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√sNN=200 GeV

Success of nearly ideal hydrodynamics after thermalization.

Early Thermalization of gluons (0.6-1fm/c)! (RHIC and LHC)

Kolb and Heinz (2002), Hirano et al. (2010)

Quantum nonequilibrium processes based on field theory 

Application of Kadanoff-Baym eq.

to early thermalization of gluons.

Baier, Mueller, Schiff, Son (2001 

and 2011)

Formation of Quark-Gluon Plasma (QGP) 

Comparative to formation time of partons (1/Qs~0.2fm/c)

Semi-Classical Boltzmann eq. should not be applied, 

since 2-3fm/c is predicted for gg→gg, gg→ggg (Boltzmann).

Decoherence: Muller, Schafer (2006)

New method is needed.



Rest of this talk
• Kadanoff-Baym equation 

• Application to non-Abelian gauge theory, H-theorem

• 3+1 dimension, Numerical Analyses

• Expanding system with classical fields

• Summary and Remaining Problems

To introduce the Kadanoff-Baym equation and to apply it to 

gluodynamics. 

To show entropy production of gluons in Numerical Simulation and 

estimate order of time of instability.

To show nonequilibrium process in expanding system with classical 

field

Purpose of this talk



Kadanoff-Baym equation

• Quantum evolution equation of 2-point 

Green’s function (fluctuations).

Breit-Wigner type
Boson

statistical (distribution) and spectral functions

Σ=Self-energies

Memory integral

Self-energies: local             mass shift,  nonlocal  real               and  imaginary part   



• Quantum evolution with conservation law

• Evolution of spectral function with                                            
decay width +   distribution function

• Off-shell effect

Decay width ⇒ particle number changing process
(gg⇔g (2-to-1) and ggg⇔g (3-to-1))+ binary collisions 
(gg⇔gg).

They are prohibited kinematically in Boltzmann 
simulation. This process might contribute to the early 
thermalization.

Merit

binary

Finite decay width

Demerit
Numerical simulation needs much memory of computers.



Application to Non-Abelian Gauge Theory

• Temporal Axial Gauge A0=0 

• No classical field  <A>=0

• Leading Order Self Energy of coupling

O(g2)
LO (local)

LO (nonlocal)

O(g2)

⇔

If necessary, we use NLO as shown here.

NLO ⇔

gg⇔g

ggg⇔ggg⇔gg+ …



Numerical analysis for KB eq. in 3+1 dim.

• Without classical fields

• Initial condition

Nonthermal distribution 

(Gaussian configuration, 

anisotropic in momentum 

space)

Uniform Space

• Without expansion
3 transverse splitting 

and 2 transverse 1 

longitudinal splitting

thermal mass

≒g2NT2/9

Set

m=210MeV

ε=12GeV/fm3

0

Transverse

Longitudinal



n(mX0, k)

Entropy density

mX0

The X-Y mode → Z mode. 

The nk approaches Bose 

distribtuion due to off-shell g⇔gg 

(1⇔2) in 3+1 dim. 

Entropy production occurs at early 

time mX0≦1.

Energy error is 2 %.
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Entropy density

mX0

The X-Y mode → Z mode. 
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distribtuion due to off-shell g⇔gg 
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Entropy production occurs at early 

time mX0≦1.

Energy error is 2 %.
/f

m
3
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log[1+1/n(mX0,k)], logplot

x=100



Evolution of each mode in distribution

mX0

n(px=py=pz=p,X0)

n(p,X0)=Aexp(γ(p)X0)

1/γmax=0.3/m fm/c 

(p=(8~22)π/L=1.5~4.3m)

Higher momentum mode 

32π/mL≧p/m>24π/mL is still not 

monotonically increasing 

functions. 

Smaller time scale is realized.

Transverse mode



Time evolution of longitudinal 

distribution function

n(mX0, k)
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Time evolution of longitudinal 

distribution function

n(mX0, k)



Time evolution of longitudinal 

distribution function

n(mX0, k)

1/γmax=0.3/m for each 

mode.

n(p,X0)=Aexp(γ(p)X0)

n(px=py=pz=p,X0)

Longitudinal mode.



Numerical analysis for KB eq. in 3+1 dim.

Only transverse 

Part thermal mass

m=210MeV

ε=12GeV/fm3
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• Metrics (expansion in x3 direction)

• O(N) scalar model. 

• Evolution equation of classical field and Kadanoff-

Baym eq.

• Initial condition: Classical field with vacuum

quantum fluctuations (Color Glass Condensate ?)

Expanding system with classical field

x30

massless



Evolution of classical field and fluctuation

Reproduction of J. Berges, K. Boguslavski, S. Schlichting, hep-ph 1201.3582.

Case I (without collision term)

υ~τ-1/3
τ/τ0

υ(τ)/υ(0)



Fluctuation

p_eta=2σ0τ0

ω2(t)~υ2(t)+…

Parametric Resonance instability

Flat

exp(γ0τ
2/3 )Curved



Case II (with collision term)

+・・・

Σ=

+
x x x x xx

Source induced amplification.

Normal collision term.

Summation of Next-to-Leading Order of 1/N expansion. This 

approach covers all evolution of F from O(1) to O(λ-1)

Berges et al. : Classical Statistical Lattice. 

Our results (collaboration with Y. Hatta): Quantum collision term. 

We investigate the difference in boost invariant metric. (in progress.)

Neq~T/k



Next page: Our results

Berges 2004.

(Flat metric)



τ-2/3

τ/τ0

p_eta=10

p_eta=20

τ/τ0

Numerical Results (1+1 dimensions)

τ/τ0<20, parametric resonance.

20<τ/τ0<40, source induced amplification.



Summary

• We have considered the Kadanoff-Baym 
approach to thermalization of dense 
nonequilibrium gluonic system.

• Entropy production occurs with the 
Kadanoff-Baym dynamics with off-shell 1-to-2 
processes although it has been neglected in 
on-shell Boltzmann dynamics. This property 
may help the understanding of the early 
thermalization.

• It is possible to perform calculation in 3+1 
dimension in gauge theory in temporal axial 
gauge. Then KB eq with the off-shell process 
shows instability mt0~0.3 at early stage in the 
time evolution. 

• In expanding system, parametric resonance 



Remaining Problems

• Long time behavior of KB equation in gauge theory 

with longitudinal mode.

• Solution for the KB eq. in and out of equilibrium for 

the NLO of g2 for the gauge theory (2+1 and 

3+1dimensions).

• Renormalization procedure in expanding system

• Field-particle conversion in expanding system for 

gauge theory. Thermalization from Color Glass 

Condensate.
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However does the dynamics contribute to thermalization? To confirm it,

• Introduction of kinetic entropy current based on relativistic 

Kadanoff-Baym eq for gauge theory. 

• 1st order gradient expansion of KB eq.

• Extension of nonrelativistic case (Ivanov, Knoll and Voskresenski (2000), 

Kita (2006)) and relativistic scalar υ4 (Nishiyama (2010)) and O(N) case
(Nishiyama and Ohnishi (2010)). H-therorem has been shown in these cases

A.N. Nucl. Phys. A 832:289-313, 2010.

H-theorem for Gauge Theory

[ ] : Entropy flow spectral functionOffshellI.

In temporal axial gauge, when we divide Green function D and self-

energy Π to transverse (T) and longitudinal (L) part, we obtain



g2N[ (TTT) + (TTL) + (TLL) ]

Each term is positive definite.

Controlled gauge dependence of our entropy density with a certain constant term is 

assured at thermal equilibrium.

For gauge transformation

Gauge dependence is higher order of coupling.

(Smit and Arrizabaraga (2002), Carrington et al (2005) )

Proof of controlled gauge dependence out of equilibrium is still remaining problem.

g⇔gg

(Blaiziot, Iancu and Rebhan (1999))

In the quasiparticle limit (small coupling)
We reproduce the entropy for the boson.

H-theorem is derived at the level of Green’s function with off-shellness. 

:velocityII.

For LO self-energy

For NLO self-energy

g4N2[ (TTTT) + (TTTL) + (TTLL) +(TLLL)+(LLLL)]
( )

=pμ/εp

Nishiyama and Ohnishi (2010)



Kita’s Entropy

Equilibrium at 



Time irreversibility

Exact 2PI (no 

truncation)

Truncation

LO of 

Gradient 

expansion

H-theorem

λΦ4 O(N) SU(N)

NLO of λ NLO of 1/N LO of g2

Symmetric phase 〈Φ〉=0

× × ×

△ △ △(TAG)

△ (TAG)○ ○



Numerical Simulation for KB eq.

Truncation

λΦ4 O(N) SU(N)

NLO of λ NLO of 1/N LO of g2

Symmetric phase 〈Φ〉=0

Our Code
1+1 dim 

2+1 dim 

3+1 dim

1+1 dim Part of    

2+1, 3+1 dim 

Others’ 

Code

1+1 dim 

2+1 dim 

3+1 dim

1+1 dim

3+1 dim
?



For 0.5 ≦a m≦1

Renormalization (υ4 model)

We can use bare coupling as if it were renormalized coupling when the relevant 

length scale is larger than a in numerical simulation. (a < m-1)

=

It is expected that the above analysis might hold at gauge theory with coupling expansion.

A. Arrizabalaga, J. Smit and A. Tranberg (2004,2005)

In symmetric phase

Quadratic divergent

Mass

Vertex

Logarithmic divergent

Bethe-Salpeter eq.

Subtraction

2

O (a2m2) (a2m2)  +

a m :  lattice spacing



Microscopic process (Non-Abelian)

C ≠ 0 C ＝ 0

Entropy production No entropy production

The 0-to-3 and 1-to-2 might contribute to isotropization with entropy 

production. These processes are prohibited in Boltzmann limit without 

spectral width and memory integral.

Each microscopic process is possible in 2+1 and 3+1 dimensions.

For 3 transverse fluctuations,


