#### Thermalization of Gluonic Matter with the Kadanoff-Baym Approach

Akihiro Nishiyama University of Tsukuba

Feb. 18<sup>th</sup>, 2012.

# Relativistic Heavy Ion Collision at RHIC and LHCqggqq $\sqrt{s}_{NN}=0.2 \text{ TeV}$ qggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg</t



Plasma

Success of nearly ideal hydrodynamics after thermalization. **Early Thermalization** of gluons (0.6-1fm/c)! (<u>RHIC and LHC</u>) Kolb and Heinz (2002), Hirano et al. (2010)

Comparative to formation time of partons (1/Qs~0.2fm/c) Semi-Classical Boltzmann eq. should not be applied, since 2-3fm/c is predicted for  $gg \rightarrow gg$ ,  $gg \rightarrow ggg$  (Boltzmann).

Decoherence: Muller, Schafer (2006)

Baier, Mueller, Schiff, Son (2001 and 2011)

New method is needed.

Quantum nonequilibrium processes based on field theory

Application of Kadanoff-Baym eq. to early thermalization of gluons.

#### **Purpose of this talk**

- To introduce the Kadanoff-Baym equation and to apply it to gluodynamics.
- To show entropy production of gluons in Numerical Simulation and estimate order of time of instability.

To show nonequilibrium process in expanding system with classical field

#### **Rest of this talk**

- Kadanoff-Baym equation
- Application to non-Abelian gauge theory, H-theorem
- 3+1 dimension, Numerical Analyses
- Expanding system with classical fields
- Summary and Remaining Problems

## Kadanoff-Baym equation

• Quantum evolution equation of 2-point Green's function (fluctuations). statistical (distribution) and spectral functions

$$F(x,y) = \frac{1}{2} \left\langle \left\{ \tilde{\phi}(x), \tilde{\phi}(y) \right\} \right\rangle$$

$$F(p^{0},p) = 2\pi\delta(p^{2} - m^{2}) \left( 1 + \frac{1}{\frac{e^{\beta|p^{0}|} - 1}{Boson}} \right)$$

$$\rho(x,y) = \left\langle \left[ \tilde{\phi}(x), \tilde{\phi}(y) \right] \right\rangle$$

$$\gamma \to 0$$

$$\rho(p^{0},p) = \frac{\gamma}{(p^{0} - \omega)^{2} + \gamma^{2}/4} \to 2i\pi\epsilon(p^{0})\delta(p^{2} - m^{2})$$
Breit-Wigner type

$$\left( -G_0^{-1} + \Sigma_{\text{loc}} \right) F(x,y) = \int_0^{y^0} dz \Sigma_F(x,z) \rho(z,y) - \int_0^{x^0} dz \Sigma_\rho(x,z) F(z,y) \left( -G_0^{-1} + \Sigma_{\text{loc}} \right) \rho(x,y) = \int_{x^0}^{y^0} dz \Sigma_\rho(x,z) \rho(z,y)$$
 Memory integral

 $G_0^{-1} = -\partial^2 - m^2$  **Self-energies** 

Self-energies: local  $\Sigma_{loc}$  mass shift, nonlocal real  $\Sigma_F$  and imaginary part  $\Sigma_{
m 
ho}$ 

#### Merit

- Quantum evolution with conservation law
- Evolution of spectral function with decay width + distribution function



Off-shell effect

Finite decay width

**p**<sup>0</sup>

 $\rho(p^0, p)$ 

Decay width  $\Rightarrow$  particle number changing process (gg $\Leftrightarrow$ g (2-to-1) and ggg $\Leftrightarrow$ g (3-to-1))+ binary collisions (gg $\Leftrightarrow$ gg).

They are prohibited kinematically in Boltzmann simulation. This process might contribute to the early thermalization.

#### Demerit

Numerical simulation needs much memory of computers.

## Application to Non-Abelian Gauge Theory

- Temporal Axial Gauge A<sup>0</sup>=0
- No classical field <A>=0
- Leading Order Self Energy of coupling LO (local) **O(g<sup>2</sup>)**  $O(g^2)$ ppLO (nonlocal)

If necessary, we use NLO as shown here.



ġq⇔a

## Numerical analysis for KB eq. in 3+1 dim.

- Without classical fields
- Initial condition  $Longitudin Longitudin Nonthermal distribution <math>n_{\mathbf{k}}^0 = 0$  (Gaussian configuration, anisotropic in momentum space)
  - **Uniform Space**
- Without expansion



3 transverse splitting and 2 transverse 1 longitudinal splitting

Transverse  

$$n_{\mathbf{k}}^{0} = \frac{C}{\Delta_{\perp}^{2}\Delta_{z}} \exp\left(-\frac{k_{z}^{2}}{2\Delta_{z}^{2}} - \frac{k_{x}^{2} + k_{y}^{2}}{2\Delta_{\perp}^{2}}\right)$$
  
Longitudinal

$$x \equiv \frac{\Delta_{\perp}^2}{\Delta_z^2} = 100$$

$$fig^2 NT^2/9 
ightarrow m^2$$
  
Set  $T = 360 \text{MeV}, g^2 = 1.0$ 

m=210MeV thermal mass

 $\epsilon = 12 GeV/fm^3$ 



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



## Evolution of each mode in distribution

Transverse mode n(p<sub>x</sub>=p<sub>y</sub>=p<sub>z</sub>=p,X<sup>0</sup>)



```
n(p,X^0)=Aexp(\gamma(p)X^0)
```

 $1/\gamma_{max}=0.3/m$  fm/c

(p=(8~22)π/L=1.5~4.3m)

Smaller time scale is realized.

Higher momentum mode  $32\pi/mL \ge p/m>24\pi/mL$  is still not monotonically increasing functions.









Longitudinal mode.





 $n(p,X^0)=Aexp(\gamma(p)X^0)$ 1/ $\gamma_{max}=0.3/m$  for each mode.

#### Numerical analysis for KB eq. in 3+1 dim.

$$n_0(\mathbf{k}) = \frac{C}{\Delta_z \Delta_\perp^2} \exp\left[-\frac{k_x^2 + k_y^2}{2\Delta_\perp^2} - \frac{k_z^2}{2\Delta_z^2}\right]$$

$$p \qquad p \qquad x \equiv \frac{\Delta_\perp^2}{\Delta_z^2} = 100$$



m=210MeV

thermal mass

ε=12GeV/fm<sup>3</sup>



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



The n<sub>k</sub> approaches Bose distribtuion due to off-shell g⇔gg (1⇔2) in 3+1 dim.



(1⇔2) in 3+1 dim.

Entropy production occurs at early time  $mX^0 \leq 1$ .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 $mX^0$ 

40

30

\*

x = 20

## Expanding system with classical field

Metrics (expansion in x<sup>3</sup> direction)

$$\tau = \sqrt{t^2 - (x^3)^2}$$
  $\eta = \tanh^{-1} \frac{3}{2}$ 

- O(N) scalar model.  $S = \int d^4x \sqrt{-g} \left[ \frac{g^{\mu\nu}}{2} \partial_{\mu}\varphi_a \partial_{\nu}\varphi_a - \frac{m^2}{2} \varphi_a \varphi_a - \frac{\lambda(\varphi_a \varphi_a)^2}{4!N} \right] \quad a = 1, \dots, N$
- Evolution equation of classical field and Kadanoff-Baym eq.  $\left[\partial_{\tau}^2 + \frac{1}{\tau}\partial_{\tau} + m^2 + \frac{\lambda}{6N}\phi^2(\tau)\right]\phi(\tau) = 0$
- Initial condition: Classical field with vacuum quantum fluctuations (Color Glass Condensate ?)  $\phi_a(\tau) = \phi(\tau)\delta_{a1}$   $F_{ab} = \operatorname{diag}(F_{\parallel}, F_{\perp}, \dots, F_{\perp})$   $\phi(\tau_0) = \sqrt{\frac{6N}{\lambda}}\sigma_0$   $\sigma_0$ N = 4 massless

#### Evolution of classical field and fluctuation

Reproduction of J. Berges, K. Boguslavski, S. Schlichting, hep-ph 1201.3582.

Case I (without collision term)



Parametric Resonance instability Fluctuation  $\ddot{y} + \omega^2(t)y = 0$ periodic  $\omega(t+T) = \omega(t)$  $y(t) = c^{t/T}\Pi(t)$  c > 1 $\omega^2(t) \sim \phi^2(t) + \dots$  Flat







# Case II (with collision term)

Berges et al. : Classical Statistical Lattice. Neq~T/k

Σ=

Our results (collaboration with Y. Hatta): Quantum collision term.

We investigate the difference in boost invariant metric. (in progress.)

Normal collision term.

Source induced amplification.

Summation of Next-to-Leading Order of 1/N expansion. This approach covers all evolution of F from O(1) to O( $\lambda^{-1}$ )



#### Numerical Results (1+1 dimensions)



 $20 < \tau/\tau^0 < 40$ , source induced amplification.

# Summary

- We have considered the Kadanoff-Baym approach to thermalization of dense nonequilibrium gluonic system.
- Entropy production occurs with the Kadanoff-Baym dynamics with off-shell 1-to-2 processes although it has been neglected in on-shell Boltzmann dynamics. This property may help the understanding of the early thermalization.
- It is possible to perform calculation in 3+1 dimension in gauge theory in temporal axial gauge. Then KB eq with the off-shell process shows instability mt<sup>0</sup>~0.3 at early stage in the time evolution.

# **Remaining Problems**

- Long time behavior of KB equation in gauge theory with longitudinal mode.
- Solution for the KB eq. in and out of equilibrium for the NLO of g<sup>2</sup> for the gauge theory (2+1 and 3+1dimensions).
- Renormalization procedure in expanding system
- Field-particle conversion in expanding system for gauge theory. Thermalization from Color Glass Condensate.



#### **Relativistic Heavy Ion Collision at RHIC and LHC**





- Introduction of kinetic entropy current based on relativistic
   Kadanoff-Baym eq for gauge theory.
   A.N. Nucl. Phys. A 832:289-313, 2010.
- 1<sup>st</sup> order gradient expansion of KB eq.
- Extension of nonrelativistic case (Ivanov, Knoll and Voskresenski (2000), Kita (2006)) and relativistic scalar φ4 (Nishiyama (2010)) and O(N) case (Nishiyama and Ohnishi (2010)). H-therorem has been shown in these cases
- In temporal axial gauge, when we divide Green function D and selfenergy Π to transverse (T) and longitudinal (L) part, we obtain []: Entropy flow spectral function

$$s^{\mu} \equiv \int \frac{d^{d+1}k}{(2\pi)^{d+1}} (d-1) \left[ \left( k^{\mu} - \frac{1}{2} \frac{\partial \operatorname{Re} \, \Pi_{T,\operatorname{Re}}}{\partial k_{\mu}} \right) \frac{\rho_{T}}{i} + \frac{1}{2} \frac{\partial \operatorname{Re} \, D_{T,\operatorname{Re}}}{\partial k_{\mu}} \frac{\Pi_{\rho,T}}{i} \right] \sigma[f_{T}](X,k) + \int \frac{d^{d+1}k}{(2\pi)^{d+1}} \left[ \left( k^{0} \delta^{\mu 0} - \frac{1}{2} \frac{\partial \operatorname{Re} \, \Pi_{L,\operatorname{Re}}}{\partial k_{\mu}} \right) \frac{\rho_{L}}{i} + \frac{1}{2} \frac{\partial \operatorname{Re} \, D_{L,\operatorname{Re}}}{\partial k_{\mu}} \frac{\Pi_{\rho,L}}{i} \right] \sigma[f_{L}](X,k)$$

 $\sigma[f_{T,L}] \equiv (1+f_{T,L}) \log(1+f_{T,L}) - f_{T,L} \log f_{T,L}$ 

For LO self-energy

$$\begin{array}{l} \partial_{\mu}s^{\mu} = g^{2}N[\underbrace{(TTT)}_{\text{Each term is positive definite.}} + (TTL) + (TLL)] \geq 0. \\ \text{Each term is positive definite.} \\ \text{Nishiyama and Ohnishi (2010)} \end{array}$$

$$\begin{array}{l} \text{H-theorem is derived at the level of Green's function with off-shellness.}} \\ \text{For NLO self-energy} \\ \partial_{\mu}s^{\mu} = g^{4}N^{2}[(TTTT) + (TTTL) + (TTLL) + (TLLL) + (LLLL)] \end{array}$$

<u>Controlled gauge dependence</u> of our entropy density with a certain constant term is assured at thermal equilibrium.

For gauge transformation  $\delta s^0_{
m eq} \sim g^2 s^0_{
m eq}$  (Smit and Arrizabaraga (2002), Carrington et al (2005))

Gauge dependence is higher order of coupling.

Proof of controlled gauge dependence **out of equilibrium** is still remaining problem. (Blaiziot, lancu and Rebhan (1999))

In the quasiparticle limit (small coupling) We reproduce the entropy for the boson.

$$s^{\mu} \rightarrow \int \frac{d^d p}{(2\pi)^d} v^{\mu} \left[ -n_{\mathbf{p}} \ln n_{\mathbf{p}} + (1+n_{\mathbf{p}}) \ln(1+n_{\mathbf{p}}) \right] \qquad v^{\mu} = p^{\mu}$$

:velocity

## Kita's Entropy

$$s \equiv \hbar k_{
m B} \int \frac{d^3 p \, d\varepsilon}{(2\pi\hbar)^4} \sigma \left[ A \frac{\partial (G_0^{-1} - {
m Re}\Sigma^{
m R})}{\partial \varepsilon} + A_{\Sigma} \frac{\partial {
m Re}G^{
m R}}{\partial \varepsilon} 
ight],$$
  
 $j_s \equiv \hbar k_{
m B} \int \frac{d^3 p \, d\varepsilon}{(2\pi\hbar)^4} \sigma \left[ -A \frac{\partial (G_0^{-1} - {
m Re}\Sigma^{
m R})}{\partial p} - A_{\Sigma} \frac{\partial {
m Re}G^{
m R}}{\partial p} 
ight],$   
 $\frac{\partial s_{
m coll}}{\partial t} \equiv \hbar k_{
m B} \int \frac{d^3 p \, d\varepsilon}{(2\pi\hbar)^4} \, \mathcal{C} \ln \frac{1 \pm \phi}{\phi}.$ 

$$\sigma[\phi] \equiv -\phi \ln \phi \pm (1 \pm \phi) \ln(1 \pm \phi).$$

Equilibrium at

$$\ln \frac{1 \pm \phi_1}{\phi_1} = \alpha + \beta(\varepsilon_1 - \boldsymbol{v} \cdot \boldsymbol{p}_1),$$

# Time irreversibility

Symmetric phase  $\langle \Phi \rangle = 0$ 

|                                             | λΦ <sup>4</sup> | O(N)       | SU(N)                |
|---------------------------------------------|-----------------|------------|----------------------|
| Exact 2PI (no truncation)                   | ×               | ×          | ×                    |
| Truncation                                  | NLO of λ        | NLO of 1/N | LO of g <sup>2</sup> |
| LO of<br>Gradient<br>expansion<br>H-theorem | Ο               | Ο          | <b>△ (TAG)</b>       |

# Numerical Simulation for KB eq.

Symmetric phase  $\langle \Phi \rangle = 0$ 

|                 | λΦ <sup>4</sup>               | O(N)               | SU(N)                |
|-----------------|-------------------------------|--------------------|----------------------|
| Truncation      | NLO of λ                      | NLO of 1/N         | LO of g <sup>2</sup> |
| Others'<br>Code | 1+1 dim<br>2+1 dim<br>3+1 dim | 1+1 dim<br>3+1 dim | ?                    |
| Our Code        | 1+1 dim<br>2+1 dim<br>3+1 dim | 1+1 dim            | Part of 2+1, 3+1 dim |

# Renormalization (φ<sup>4</sup> model)



It is expected that the above analysis might hold at gauge theory with coupling expansion.

# Microscopic process (Non-Abelian)

Each microscopic process is possible in 2+1 and 3+1 dimensions.



**Entropy production** 

No entropy production

The 0-to-3 and 1-to-2 might contribute to isotropization with entropy production. These processes are prohibited in Boltzmann limit without spectral width and memory integral.