functions from forward pion SSA.
 Changes in slope may otherwise be attributed to $\Delta^N f_{q/p^\uparrow}(x)$ or to $\langle k_t \rangle$.

• For $p^\uparrow p \rightarrow \pi^0\ X$ at $\sqrt{s} = 200$ GeV and $y_h \sim 4$ we considered CGC & Sivers effect.
 We studied the y_h, p_T and \sqrt{s} dependence using simple Sivers functions.
 Steeper slope (with increasing y_h) indeed leads to larger A_N.

 Details can be found in: D.B., Dumitru, Hayashigaki, hep-ph/0609083.

• Improved analysis (following more recent work by Anselmino, D’Alesio & Murgia) is worth doing.
Cross section - NLO pQCD

Bourrely & Soffer
Conclusion: small-x evolution is relevant at RHIC energies
dAu phenomenology

\[d + Au \rightarrow \pi^0 + X, \quad \sqrt{s_{NN}} = 200 \text{ GeV} \]

STAR Collaboration, J. Adams *et al.*
nucl-ex/0602011