相対論的重イオン衝突 初期時空発展とスケーリング

AND ALL AND ALL

Kenji Fukushima

(Department of Physics, Keio University) based on Fukushima, Gelis, NPA874, 108 (2012) [arXiv:1106.1396]

Heavy-Ion CollisionWhat is the initial condition in the HIC?Negative longitudinal pressureTopological charge density \rightarrow Chiral magnetic effect

Partons live long in the IMFs → Parton Picture (Quantum fluctuations ~ Real particles)

Parton Distribution Function Valence and Sea Quarks and Gluons

proton

valence quark constituent

BFKL – Higher Energy with Fixed Q² Gluon increases with (nearly) fixed transverse area

Higher Energy → Dense Gluon Matter

DGLAP – Larger Q² with Fixed Energy Gluon slowly increases with decreasing area

Graphical representation

large $Q \rightarrow$ Dilute Gluon Matter

Data from HERA Quantum Evolution of PDFs at fixed Q²

As the energy goes larger, **gluon** is becoming dominant.

High energy (large *s* and small *t*) processes are dominated by abundant **gluons**.

Coherent Gluon Fields

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

Glasma = (Color) Glass + Plasma E. ALENAE, AL **Intuitive Picture of Glasma** * Boost Invariance * Coherent Fields (amp. $\sim 1/g$) * Flux Tube (size ~ $1/Q_s$) * Expanding * Unstable in η (cascade to UV)

* Hydro Input?

Initial Dynamics of the HIC should be described by the classical eom of the Yang-Mills theory in the expanding coordinates Bjorken (Expanding) Coordinates

Proper Time and (space-time) Rapidity

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

Formulations

Time Evolution

$$E^{i} = \tau \partial_{\tau} A_{i}, \qquad E^{\eta} = \tau^{-1} \partial_{\tau} A_{\eta}$$
$$\partial_{\tau} E^{i} = \tau^{-1} D_{\eta} F_{\eta i} + \tau D_{j} F_{j i}$$
$$\partial_{\tau} E^{\eta} = \tau^{-1} D_{j} F_{j \eta}$$

Classical Equations of Motion in the Bjorken Coordinates in the "temporal" gauge $A_{\tau} = 0$

Ensemble Average

 $\langle \langle \mathcal{O}[A] \rangle \rangle_{\rho_t,\rho_p} \sim \int D\rho_t D\rho_p W_x[\rho_t] W_{x'}[\rho_p] \mathcal{O}[\mathcal{A}[\rho_t,\rho_p]]$ Stress Tensor (Energy, Pressures)

Quantum fluctuations partially included in the initial state

Formulations

Initial Condition

MV Model

Color source distribution is Gaussian (No spatial correlation in transverse direction)

Gauge Configuration $e^{-ig\Lambda(\boldsymbol{x}_{\perp})}e^{ig\Lambda(\boldsymbol{x}_{\perp}+\hat{i})} = \exp[-ig\alpha_i(\boldsymbol{x}_{\perp})]$

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

Alexandigean Alexandigean Alexandige Alexandigean Alexandigean Alexandigean Alexandigean Alexandigean Alexandi D

Demonstration with smooth source (one flux-tube)

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

ter n

ter source and the second s Notes that the second second

 A_{η} , E_i fast modes (multiple time scales)

Large Amplitude Problem Gauge fields as angle variables

No problem if we use the continuum variables... Why we stick to the link variables...?

Some Known Facts about Glasma Simulation Free streaming after 1/Q_s

1.5

 $g^2 \mu \tau$

2

2.5

Glasma instability at $100 \sim 1000/Q_s$

Instability ends when non-Abelianized Then spectrum shows asymptotic scaling.

Fukushima-Gelis

20

Boost Invariance Violation Row, AROW, AROW, AROW, AROWARD, AROW, AROW, AROW, AROW, AROW **Boost-invariant Glasma sits on the top of the** potential maximum (seemingly stable without any perturbation) Toward isotropization boost What is the "seed"? invariant How it spreads? system

 η -dependent fluctuations

Isotropization does not necessarily mean thermalization. If thermalized, the system must be isotropic.

Mode Amplitudes

Elen Alexa E

Instability spreads from lower to higher wavenumber modes (conjugate to rapidity)

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

Longitudinal Size Dependence Completely free from artifacts

No dependence on the longitudinal size as it should not

Seed Magnitude Dependence **n-fluctuations are in the linear regime**

Simply proportional to the seed magnitude How to fix it in principle?

Fluctuations with Multiple Wave-Numbers Individual simulations

Simultaneous simulations

20

30

Energy Cascade Behavior?

allow allow

 $\varepsilon_E = \int \frac{\mathrm{d}\nu}{2\pi} \varepsilon_E(\nu)$ This is not gauge inv.

$$\varepsilon_{E}(\nu) \equiv \left\langle \mathrm{tr} \Big[E^{\eta a}(-\nu) E^{\eta a}(\nu) + \tau^{-2} \Big(E^{ia}(-\nu) E^{ia}(\nu) \Big) \Big] \right\rangle$$

Safe from gauge ambiguity $A_{\tau} = 0$ (gauge) $A_{\eta} \propto \tau^2 = 0$ at $\tau = 0$

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)

Kolmogorov's Picture of a Turbulence . ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿತ್ರಿಲ್ಲ ಚಿತ್ರಿಲ್ಲಿದೆ. ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿತ್ರಿಲ್ಲಾಗಿ ಚಿ **Dimensional Analysis** c.f. $[E] = l^2 t^{-2}$ Fourier component energy flow rate wave-number of the energy $[k] = l^{-1} [E(k)] = l^{3} t^{-2} [\psi] = l^{2} t^{-3}$ $E(k) \propto k^{\alpha} \psi^{\beta} \Rightarrow \alpha = -5/3, \beta = 2/3$ Energy injection E(k)

Inertial region $\sim k^{-5/3}$

c.f. bottom-up thermalization $_{\text{Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN)}} k$

Energ

Dissipation to heat

c.f. Kolmogorov's Hypothesis Scaling functions of v (viscosity) and ψ (energy flow rate) in a homogeneous isotropic turbulence

> Kolmogorov Length Scale $\sim \eta = v^{3/4} \psi^{-1/4}$ Kolmogorov Time Scale $\sim \sigma = v^{1/2} \psi^{-1/2}$

Only dependence on ψ (in an inertial region up to the Kolmogorov length scale)

Velocity *p*-point Function $S_2(r) = C \psi^{2/3} r^{2/3}$ $S_p(r) = C_p \psi^{p/3} r^{p/3}$

Evolution of Energy Spectra

i allow allow allow allow allowed allow

Initial Transverse Spectrum (gauge non-inv.)

No Turbulence

Evolution of Longitudinal Spectrum

 $g^{2} \tau^{2} \varepsilon_{E}(v) / (g^{2} \mu)^{2}$

Kolmogorov? 10^{2} 201 gut $g^2 \mu \tau$ 10 325 1807 466 2039 10^{-1} 623 $g^2 \tau^2 \, \varepsilon_E(v) \, / \, (g^2 \mu)^2$ 2278 793 2525 975 2780 10^{-1} 10-4 1168 3000 1372 3208 1585 3517 10-7 3836 10^{-2} 4167 4500 10-10 0.005 0.01 0.004 0.008 0.016 0.032 0.002 0 $v/g^2\mu\tau$ $v/g^2\mu\tau$

Feb. 18, 2012 @ Non-equilibrium Workshop (RIKEN) Fukushima-Gelis 29

Future Extensions

, మరిలుడి, మరిలుడి, మరిలుడి, మరిలు మరిలుడి, మరిలుడి, మరిలుడి, మరిలుడి, మరిలుడి, మ

Evolution at a very initial stage of the collision (Glasma instability is still too slow...)

How to demonstrate the scenario of the Bose-Einstein condensation in the Glasma simulation?

Effects from the strong fields in the CGC initial condition – topology and particle production

Initial Rise

Still weak but seen till ~1/*Qs*

Implication? Wrong choice of initial configuration? Parametric Resonance? Chaos? (Kunihiro, Muller, Yamamoto, et al)

No conclusion, but lots of questions

ng silan silan silan silan silan sila silan s

- No one really understands what is going on in the heavy-ion collision at present...
- Really thermalization? If hydro works, it is sufficient, isn't it? Why thermalization needed?
- Glasma instability is too slow. What is missing??? Some people make huge efforts to formulate initial quantum fluctuations... no hope to cure this...
- Kolmogorov spectrum relevant to reality? Only academic thing in the simulation, or...?
- Bose-Einstein scenario is not so exotic as one might feel at the first glance, but...?