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What is potential?

Potential in vacuum, e.g. QED
I Non-perturbative

0 r

ei
∫

dtA0(0) ei
∫

dtA0(r)

I One photon exchange
0 r

A(0) A(r)

Extract the potential from
I Energy shift ∆E(r)
I Time dependence of the wave function ∝ e−iV (r)t

Long range behavior V (r) ∝ 1/r
I Massless photons
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Potential in the medium?

How to extend the vacuum definition?
I Free energy → real potential for thermodynamic description
I Real-time behavior → complex potential for dynamical description

Ψ(r, t) =
〈

e−i
∫ t

0 dt′V (r;A(t′))
〉

T︸ ︷︷ ︸
medium average for A

Ψ(r, 0) −−−→
t→∞

e−iV (r)tΨ(r, 0)︸ ︷︷ ︸
oscillatory damping

Complex potential is a key quantity to the open system description
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Complex potential between heavy quark pair

1. Definition using static heavy quark pair (M = ∞)

Ψ(r, t) = 〈Qc(0, t)Q(r, t)Q†(r, 0)Q†
c(0, 0)〉T︸ ︷︷ ︸

medium average of e−iV(r;Abkg)t

−−−→
t→∞

e−iV (r)tΨ(r, 0)︸ ︷︷ ︸
oscillatory damping

2. Time dependence of real-time thermal Wilson loop at late times

r

t W (t, r) ∼ e−iV (r)t
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Complex potential in perturbation theory

Leading order (HTL-resummed) perturbation at r ∼ 1/gT [Laine et al (07)]
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Figure 1: The graphs contributing to the static potential at O(g2). Arrows indicate heavy quarks
or Wilson lines, and wiggly lines stand for gluons.

3. Details of the computation

Since we make use both of Minkowskian and Euclidean metrics, let us start by introducing

some notation to keep them apart. Minkowskian four-momenta are denoted by capital

symbols, Q, with components qµ, while Euclidean ones are denoted by Q̃, with components

q̃µ. The indices are kept down in the latter case, and our convention is q̃µ ≡ (q̃0, q̃i) ≡

(q̃0,−qi). Spacetime coordinates are denoted by x, x̃, and here our convention is x̃µ ≡

(x̃0, xi). The Euclidean scalar product is thereby naturally defined as x̃ · Q̃ ≡ x̃µq̃µ =

x̃0q̃0 − xiqi, the four-volume integral as
∫

x̃ ≡
∫ β
0 dx̃0

∫

d3x, and the thermal sum-integral as
∫

P

Q̃ = T
∑

q̃0

∫

d3q/(2π)3. Wick rotation amounts to x̃0 ↔ ix0, q̃0 ↔ −iq0. All Matsubara

frequencies we will meet are bosonic: i.e. q̃0 = 2πnT , n ∈ Z. The temperature is often

expressed as β ≡ T−1.

3.1 Wilson loop with Euclidean time direction

Let again W [z̃1; z̃0] be a Wilson line from point z̃0 to point z̃1:

W [z̃1; z̃0] = + ig

∫ z̃1

z̃0

dx̃µAµ(x̃) + (ig)2
∫ z̃1

z̃0

dx̃µ

∫ x̃

z̃0

dỹν Aµ(x̃)Aν(ỹ) + . . . , (3.1)

where Aµ = Aa
µT a and T a are the Hermitean generators of SU(Nc), normalised as

Tr [T aT b] = δab/2. The Euclidean correlation function considered is then defined as

CE(τ, r) ≡
1

Nc
Tr

〈

W [(0, r); (τ, r)] W [(τ, r); (τ,0)] W [(τ,0); (0,0)] W [(0,0); (0, r)]
〉

,

(3.2)

where we have for convenience shifted the origin by r/2 with respect to eq. (2.6). The

prefactor 1/Nc has been inserted as a normalization, guaranteeing that CE(0, r) = 1.

We can formally expand CE in a power series in the coupling constant g2, understand-

ing of course that the infrared problems of finite-temperature field theory necessitate the

use of resummed propagators in order for this procedure to be valid (cf. appendix B):

CE = C(0)
E + C(2)

E + . . . , where the superscript indicates the power of g appearing as a

prefactor. The leading order result is trivial, C(0)
E = 1. We now turn to the computation

of C(2)
E . The graphs entering at this order are shown in figure 1.

– 5 –

V (r) = −CFg2

4π

(
mD +

e−mDr

r

)
︸ ︷︷ ︸

mass shift + screening

−iCFg2T
∫

d3k
(2π)3

πm2
D(1 − eik·r)

k(k2 + m2
D)

2︸ ︷︷ ︸
Landau damping ∼ collisions

Next-to-leading order calculation [Carrington-Manuel-Soto (24)]
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Complex potential on the lattice

Analytic continuation of thermal Wilson loop to imaginary time

W (t = −iτ, r)︸ ︷︷ ︸
lattice

=

∫
dωe−ωτρ(ω, r), 0 ≤ τ ≤ β

Bayesian reconstruction of ρ(ω, r) from W (−iτ, r) → VRe(r) + iVIm(r)

not change the outcome. A unique global solution is found
based on an LBFGS minimizer with 512 bit precision
arithmetic and a step size stopping criterion of Δ ¼ 10−60.
Several of the reconstructed spectra for Nτ ¼ 24 are shown
in Fig. 1.
In the top panel of Fig. 2 the results for the real part from

the position of the lowest lying spectral peak are given by
colored open symbols. They are contrasted to the color
singlet free energies in Coulomb gauge Fð1ÞðrÞ ¼
−T log½W∥ðr; τ ¼ βÞ%, obtained on the same lattices (filled
gray circles). Since the raw values fall on top of each other
at small distances we have shifted them for better read-
ability. The error bars shown are obtained from the jack-
knife variance resulting from repeating the reconstruction
ten times excluding a different set of 10% of the underlying
measurements each. The error bands (given for T ¼ 210;
360; 629; 839 MeV) on the other hand denote the maxi-
mum variance obtained from changing three different
quantities. One corresponds to a reduction of the number
of data points along τ by 4 and 8, the second to changing
the default model normalization (×10, ×0.1) or functional
form (m ∝ const;ω−2;ω2) and the third to the reduction in
signal-to-noise ratio by excluding 10%, 20%, or 30% of the
available measurements. Note that because the spectral
reconstruction takes into account all data points along τ, our
results for T ≲ Tc are much more robust than the free
energies, which rely on a single data point. On the other
hand the Bayesian reconstruction suffers from a diminish-
ing number of data points at increasing temperature, as seen
in the error bands.
Our main observation is that even though the τ ¼ β data

point is excluded from the reconstruction, the values of
Re½V% obtained at all temperatures lie close to the color
singlet free energies. While the lowest temperature shows
no or very weak deviation from a linearly rising potential,
the values above T > Tc show clear signs of Debye
screening with increasing temperature. At r < 0.15 fm
we find little temperature dependence, as expected.

The extraction of the imaginary part from Bayesian
spectra poses an even more formidable challenge than
Re½V%. Its presence can be qualitatively inferred already
from the Euclidean correlator (see Fig. 1, top panel),
where at intermediate τ values a deviation from the
exponential decay and a finite curvature emerges. For
accurate quantitative results, the reconstruction of the
lowest lying peak needs to capture both the width and
the skewness of the Lorentzian related to nonpotential
effects.
The novel Bayesian approach for the first time allows us

to extract this functional form (see Fig. 1, bottom panel),
where the MEM yielded Gaussian-like features. Previous
tests based on mock data from momentum regularized
HTL perturbation theory show that to obtain values
accurate to ∼25%, data sets with Nτ ∼Oð100Þ data points
are required at a high precision of ΔD=D < 10−4. If fewer
points are available the reconstruction tends to under-
estimate the width, while statistical noise leads to broad-
ening. The former effect dominates at high temperatures

FIG. 1 (color online). Spectral reconstruction: on-axis Wilson
line correlator data (top) at Nτ ¼ 24 and (bottom) the spectral
functions obtained by the new Bayesian reconstruction method.

FIG. 2 (color online). Gluonic medium. Top: the shifted real
part of the static interquark potential (open symbols) compared to
the color singlet free energies (gray circles). Error bars represent
statistical uncertainty; error bands include also systematics (see
main text). Bottom: Im½V% (symbols) shifted and compared to the
HTL predictions (solid lines).
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[Rothkopf-Burnier (15)]

I VRe(r) screening (2015), no screening (2024), VIm(r) increases with r
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Complex potential on the lattice

Analytic continuation of thermal Wilson loop to imaginary time

W (t = −iτ, r)︸ ︷︷ ︸
lattice

=

∫
dωe−ωτρ(ω, r), 0 ≤ τ ≤ β

Bayesian reconstruction of ρ(ω, r) from W (−iτ, r) → VRe(r) + iVIm(r)

of msub
eff ðτ; r; TÞ at small τ, too, as required by the

lattice data.
The most general parametrization of ρlowr ðω; TÞwould be

a sum of delta functions at ω well below the dominant peak
position. However, to describe our effective mass data even
a single delta function at sufficiently small ω, ρlowr ðω; TÞ ¼
clowr ðTÞδðω − ωlow

r ðTÞÞ turns out as sufficient.
With these forms of ρpeakr ðω; TÞ and ρlowr ðω; TÞ we fitted

the lattice data on msub
eff ðτ; r; TÞ and determined the

fit parameters ReVðr; TÞ, ΓLðr; TÞ, clowr ðTÞ=ArðTÞ, and
ωlow
r ðTÞ. A sample fit is shown in Fig. 1 and details of the

fits are discussed in Appendix C. We typically find that
clowr ðTÞ=ArðTÞ < 5 × 10−4 and decreases with decreasing
r, while ωlow

r ðTÞ is between (1.8–3.8) GeV below the peak
position ω ¼ ReVðr; TÞ.
The results for ReVðr; TÞ are shown in Fig. 2 indicating a

temperature-independent real part in good agreement with
the T ¼ 0 potential. This is not completely unexpected, as
meffðτ; r; TÞ at small τ is close to the vacuum result,

cf. Fig. 1. The peak position is insensitive to the detailed
shape of ρpeakr ðω; TÞ; i.e., for a Gaussian form we find the
same peak position within errors. Thus our lattice QCD
results show that the potential’s real part is unscreened.
This observation supersedes conclusions drawn earlier by
applying the Bayesian reconstruction method [19] to older
lattice data [20] with much larger statistical errors and
larger discretization artifacts. There are distortions in
ReVðr; TÞ at the two shortest distances in lattice units
(r ¼ a; 2a), but these distortions are the same both at T ¼ 0
or T > 0, see the discussion in Appendices B and C, and do
no affect our conclusion about the absence of screening.
As discussed above the imaginary part of the potential is

defined as the width of the ground state peak at T > 0. If we
knew the spectral function exactly we could fit it in the
peak’s vicinity with a Lorentzian form, whose width
parameter would give the potential’s imaginary part.
This has been explicitly checked for the spectral function
of an infinitely heavy QQ̄ pair calculated in hard thermal
loop perturbation theory [21]. Yet the correlator is sensitive
to all parts of the spectral function, in particular to
ρlowr ðω; TÞ and to the tails of ρpeakr ðω; TÞ. For this reason,
the parameter ΓL cannot be considered as ImVðr; TÞ.
A better way to characterize ImVðr; TÞ is to consider
the cumulants of ρpeakr ðω; TÞ. The first two cumulants
are defined as c1 ¼ hωi and c2 ¼ hω2i − hωi2, where
h…i ¼

R
dω…. In the case of the Gaussian, the second

cumulant of the spectral function is the square of the width
parameter. In the case of the cut Lorentzian, it is propor-
tional to the square of the parameter ΓL. Furthermore, if
clowr =Ar is very small, ρpeakr ðω; TÞ determines the behavior
of the Wilson line correlator around τ ¼ 0. Therefore, the
second cumulant of ρpeakr ðω; TÞ determines the slope of
msub

eff ðτ; r; TÞ at small τ, which is well defined from the
lattice data, see Appendix D. Thus the square root of the
second cumulant of ρpeakr ðω; TÞ is a good proxy for the r
and temperature dependence of ImVðr; TÞ. In Fig. 3 we

FIG. 2. The real part of the potential as a function of r at
different temperatures. We show results for a ¼ 0.0280 fm
(circles), a ¼ 0.0404 fm (squares) or a ¼ 0.0493 fm (triangles).
Open symbols for ms=ml ¼ 5 and filled symbols for
ms=ml ¼ 20.

FIG. 3. The estimate of the imaginary part of the potential from the fit using cut Lorentzian form as a function of r or rT for different
temperatures. The three panels focus on different temperature ranges. The circles correspond to a ¼ 0.0280 fm, the squares to
a ¼ 0.0404 fm, and the triangles correspond to a ¼ 0.0493 fm. Open symbols forms=ml ¼ 5 and filled symbols forms=ml ¼ 20. Error
bars include a systematic contribution discussed Appendix D.

ALEXEI BAZAVOV et al. PHYS. REV. D 109, 074504 (2024)

074504-4

[HotQCD (24)]

I VRe(r) screening (2015), no screening (2024), VIm(r) increases with r
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Complex potential on the lattice

Analytic continuation of thermal Wilson loop to imaginary time
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Polarons

I In metals, a conduction electron induces crystal polarization = Polaron [Landau-Pekar (48)]
I Polaron mass � electron mass, e.g. 432 times larger in NaCl

I Polaron broadly means (not necessarily heavy) impurity quasiparticles in cold atomic gas
I Various mass ratios, e.g. Fermi polaron 133Cs in 6Li gas, Bose polaron 40K in 87Rb gas
I Tunable coupling → attractive polarons, repulsive polarons

VIEWPOINT

Bose Polarons that Strongly Interact
Researchers have used impurities within a Bose-Einstein condensate to simulate
polarons—electron-phonon combinations in solid-state systems.

by Frédéric Chevy⇤

An electron moving through a solid-state crystal
will attract nearby atoms in the lattice causing
them to vibrate. Building on earlier work, Her-
bert Fröhlich proposed in 1950 a model in which

this interaction gives rise to a quasiparticle called a polaron,
made up of an electron dressed by a cloud phonons, the
quanta of acoustic vibration [1]. The physical properties of
the polaron, for instance its mobility or its effective mass,
can be very different from those of the bare electron, leading
to strong modifications of the electrical and thermal trans-
port properties of the material. The problem is that even the
simplest case, as described by Fröhlich’s model, is too com-
plex to be solved analytically, so approximations are often
made. Researchers are thus trying to study polaron physics
using analog systems consisting of gases of ultracold atoms.
The results of these simulations provide insights into the
underlying physics, as well as offer verification for the ap-
proximations made in polaron models.

In two independent works, groups from Denmark [2] and
Colorado [3] have demonstrated an atomic implementation
of polaronic physics by immersing an impurity inside a
Bose-Einstein condensate (see Fig. 1). The impurity interacts
with the condensate in a way that is similar to an electron in
a crystal. Since, like solids, the low-energy modes of a Bose-
Einstein condensate (BEC) are phonons, this system can be
described by Fröhlich’s model in the regime of weak interac-
tions. But by tuning the strength of interactions, the research
teams could also access the regime of strong interaction be-
tween the impurity and the BEC, revealing the influence of
many-body correlations. The strongly interacting regime of
Bose polarons is largely an unchartered territory that may
provide insight into superfluid physics, such as in supercon-
ductors and liquid helium.

Both these works build on decade-old studies that used
ultracold atomic systems to study the fermionic polaron,
which is an impurity interacting with an ensemble of spin-
polarized fermions [4]. These fermions obey the Pauli

⇤Laboratoire Kastler Brossel, ENS-PSL Research University,
CNRS, UPMC, Collège de France, 24, rue Lhomond, 75005 Paris,
France

Figure 1: Polarons are quasiparticles that result from interactions
between an impurity and a surrounding bath of particles. In the
case of a crystal (left), the impurity is an electron that disturbs the
position of the atoms of the crystal. Researchers can mimic this
solid-state polaron using ultracold atoms (right). The impurity in
this case is an atom that interacts with surrounding gas atoms,
either drawing them towards itself or pushing them away. The net
effect can be a particle with an effective mass that is different from
that of the isolated impurity. (APS/Carin Cain)

principle, which prevents two or more identical fermions
from being at the same place. This principle does not apply
to bosons, which makes the case of bosonic polarons more
challenging, both theoretically and experimentally. Unlike
in a Fermi gas, a Bose gas allows interactions between three
atoms. These three-body correlations are both a blessing and
a curse. On the one hand, they lead to fascinating physical
phenomena, such as the celebrated Efimov bound states, a
family of universal trimers existing even in the absence of
two-body bound states [5]. On the other hand, they allow
the formation of bound molecules that effectively remove
atoms from the gas. These three-body recombination losses
can reduce significantly the lifetime of the polaron system in
the strongly interacting regime.

To reduce the effect of these losses during their mea-
surement, the two groups have used a scheme previously
developed for the study of fermionic polarons [6]. They
first prepared the impurity in a spin state that essentially
doesn’t interact with the surrounding condensate. Then, us-
ing a short radio frequency pulse, they flipped the spin of
the impurity, placing it in a spin state that interacts with
the condensate. In their experiment, Ming-Guang Hu and

physics.aps.org c� 2016 American Physical Society 28 July 2016 Physics 9, 86

Heavy impurities can simulate heavy quark systems in the QGP
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Polarons in a Fermi gas

Contact interaction ∝ n̂n̂Φ

Ĥ =

∫
d3x 1

2m
|∇ψ̂f |2 − µ|ψ̂f |2 + g ψ̂†

f ψ̂f Φ̂
†Φ̂︸ ︷︷ ︸

= n̂n̂Φ

We call complex “potential” after subtracting 2×single particle self energies

V̄ (r) ≡ lim
t→∞

i
Ψ(r, t)

∂

∂t
Ψ(r, t) → V (r) ≡ V̄ (r)− V̄ (∞)

Perturbative formula by retarded Green’s function

VRe(r) = −g2 lim
ω→0

GR(r, ω), VIm(r) = −g2 lim
ω→0

2T
ω

ImGR(r, ω)

GR(r, ω) ≡ i
∫ ∞

0
dteiωt〈[n̂(r, t), n̂(0, 0)]〉
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Complex potential in a Fermi gas

Complex potential [Sighinolfi et al (22)]

VRe(r) = −g2
∫

k,q
ei(k−q)·r nF(ξk)− nF(ξq)

−ξk + ξq
→ virtual process, RKKY interaction

VIm(r) = −2g2T
∫

k,q
ei(k−q)·r2πδ(ξk − ξq)

1
T

nF(ξk)
[
1 − nF(ξk)

]
→ real process

5

In summary, we obtain practically useful formulae (17)
and (18) in terms of the medium retarded Green’s func-
tion (16). In the following sections, we derive the in-
medium potential by computing the retarded Green’s
function with the use of the imaginary-time formalism.

Some remarks are in order. First, in the weak
impurity-medium coupling regime, the in-medium poten-
tial V (r) is determined by the dynamical properties of
the medium without the impurities [recall that the time-
evolution of �n̂(x, t) is controlled by Ĥmed]. Making use
of this viewpoint, we will give a proposal to experimen-
tally investigate an imprint of the in-medium potential on
medium dynamics with a single impurity (see Sec. IVC).
Second, the obtained formula for the in-medium potential
(15) provides a natural generalization of the well-known
formula at T = 0. In fact, using the time-ordered prod-
uct, one finds Eq. (15) to be

V (r) = �ig2
Z 1

�1
dt hT�n̂(r, t)�n̂(0, 0)i. (22)

In the zero temperature limit, the thermal average re-
duces to the ground state average, yielding a familiar
result at weak coupling [53]. Finally, Eq. (18) is pro-
portional to the temperature T . As a result, the imag-
inary part representing the dissipative e↵ect is peculiar
to finite-temperature media.

III. EVALUATING IN-MEDIUM POTENTIAL

In this section, we consider two representative polaron
systems realized in ultracold atom systems and evalu-
ate the in-medium potential (17) and (18) by comput-
ing (16): impurities in a non-interacting Fermi gas in
Sec. III A and those in a superfluid in Sec. III B. They
correspond to Fermi and Bose polaron experiments real-
ized in cold atoms [9–18]. These two examples exhibit
a common power-law decay (/ r�2) in the imaginary
part of the in-medium potential over long distances. In
Sec. III C, we discuss the origin behind this novel uni-
versal power-law decay, which is commonly shared by a
wide class of physical systems.

A. Polarons in Fermi gas

The polaron problem has attracted renewed inter-
ests [19–22] As a warm-up, let us start from a simple
fermionic medium and show how the imaginary poten-
tial appears by microscopic processes. An impurity im-
mersed in a single-component non-interacting Fermi gas
is called the Fermi polaron, which is realized as a single
spin-up fermion in a Fermi sea of spin-down atoms in ul-
tracold atoms [9–13]. Let  ̂f (x) be a field operator for
a single-component fermion of the medium. Then, the

q k + q

FIG. 1. Feynman diagram representing the exchange of the
particle-hole fluctuation (solid lines), which induces the po-
tential at O(g2) between two impurities (amputated bold solid
lines).

Hamiltonian of the system reads

Ĥ =

Z
d3x


1

2m
|r ̂f |

2
� µ| ̂f |

2 + g ̂†
f
 ̂f �̂

†�̂

�
, (23)

where m and µ denote the mass and chemical potential
of the medium fermions. In the present setup, we can
exactly compute Eqs. (17) and (18) thanks to the non-
interacting property of the single-component fermion.

To compute the retarded Green’s function (16), we rely
on the imaginary-time formalism and perform the ana-
lytic continuation. For that purpose, let us introduce the
Matsubara Green’s function for the medium fermion as

S(k, i!F

n
) =

k
=

1

i!F
n
� ⇠k

, (24)

where we introduced the fermionic Matsubara frequency
!F

n
= 2⇡(n+ 1

2 )T with a medium temperature T and the

energy measured from the Fermi sea ⇠k = k2

2m � µ.

The Matsubara Green’s function for the number den-
sity operator n̂ =  ̂†

f
 ̂f corresponding to Eq. (16) is given

by the diagram shown in Fig. 1 with the impurity legs
amputated and reads

G(k, i!B

n
) = T

X

l

Z

q
S(i!B

n
+ i!F

l
,k + q)S(i!F

l
, q)

= �

Z

q

nF (⇠k+q)� nF (⇠q)

i!B
n
� ⇠k+q + ⇠q

, (25)

where we defined the Matsubara frequency for bosons
!B

n
= 2⇡nT , the Fermi distribution function nF (E) ⌘

1/(e�E + 1), and a shorthand notations for the integral
as

R
k ⌘

R
d3k/(2⇡)3.

We then perform the analytic continuation and the
Fourier transformation to obtain the retarded Green’s
function in real space as

GR(r,!) =�

Z

k,q
ei(k�q)·r nF (⇠k)� nF (⇠q)

! � ⇠k + ⇠q + i0
. (26)

Using Eqs. (17) and (18) together with the formula

T /TF  0.1

T /TF  0.5

T /TF  1.0

∝
1

r2

0.10 1 10 100 1000
kFr

10-6

10-4

0.01

1

-VIm (r)

TF (kF aIM)2

VIm ∝ r−2 at long distance
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Polarons in a superfluid

Contact interaction ∝ n̂n̂Φ

Ĥeff =

∫
d3x n̂

2m
(∇ϕ̂)2 + ε(n̂) + gn̂Φ̂†Φ̂

'
∫

d3x n̄
2m

(∇ϕ̂)2 +
1

2χ
(δn̂)2 +

1
2m

δn̂(∇ϕ̂)2 + gn̄Φ̂†Φ̂ + gδn̂Φ̂†Φ̂

Maybe, effective Lagrangian is easier to understand the physics

Leff = Lph(ϕ) + Lpol(Φ) + g
[
√
χ∂tϕ+

1
2m

(∇ϕ)2
]
Φ†Φ︸ ︷︷ ︸

contact interaction nnΦ

,
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Complex potential in a superfluid

Complex potential: imaginary part [Akamatsu-Endo-Fujii-Hongo (24)], real part [Fujii-Hongo-Enss (22)]

VRe(r) = − g2

m2

∫
k,q

ei(k−q)·x (k · q)2

4c2
s kq

[
1 + n(csk) + n(csq)

cs(k + q)
− n(csk)− n(csq)

cs(k − q)

]
VIm(r) = −2πg2

m2

∫
k,q

ei(k−q)·r (q · k)2

4E2
k

δ(Ek − Eq)[1 + nB(Ek)]nB(Ek)

7

T /TF  0

T /TF  0.1

T /TF  0.5

T /TF  1.0

2 4 6 8
kFr

-1.5

-1.0

-0.5

VIm (r)

T (kF aIM)2

(a)

T /TF  0.1

T /TF  0.5

T /TF  1.0

∝
1

r2

0.10 1 10 100 1000
kFr

10-6

10-4

0.01

1

-VIm (r)

TF (kF aIM)2

(b)

FIG. 2. (a) The imaginary part of the induced potential for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (blue, green, and red
curves), normalized by T . The dashed curve shows the zero-temperature limit of the imaginary potential. (b) The imaginary
part of the induced potential at long distances for Fermi polarons with T/TF = 0.1, 0.5, and 1.0 (blue, green, and red curves),
normalized by TF . The dashed curve shows the power-law decay r

�2, which matches those of the induced potential.

Considering the fluctuation on the top of the global
equilibrium, we expand n̂(x) = n̄ + �n̂(x) and expand
✏(n̂) at the quadratic order. As a result, the e↵ective
Hamiltonian turns into

Ĥe↵ '

Z
d3x


n̄

2m
(r'̂)2 +

1

2�
(�n̂)2 +

1

2m
�n̂(r'̂)2

+ gn̄�̂†�̂+ g�n̂�̂†�̂

�
, (36)

where we defined the inverse charge susceptibility ��1 =
✏00(n̄) and omit the constant term ✏(n̄) and the higher-
order term with more than three �n̂. Since we are in-
terested in the long-distance behavior, we can regard the
interaction term appearing in the first line of Eq. (36) as a
perturbation. We emphasize that this treatment follows
from the derivative expansion [63], and does not require a
small coupling constant among medium particles. Based
on this, we evaluate the retarded Green’s function for the
number density operator n̂(x).

Again, we employ the imaginary-time formalism, in
which we have a set of the Mastubara Green’s functions
given by

�''(k, i!
B

n
) =

k
=

��1

(!B
n
)2 + E2

k

,

�nn(k, i!
B

n
) =

k
=

�E2
k

(!B
n
)2 + E2

k

,

�'n(k, i!
B

n
) =

k
=

!B

n

(!B
n
)2 + E2

k

,

�n'(k, i!
B

n
) =

k
=

�!B

n

(!B
n
)2 + E2

k

, (37)

where we defined Ek ⌘ cs|k|. From Eq. (36), we also
read o↵ the following three-point interaction vertex join-

q k + q ' q k + q

FIG. 3. Feynman diagram representing the exchange of the
phonon (solid lines), which induces the potential between two
impurities (amputated bold solid lines) at O(g2). At low fre-
quencies, the left diagram can be e↵ectively reduced to the
right one (see the main text).

ing two phonon and one number density fluctuations:

qk =
1

2m
k · q. (38)

We now perform a perturbative expansion with respect
to the medium interaction term (38). In this expansion,
the leading one-loop diagram that contributes to the in-
medium potential is given in the left diagram of Fig. 3.
Recalling the zero-frequency limit in Eqs. (17) and (18),
it is su�cient to evaluate the low-frequency behavior of
the retarded Green’s function. At vanishing frequencies,
the propagation of the density fluctuation �n̂(x) is sup-
pressed as �nn(k, i!B

n
= 0) = �. Thereby, the Green’s

function of the number density fluctuation directly con-
nected to the impurity lines on the left diagram of Fig. 3
can be replaced with �nn(k, i!n) ' � at low frequencies.
As a result, the resulting Feynman diagram contributing
to the in-medium potential is shown on the left of Fig. 3,
which agrees with the diagram computed in Ref. [38] to
evaluate the real part of the potential.

Having identified the relevant one-loop diagram for the
in-medium potential, we now find the corresponding Mat-
subara Green’s function as

T m cs
2  0.6

T m cs
2  0.8

T m cs
2  1.0

∝
1

r2

0.01 0.10 1 10 100 1000
kTr

10-4

0.1

100

-VIm (r)

mcs
2 (kT aIM)2

Two phonon exchange gives VRe ∝ r−6 and VIm ∝ r−2 at long distance
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Universal imaginary potential

Polarons in a Fermi gas and in a superfluid

T /TF  0.1

T /TF  0.5

T /TF  1.0

∝
1

r2

0.10 1 10 100 1000
kFr

10-6

10-4

0.01

1

-VIm (r)

TF (kF aIM)2

T m cs
2  0.6

T m cs
2  0.8

T m cs
2  1.0

∝
1

r2

0.01 0.10 1 10 100 1000
kTr

10-4

0.1

100

-VIm (r)

mcs
2 (kT aIM)2

Due to gapless excitation of a particle-hole pair? Due to massless nature of phonons?
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A counterexample

Quarkonium in QGP [Laine+ (07), Beraudo+ (08), Brambilla+ (08)], VIm ∝ +1/r2 at large distance

∝
1

r2

0.10 1 10 100 1000
mDr

10-6

10-5

10-4

0.001

0.010

0.100

VIm (r)

CF g2 T

Gluons are massive due to screening → no massless excitations
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Physics behind the universal imaginary potential at long distances
[Akamatsu-Endo-Fujii-Hongo (24)]

Common properties: 2-body collisions

9

T m cs2  0.6

T m cs2  0.8

T m cs2  1.0

0.5 1.0 1.5 2.0
kTr

-40

-30

-20

-10

VIm (r)

mcs2 (kT aIM)2

(a)

T m cs2  0.6

T m cs2  0.8

T m cs2  1.0

∝
1

r2

0.01 0.10 1 10 100 1000
kTr

10-4

0.1

100

-VIm (r)

mcs2 (kT aIM)2

(b)

FIG. 4. The imaginary part of the induced potential for polarons in the superfluid. (a) at short distances and (b) long
distances. Black, blue, and red curves show results for T/(mc

2
s) = 0.6, 0.8, and 1.0. In panel (b), The dashed curve shows the

power-law decay r
�2, which matches the asymptotic behaviors of the induced potential.

the (electric) gluon acquires Debye screening mass bring-
ing about the exponential decay for the real potential.
Namely, the gapless nature of the medium excitations is
unnecessary.

As we will show below, the power-law behavior of
VIm(r) at long distances originates from the common
structure of the low-energy scattering between the impu-
rity and the medium excitation. To clarify this origin, let
us consider the imaginary potential in momentum space

eV F

Im(k) / �g2
Z

q
�(⇠q+k � ⇠q)nF (⇠q)

⇥
1� nF (⇠q)

⇤
, (46)

eV SF
Im (k) / �

g2

m2

Z

q

(q2 + k · q)2

E2
q

�(Eq+k � Eq)

⇥ nB(Eq)[1 + nB(Eq)], (47)

which follow from Eqs. (28) and (41), respectively. The
asymptotic behavior at long distances is then specified
by that at low momentum regions k ' 0.

It is crucial to notice that the above results allow
a scattering interpretation: The imaginary part is ex-
pressed in terms of the scattering amplitude of the
medium excitation with the static impurity as shown in
Fig. 5 (see, e.g., Ref. [64] for the so-called cutting rule).
The integrand is composed of three parts; (a) the delta
function imposing the energy conservation of the on-shell
medium excitation, (b) the (properly normalized) scat-
tering cross section part,2 and (c) thermal distributions
for incoming and outgoing excitations.

Let us now investigate the low-k behaviors of these
building blocks. We first note that thermal distributions
are k-independent, and thus, the low-momentum behav-
ior is controlled by the delta function and cross section.

2 Note that E�2
q appears for the superfluid case from the proper

normalization with �(Eq+k � Eq).

Im

2

66664
q k + q

3

77775
=

�������� q k + q

��������

2

FIG. 5. Scattering interpretation of the imaginary part of
the induced potential. Taking the imaginary part results in
cutting the diagram with the dashed line in the right panel.
As a result, the imaginary part is given by the right panel,
which gives a cross section of the on-shell medium excitation
(solid lines) scattered by the heavy static impurity (ampu-
tated bold lines).

At low momentum k ' 0, one can approximate the delta
functions as

�(⇠q+k � ⇠q) ! �(q · k/m) =
m

qk
�(cos ✓q), (48)

�(Eq+k � Eq) ! �(csq · k/q) =
1

csk
�(cos ✓q), (49)

yielding the k�1 factor (✓q is the angle between q and k,
which is fixed ✓q = ⇡/2 by performing the q-integration).
As a result, if the remaining part—the low-energy scat-
tering cross section—approaches to the non-vanishing
constant, the above k�1 factor governs the long-distance
behavior, leading to r�2 behavior of VIm(r) in coordinate
space.
As the above discussion clarifies, the crucial point here

is whether the low-energy scattering cross section gives
the finite nonvanishing contributions at the vanishing
momentum k ! 0. The presence of nonzero contribu-
tions means that on-shell medium excitation can scatter
o↵ an immobile impurity with zero energy transfer, i.e.,
(Eq, q) ! (Eq, q + k), at low momentum k ' 0 (see the
right panel of Fig. 5). Indeed, the interaction vertices
between the impurity and the medium excitation inves-

ṼIm(k) ∝ −
∫

q
|Mk+q,q |2 δ(Ek+q − Eq)︸ ︷︷ ︸

instantaneous pot.

n(Eq)
[
1 ± n(Ek+q)

]
,

Long distance limit (k → 0)
I Delta function: δ(Ek+q − Eq) = δ(cos θq)/vqk
I The other parts approach constant 6= 0
I In total, ṼIm(k) ∝ 1/k → VIm(r) ∝ 1/r2

Universal imaginary potential 1/r2 in the collisional regime
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Proposal for observation in cold atomic experiment?

Radio-frequency interferometry signal

I (r, t) ' 1 + eV̄Im(r)t cos(V̄Re(r)t)

Spectral width of bipolaron at low temperature

1
2
Γ ' −

∫
d3r |Ψb(r)|2︸ ︷︷ ︸

bound state

V̄Im(r)

Medium density fluctuation induced by a single impurity nΦ(r, t) = gθ(t)δ(r)

δn(r, t) ' −g
∫

t′>0
GR(r, t − t′) ' 1

g

[
1 − e−2TVRe(r)t/VIm(r)

]
VRe(r)
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Does the universal behavior r−2 persist at the longest distances?

Contact interaction ∝ nnΦ

1. n is a conserved density → hydrodynamics governs the longest distances

ṼIm(k) ∝ lim
ω→0

1
ω

ImGR(k, ω)

2. Hydrodynamic peaks [Landau-Placzek (34)]

1
ω

ImGR(k, ω) ∝ cv
cp

c2Γk4

(ω2 − c2k2)2 + (ωΓk2)2︸ ︷︷ ︸
Brillouin peaks

+

(
1 − cv

cp

)
DTk2

ω2 + (DTk2)2︸ ︷︷ ︸
Rayleigh peak

+ · · ·

ṼIm(k) ∝ 1
DTk2 (Rayleigh peak) → VIm(r) ∝ 1

DTr
3. Near the critical point (model F)

cv
cp

∝ 1
c2χT

→ 0 (Landau Placzek ratio), DT → ∞ (critical slowing down)
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Spectrum by light scattering
8.4 Hydrodynamics of simple fluids 453

•u

0 0

(a) (b)

Fig. 8.4.2. Normalized light scattering intensity
nSm(q,w)/(dn/dp)T = [2h/(l - e-^))nxl(q(o)/(dn/dp)T as a function of co
at fixed q. (a) Far from the critical point, where the Brillouin peaks dominate,
(b) Closer to the critical point, where the Rayleigh peak dominates.

9 Two-component fluids

In two-component fluids containing molecules of mass ma and m*,, there are two
conserved mass densities, pa and p&, and, correspondingly, two mass currents, ga

and gt» related by the conservation laws

£ + v«. - o,
^ + V - & = 0. (8.4.67)

Only the total momentum,

g = ga + g*, (8.4.68)
rather than the momenta of the individual species, is conserved. The momenta
for the individual species can then be expressed in terms of the total momentum
g and a relative momentum J :

PJ = Pbga ~ Pagb, (8.4.69)

where p = pa + pb is the total mass density. As in one-component fluids, the
total momentum density and velocity are related by g = pv. Following the
same procedures as for one-component fluids, we obtain the equation for entropy
production,

= - Q - V T / T - J - V a - (njt - pdtj - v,gj)VtVj, (8.4.70)

where a = aa — txb is the difference of the chemical potentials per unit mass of the
two species. Q and J have the same sign under time reversal, and there will be

5!!�   �:6�:�4 ������
 ����
���������	
�����."176 53��:97693�1$��081�6�43�/96#3� 6!$�.�3  

[Figure taken from Chaikin-Lubensky]
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Three regimes near the critical point [Lau-Akamatsu-Endo-Fujii-Hongo, in prep.]

lnVIm

ln r

collisional regime ∝ r−2

r ∼ `mfp

scaling regime ∝ r−#

r ∼ ξ

hydrodynamic regime ∝ r−1

24 / 25



Summary

Universal power law regimes for VIm(r) ∝ r−2 is due to collisions
I Collisional regime: VIm(r) ∝ r−2 at r � `mfp
I Scaling regime (for ∝ nnΦ interaction): VIm(r) ∝ r−# at `mfp � r � ξ

I Hydrodynamic regime (for ∝ nnΦ interaction): VIm(r) ∝ r−1 at ξ � r

Proposals for experimental observations
I Radio-frequency interferometry signal
I Spectral width of bipolaron at low temperature
I Medium density fluctuation induced by a single impurity
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