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The separation of scales  
in the relativistic heavy-ion collisions 

 
  Liouville             Boltzmann                   Fluid dyn. 
  Hamiltonian 
　	

Slower dynamics 

Navier-Stokes eq.�

（力学系の縮約）	

Early thermalization? 
Entropy production mechanism? 
 



          Toward a theory of entropy production  
in the little and big bang 

B. Muller, A. Schaefer, A. Ohnishi and T.K.,  
PTP 121(2008),555;arXiv:0809.4831(hep-ph) 



Two ways of entropy production at the quantum level 

1) “entanglement’’ with the environment 

with 

Loss of information due to coupling with environment. 

2) Entropy production in an isolated system, 
    such as in the early universe and the initial satge of H-I collisions  

The time evolution                  is a unitary transformation; exp[ -‐ i ]Ht

Difficult to produce entropy! 

S=-Tr[ρ log ρ]	 不変	

ψ ψ( ) =exp[ -‐ i ]t Ht



In classical level, 
Kolmogorov-Sinai entropy     describes the rate of entropy production.  λ

λ= The sum of  positive Lyapunov exponents： 

Chaos Entropy production 

V. Latora and M.Baranger(’99) 

How about in Quantum Mechanics?	

The essential role of the coarse graining (averaging of orbits)	
Notice:	

How implement  a coarse graining in Quantum Mechanics?	



Distribution function in Quantum Mechanics 

The Wigner function 

It can be negative and pure quantum mechanical object, hence 
no ability of describing entropy production. 

The need of incorporation of coarse graining which 
inevitably enters through the observation process. 

A choice; Husimi function 

最小不確定性の分だけ粗視化された分布関数	

K. Husimi (1940)	



(Husimi-Wehrl entropy) 

Positive(-semi) definite 

Entropy may be　defined as  

Coherent state; minimal uncertainty  (coarse graining!) 

伏見関数の性質	

B. Muller, A. Schaefer,  
A. Ohnishi and T.K.,  
PTP 121(2008),555 

Von Neuman	

エネルギー揺らぎ小	

Husimi-Wehrl = von Neuman	

c.f. A. Sugita (2001, 2002)	



Wigner	

Husimi	

t=0	 t=2/λ	



A simple example with an instability; 

The growth rate; 

The Wehrl entropy; 

The growth rate of the Husimi-Wehrl entropy is given by the 
K-S entropy (positive Lyapunov exponent)  
in the classical dynamics! 

, independent of  Δ



Unstable modes in the classical dynamics plays the essential role for 
entropy production at quantum level. 

may account for entropy 
production in quantum level in HI 
collisions at RHIC, 
as well as the reheating in the 
early universe.  

Extension to  many-body systems:	

古典系の不安定モードがエントロピー生成率を決める	



Entropy growth rate of classical Yang-Mills fields	

CYM:	 Mueller, Ohnishi, Schaefer, Takahashi, Yamamoto, TK, PRD82 (2010)	



Initial condition: CGC with randomness 
Back ground: Expanding back ground 	

:H. Iida et al, in progress 	

Further development:	

2-3 fm/c	

See ,Mueller, et al, PRD82 (2010)	



Entropy production at each stage	

B.Muller and A. Schaefer, 
Int. J. Mod. Phys. E20, 2235 (2011)	

R.J. Fries et al,  
arXiv 0906.5293	



   From Boltzmann  
              to  
Hydrodynamic equation	

K. Tsumura, K. Ohnishi and T.K., Phys. Lett. B646 (2007) 134; 
K. Tsumura and T.K., Phys. Lett. B668 (2008) 425;  
K. Tsumura and T.K.,  Prog. Theor. Phys. 126 (2011), 761.  
 



The separation of scales  
in the relativistic heavy-ion collisions 	

  Liouville             Boltzmann                   Fluid dyn. 
  Hamiltonian 
　	

Slower dynamics 

   Hydrodynamics is the effective dynamics with fewer 
variables of the kinetic (Boltzmann) equation in the 
infrared refime. 

Introduction	

(BBGKY hierarchy) 
One-body dist. fn. T,n,   u µ

Fewer d.o.f 



Def of coarse-grained differentiation　(H. Mori, 1956, 1858, 1959) 

τ 　an intermidiate scale time 

Time-derivative in transport coeff. Is an average 
Of microscopic derivatives.	

Averaging：	

Set-up of Initial condition：　                invariant (or attractive) manifold  

Eg: Boltzmann: mol. chaos	 Take I.C. with no two-body correl..	

Bogoliubov (1946), Kubo et al (Iwanami, Springer)	
J.L. Lebowitz, Physica A 194 (1993),1. 
K. Kawasaki (Asakura, 2000), chap. 7.	

Construction of the invariant  manifold  
	

Basic notions for reduction of dynamics 



Geometrical image of reduction 
of dynamics 

nR
∞

t X 

M 

∞

dimM m n= <

dim X n=

( )ts

O dim m=s

Invariant and attractive manifold 

( )d
dt

=
X F X

( )d
dt
=
s G s

M={ ( )}=X X X s

eg. 

1 2 1 2, ,..., ) ( , ,..., )n mg g g s s s≡ →X = ( g s =In Field theory, 
renormalizable ∃ Invariant manifold M dim M m n= < ≤ ∞

n-dimensional dynamical system: 



Relativistic Boltzmann equation	

　--- (1) 

Collision integral: 

Symm. property of the transition probability: 

Energy-mom. conservation; --- (2) 

Owing to (1), 

--- (3) 

Collision Invariant         : 

the general form of a collision invariant; 
which can be x-dependent! 

Eq.’s (3) and (2) tell us that 



Ambiguities of the definition of the flow and the LRF 
In the kinetic approach, one needs conditions of fit or matching conditions., 
irrespective of Chapman-Enskog or Maxwell-Grad moment methods:  

In the  literature, the following plausible ansatz are taken; 

Is this always correct, irrespective of the frames? 
Particle frame is the same local equilibrium state as the energy frame? 
Note that the distribution function in non-eq. state should be quite 
different from that in eq. state. Eg.    the bulk viscosity ∃

Local equilibrium No dissipation! 

D. H. Rischke, nucl-th/9809044	

de Groot et al (1980), 
Cercignani and Kremer (2002) 



Previous attempts to derive the dissipative 
hydrodynamics as a reduction of the dynamics 

N.G. van Kampen, J. Stat. Phys. 46(1987), 709    
unique but non-covariant form and hence not 
Landau either Eckart!                                              

Here, 

In the covariant formalism, 
in a unified way and systematically 
derive dissipative rel. hydrodynamics at once!   
 

Cf. Chapman-Enskog method to 
    derive Landau and Eckart eq.’s; 
     see,  eg, de Groot et al (‘80) 



perturbation 

Ansatz of the origin of the dissipation= the spatial inhomogeneity, 
                                                     leading to Navier-Stokes in the non-rel. case .      

would become a macro flow-velocity 

Derivation of the relativistic hydrodynamic equation  
from the rel. Boltzmann eq. --- an RG-reduction of the dynamics 
K. Tsumura, T.K. K. Ohnishi; Phys. Lett. B646 (2007) 134-140 

c.f. Non-rel.  Y.Hatta and T.K., Ann. Phys. 298 (’02), 24; T.K. and K. Tsumura, J.Phys. A:39 (2006), 8089 

time-like derivative space-like derivative 

Rewrite the Boltzmann equation as, 

Only spatial inhomogeneity leads to dissipation. 

Coarse graining of space-time 

RG gives a resummed distribution function, from which and are obtained. 

Chen-Goldenfeld-Oono(’95),T.K.(’95),    S.-I. Ei, K. Fujii and T.K. (2000) 

may not be u µ



Solution by the perturbation theory	
0th 

0th invariant manifold 

“slow” 

Five conserved quantities 
m = 5�

Local equilibrium 

reduced degrees of freedom 

written in terms of the hydrodynamic variables. 
Asymptotically, the solution can be written solely 
in terms of the hydrodynamic variables. 



1st 

  Evolution  op.：�
inhomogeneous：�

The lin. op.    has good properties: 

Collision operator�

1.� Self-adjoint�

2.� Semi-negative 
definite�

3.�

            has  5  zero  modes、other  eigenvalues  are  negative.�

Def. inner product:  



1. Proof of self-adjointness 

2. Semi-negativeness of the L  

3.Zero modes 

1 2 3p p p pϕ ϕ ϕ ϕ+ = +

Collision invariants! 
or conserved quantities. 

en-mom. 

Particle # 



metric�

fast  motion�
to  be  avoided�

 The initial value yet not 

determined  

Modification of the manifold：�

Def.  Projection operators: 

eliminated by the choice 



fast  motion�
The initial value not yet determined 

Second order solutions 

with 

Modification of the invariant  
manifold in the 2nd order; 

eliminated by the choice 



Application of RG/E equation to derive slow dynamics	

Collecting all the terms, we have; 

Invariant  manifold (hydro dynamical coordinates) as the initial value: 

The perturbative solution with secular terms: 

found to be the coarse graining condition 

Choice of the flow  

RG/E equation 

The meaning of  

The novel feature in the relativistic case; 
; eg. 



The distribution function; 

produce the dissipative terms! 

Notice that the distribution function as  the solution is represented 
solely by the hydrodynamic quantities!  



A generic form of the flow vector	

    ：a  parameter�

1 2
2 3

Pµνρσ µρ νσ µσ νσ µν ρσ⎛ ⎞≡ Δ Δ +Δ Δ − Δ Δ⎜ ⎟
⎝ ⎠

P P Pµναβ ρσ µνρσ
αβ =

µ ρν µν
ρΔ Δ = Δ

Projection op. onto space-like traceless second-rank tensor; 



                �

Landau frame�
and Landau eq.!�

Examples 

T µν =

satisfies the Landau constraints 

0, 0u u T u Tµν µν
µ ν µ σνδ δ= Δ =

0u N µ
µδ =



Bulk viscosity 
 
Heat conductivity 
 
Shear viscosity 
	

C.f.  Bulk viscosity may play a role in determining the acceleration 
       of the expansion of the universe, and hence the dark energy! 

-independent pθ
c.f. 

( )p pa µ µθ=In a Kubo-type form; 

with the microscopic expressions for the transport coefficients; 



Eckart (particle-flow)  frame: 
Setting  

= 

= with 

(ii) Notice that only the space-like derivative is incorporated. 
(iii) This form is different from Eckart’s and Grad-Marle-Stewart’s,  
     both of which involve the time-like derivative. 

c.f. Grad-Marle-Stewart equation; 

(i) This satisfies the GMS constraints but  not the Eckart’s. 

i.e., 

Grad-Marle-Stewart 
 constraints 

 Landau equation: 



Collision operator�

            has  5  zero  modes:�

Preliminaries: 

The dissipative part; =  

with 

where 

due to the Q operator. 

Conditions of fit v.s. orthogonality condition 



The orthogonality condition due to the projection operator exactly corresponds to the 
 constraints for the dissipative part of the energy-momentum tensor and the particle 
 current! 

i.e., Landau frame, 

i.e., the Eckart frame, 

4, 

(C)  
Constraints 2, 3 
Constraint 1 

Contradiction! 

Matching condition! 

p u p uµ µ=g

See next page. 



(C)  

Constraints 2, 3 

Constraint 1 

Contradiction! 



Which equation is better, Stewart et al’s or ours? 

The linear stability analysis around the thermal equilibrium state. 

c.f. Ladau equation is stable. (Hiscock and Lindblom (’85)) 

The stability of the equations in the “Eckart(particle)” frame 

K.Tsumura and T.K. ; 
Phys. Lett. B 668, 425 (2008).; 
arXiv:1107.1519 

See also, Y. Minami and T.K., 
Prog. Theor. Phys.122, 881 (2010) 



(i)  The Eckart and Grad-Marle-Stewart equations gives an instability, which  has been 
      known, and is now   found to be attributed to the fluctuation-induced dissipation, 
      proportional to      . 
(ii) Our equation (TKO equation) seems to be stable, being dependent on the values of  
    the transport coefficients and the EOS. 

K.Tsumura and T.K. (2008)	
The stability of the solutions in the particle frame: 

Duµ

The numerical analysis shows that, the solution to our equation is stable  
 at least for  rarefied gasses. 
  

A comment: 
The stability of our equations derived with the RG method is 
proved to be stable without recourse to any numerical calculations; 
this is a consequence of the positive-definiteness of the inner product. 
(K. Tsumura and T.K., (2011))   



Summary of second-half part 
•  Eckart equation, which and a causal extension of which are widely used, is 

not compatible with the underlying Relativistic Boltsmann equation. 
•  The RG method gives a consistent fluid dynamical equation for the particle 

(Eckart) frame as well as other frames, which is new and has no time-like 
derivative for thermal forces. 

•  The linear analysis shows that the new equation in the Eckart (particle) 
frame can be stable in contrast to the Eckart and (Grad)-Marle-Stewart 
equations which involve dissipative terms proportional to      . 

•  The RG method is a mechanical way for the construction of the invariant 
manifold of the dynamics and can be applied to derive a causal fluid 
dynamics, a la Grad 14-moment method. (K. Tsumura and T.K. , in prep.) 

•  According to the present analysis, even the causal (Israel-Stewart) equation 
which is an extension of Eckart equation should be modified. 

•  There are still many fundamental isseus to clarify  for establishing  the 
relativistic fluid dynamics for a viscous fluid.  

 

Duµ



Brief Summary	

1.  孤立量子系におけるエントロピー生成を記述する枠組みとして、伏見関数 
　　を用いることを提案した。 
2. 不安定量子系においては、Husimi-Wehrl エントロピーの増大率は古典系 
　　のリャプーノフ指数(Kolmogorov-Sinaiエントロピー)によって与えられる。 
3.古典Yang-Mills系はカオス系であり、ランダムな初期状態から出発しても、 
　　リャプーノフ指数は増大し飽和する。 
4.　「カラー凝縮+乱雑ゆらぎ」とする初期状態から出発しても、 
　　　全体としての傾向は変わらない:初期時間と後期において特性は少し 
　　異なる。 
5.運動学的方程式から出発して散逸を含む相対論的流体方程式を導出した。 
　1次,　2次の方程式　ーー＞新しいモーメント法  
                                                        (K. Tsumura and T.K., in preparation) 



Back Ups	



Generic example with zero modes 
S.Ei, K. Fujii & T.K. Ann. Phys.(’00) 
国広悌二、物理学会誌2010年9月号	



Def. P the projection onto the kernel 

1P Q+ =
ker A



Parameterized with    variables, 
Instead of    ! 

m
n

The would-be rapidly changing terms can be eliminated by the 
choice; 

Then, the secular term appears only the P space; 
a deformation of 
the manifold 

0M

ρ



Deformed (invariant) slow manifold: 

The RG/E equation 
00/ t tt =∂ ∂ =u 0 gives the envelope, which is 

The global solution (the invariant manifod): 

We have derived the invariant manifold and the slow dynamics 
on the manifold by the RG method. 

Extension;  A(a)  Is not semi-simple.  (2) Higher orders. 

A set of locally divergent functions parameterized by 
       ! 0t

globally valid: 

(Ei,Fujii and T.K. 
Ann.Phys.(’00)) Layered pulse dynamics for TDGL and NLS. 



The RG/E equation 
00/ t tt =∂ ∂ =u 0

gives the envelope, which is 

The global solution (the invariant manifod): 

globally valid: 

[ ]W C0
0[ ]Pε W C

M 

0M

( )ρ C

u 

0[ ]W C ( )ρ C

c.f. Polchinski theorem 
  in renormalization theory  
In QFT. 


