Thermodynamic fluctuations in the relativistic grand-canonical ensemble Lorenzo Gavassino

Collaborators:

- Nicki Mullins
- Gabriel Rocha
- Mauricio Hippert
- Jorge Noronha

VANDERBILT UNIVERSITY Based on: Phys. Rev. D **109**, 125002 (2024) Phys. Rev. D **110**, 016020 (2024) Phys. Rev. D **108**, 076013 (2023)

Funding: Vanderbilt Seeding Success Grant

We already know a lot...

A very good reference:

Kovtun (2012), "Lectures on hydrodynamic fluctuations in relativistic theories"

However, our understanding of hydrodynamics has evolved considerably!

- Mathematics side (causality, stability, well-posedness...);
- Physics side (stable hydrodynamics frames, long-lived non-hydrodynamic modes, analytic results on gradient expansion, exact results in kinetic theory...);

New challenging questions, e.g.:

- «Is fluctuating BDNK unstable?» $\langle (\delta A)^2 \rangle < 0$!?!
- «How do we make a fluctuating theory causal?»

Often, the best way forward is to go back to the basics (i.e. to let Landau guide us).

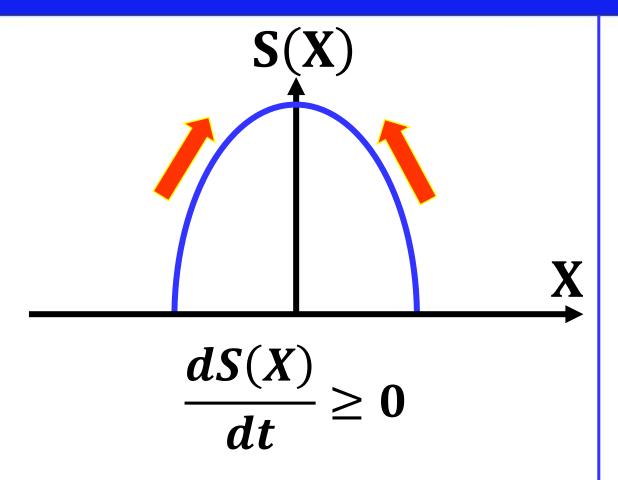
Spoiler alert!

If the fluctuating theory is constructed very carefully (details later 😂), the following facts hold:

- 1. All correlators exist and are well-defined distributions;
- 2. All uncertainties are non-negative definite by construction: $\langle \delta A^2 \rangle \ge 0$;
- 3. The fluctuation-dissipation theorem (in all its formulations) is recovered;
- 4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;
- 5. The fluctuating theory is causal, in the sense that the fluctations cannot be used to send information faster than the speed of light;
- 6. The fluctuating theory is stable, in the sense that the macrostate $\psi = \langle \psi \rangle$ is the most probable state, and the fluctations do not "condense";
- 7. The disperison relations fulfill all QFT-based microcausality criteria;
- 8. The Martin-Siggia-Rose effective action is well-defined and well-behaved;
- 9. There is a KMS-type symmetry for the theory.

Quick introduction to fluctuations

Two not so consistent pictures



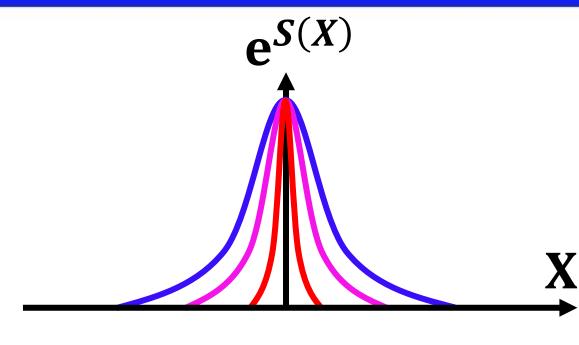
Irreversible dynamics: Entropy grows until it is maximised $Prob(X) \propto e^{S(X)}$

 $e^{S(X)}$

Statistical mechanics: All microscopic states have equal probability

They agree only for $N \to \infty$

$$Prob(X) = \frac{e^{S(X)}}{\int e^{S(X)} dX} = \frac{e^{Ns(X)}}{\int e^{Ns(X)} dX}$$
$$\approx \frac{e^{-\frac{1}{2}Ns''X^2}}{\int e^{-\frac{1}{2}Ns''X^2} dX} = \sqrt{\frac{Ns''}{2\pi}} e^{-\frac{1}{2}Ns''X^2}$$



 $\langle X^2 \rangle \approx \frac{1}{N \, {\rm s}^{\prime\prime}}$

If $N \to \infty$, then $Prob(X) \to \delta(X)$

However, at finite N, there are corrections. In particular, X acquires a finite uncertainty:

Fluctuation-dissipation theorem in a toy model

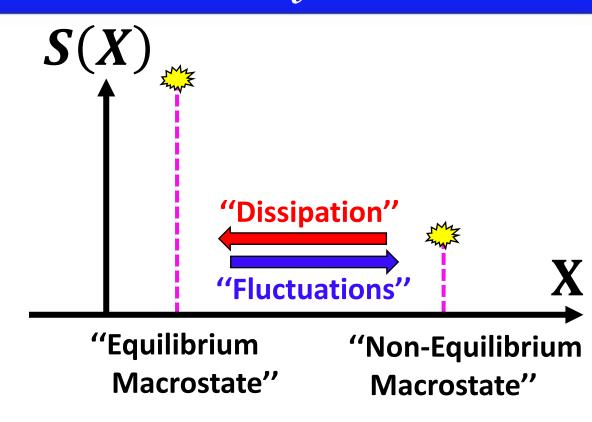
Only two macrostates:

- "Equilibrium" (i.e. high entropy);
- "Non-Equilibrium" (i.e. low entropy).

Markovian evolution equation: $\frac{d}{dt} \begin{bmatrix} P_E \\ P_N \end{bmatrix} = \begin{pmatrix} -R_{E \to N} & R_{N \to E} \\ R_{E \to N} & -R_{N \to E} \end{pmatrix} \begin{bmatrix} P_E \\ P_N \end{bmatrix}$

Stationary state:

$$\begin{bmatrix} \boldsymbol{P}_E \\ \boldsymbol{P}_N \end{bmatrix} = \begin{bmatrix} \boldsymbol{e}^{\boldsymbol{S}_E} \\ \boldsymbol{e}^{\boldsymbol{S}_N} \end{bmatrix}$$



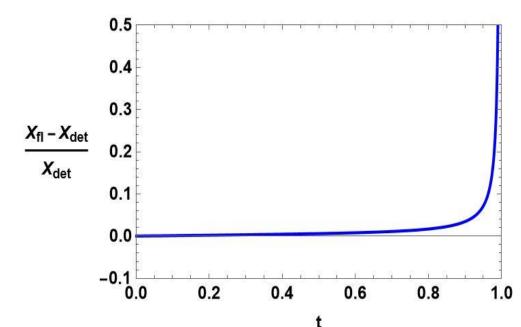
FDT:
$$R_{E \to N} = e^{S_N - S_E} R_{N \to E}$$

Why should this be relevant for hydrodynamics?

- Hydrodynamics focuses on average values: $\partial_{\mu}\langle J^{\mu}\rangle = 0$ Fluctuating theories compute uncertaintees: $C^{\mu\nu} = \langle J^{\mu}J^{\nu}\rangle - \langle J^{\mu}\rangle \langle J^{\nu}\rangle$ Why should hydrodynamics care about fluctations? Two reasons:
- 1. Hydrodynamics is non-linear;
- 2. Hydrodynamics studies evolution over long times.

Example:
$$\dot{X} = X^2 => \langle \dot{X} \rangle = \langle X^2 \rangle = \langle X \rangle^2 + \Delta X^2$$

The evolution of $\langle X \rangle$ is not a function of $\langle X \rangle$ alone.
You need to know also ΔX .
Suppose that ΔX is does not depend on time.
Then: $X(t) = \Delta X \tan \left[\arctan \left(\frac{X(0)}{\Delta X} \right) + t \Delta X \right]$
"Secular effect": The impact of ΔX cumulates in time

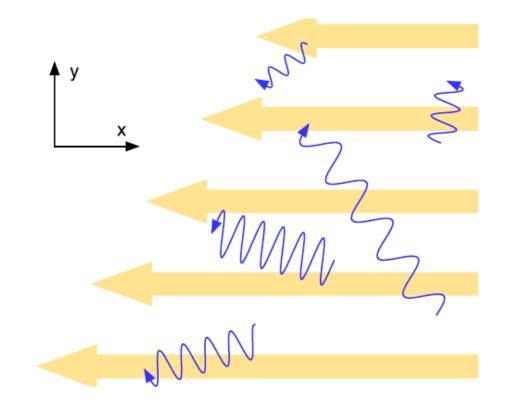


A famous example: The "stickiness of sound"

Fluctuation-induced sound waves diffuse just like particles, and lead to a renormalization of the shear viscosity!

$$\eta_{ren} \approx \eta_{bare} + rac{ ext{coefficient}}{\eta_{bare}^2}$$

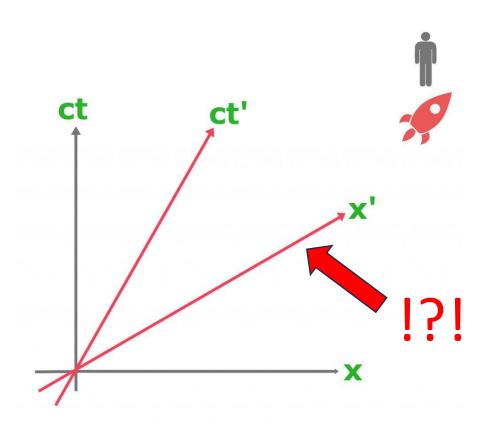
Kovtun, Moore, Romatschke: PRD (2021)



Credit: Kovtun (2012), "Lectures on hydrodynamic fluctuations in relativistic theories"

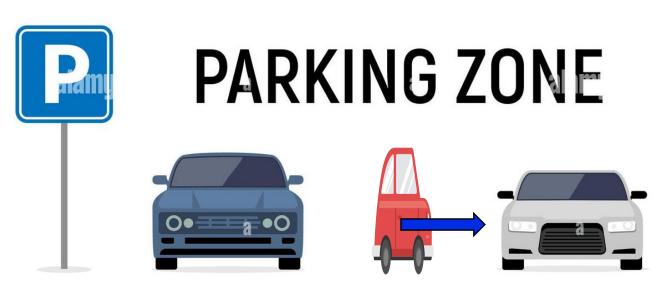
Relativity introduces subtleties

Relativity of Simultaneity



$$\begin{cases} t' = \gamma(t - vx) \\ x' = \gamma(x - vt) \end{cases}$$

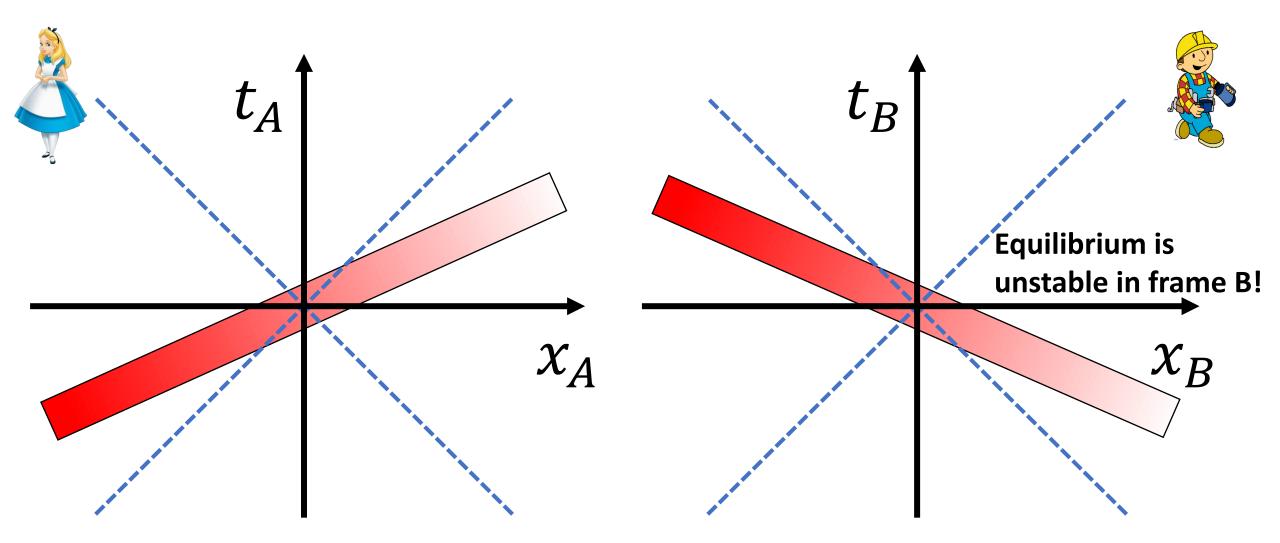
Some intuitive concepts are not invariant (e.g. "fitting in")



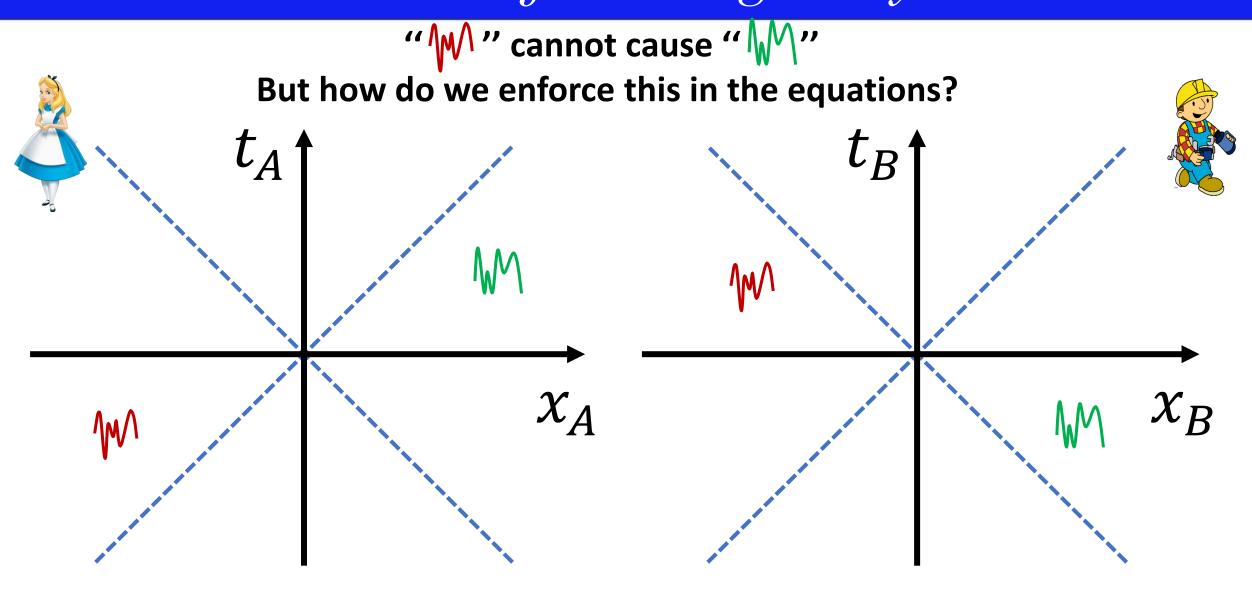
Parking at rest, moving car

Car at rest, moving parking

Without causality, "stability" is not invariant!



What makes a fluctuating theory causal?



Relativistic grand-canonical probabilities: Formal derivation

An old trick

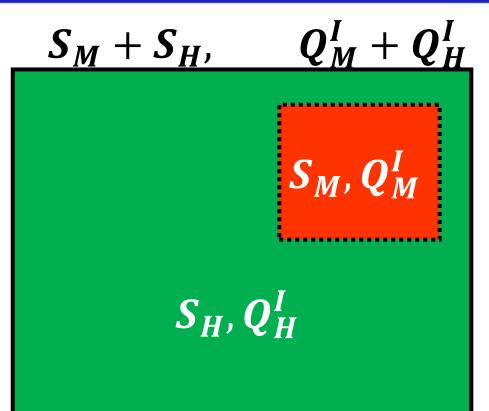
We split an isolated system in two parts: Medium (M) and Heat-bath (H); $H \gg M$.

Noether Charges:
$$Q^{I} = \{N_{b}, Q_{e}, p^{\mu}, J^{\mu\nu}, ...\}$$

Ideal heat-bath: $S_H(Q_H^I) = -\alpha_I^* Q_H^I + \text{constant}$ (α_I^* are constants)

Second law of thermodynamics:

$$0 \leq \Delta S_{tot} = \Delta S_M + \Delta (-\alpha_I^* Q_H^I) = \Delta S_M - \alpha_I^* \Delta Q_H^I = \Delta S_M + \alpha_I^* \Delta Q_M^I = \Delta (S_M + \alpha_I^* Q_M^I) = \Delta \Phi$$



Relativistic extremum principle

The equilibrium state of a Medium (*M*) in contact with a bath having intensive parameters α_I^* is the state that maximizes $\Phi = S_M + \alpha_I^* Q_M^I$ for unconstrained variations.

Let us use this principle to find the Grand-Canonical density matrix $\hat{\rho}_{GC}$: $S_M = -Tr(\hat{\rho} \ln \hat{\rho})$ $Q_M^I = Tr(\hat{\rho} \ \hat{Q}^I)$

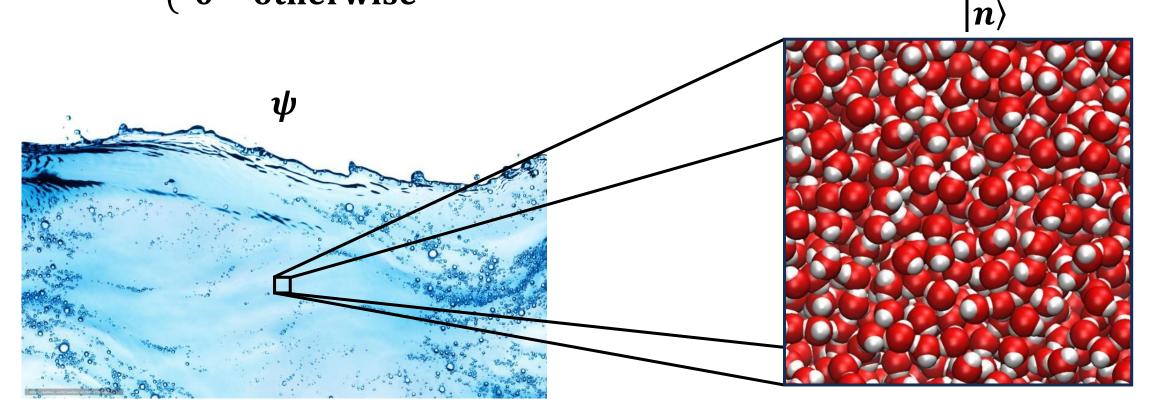
$$\widehat{\boldsymbol{\rho}}_{GC} = \frac{e^{\alpha_I^{\star} \widehat{Q}^I}}{Z}$$

Generalization of $\hat{\rho}_{GC} = \frac{e^{-\beta^{\star}(\hat{H}-\mu^{\star}\hat{N})}}{Z}$ with arbitrary Noether charges.

Probability of macrostates

Each macroscopic state ψ has an associated projector $\widehat{P}(\psi)$:

 $\widehat{P}(\psi)|n\rangle = \begin{cases} |n\rangle & \text{if } |n\rangle \text{ is a microscopic realization of } \psi \\ 0 & \text{otherwise} \end{cases}$



Probability of macrostates

is

Each macroscopic state ψ has an associated projector $\widehat{P}(\psi)$:

$$\widehat{P}(\psi)|n
angle = \begin{cases} |n
angle & ext{if } |n
angle ext{ is a microscopic realization of } \psi \\ 0 & ext{otherwise} \end{cases}$$

The corresponding probability of occupation

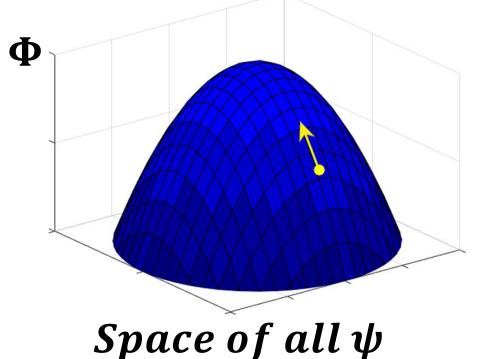
$$P(\psi) = Tr[\widehat{\rho}_{GC}\widehat{P}(\psi)]$$

$$= Tr\left[\frac{e^{\alpha_{I}^{*}\widehat{Q}^{I}}}{Z}\widehat{P}(\psi)\right]$$

$$\approx Tr[\widehat{P}(\psi)]\frac{e^{\alpha_{I}^{*}Q^{I}(\psi)}}{Z}$$

$$= \frac{e^{S(\psi) + \alpha_{I}^{*}Q^{I}(\psi)}}{Z}$$

$$P(\psi) = \frac{e^{\Phi(\psi)}}{Z}$$



Quick example: Chemical potential of non-conserved ultrarelativistic particles

Gas of non-conserved particles (like photons, but with Boltzmann statistics) at fixed temperature T, whose chemical potential $\mu(=\psi)$ fluctuates: $S(\mu) = VaT^3 e^{\mu/T} (4 - \mu/T)$ $U(\mu) = 3VaT^4e^{\mu/T}$ 1.0 $\Phi(\mu) = VaT^3 e^{\frac{\mu}{T}} \left(1 - \frac{\mu}{T}\right)$ 0.8 $P(\alpha) 0.6$ Therefore ($\alpha = \mu/T$): *P*(0) 0.4 $\frac{P(\alpha)}{P(0)} = \frac{exp(N_{eq}e^{\alpha}(1-\alpha))}{exp(N_{eq})} \approx exp\left(-\frac{N_{eq}\alpha^2}{2}\right)$ 0.2 0.0 Typical fluctation: $\langle \alpha^2 \rangle \approx N_{eq}^{-1}$

0

2

3

-2

_1

We are interested in applications to continuum mechanics

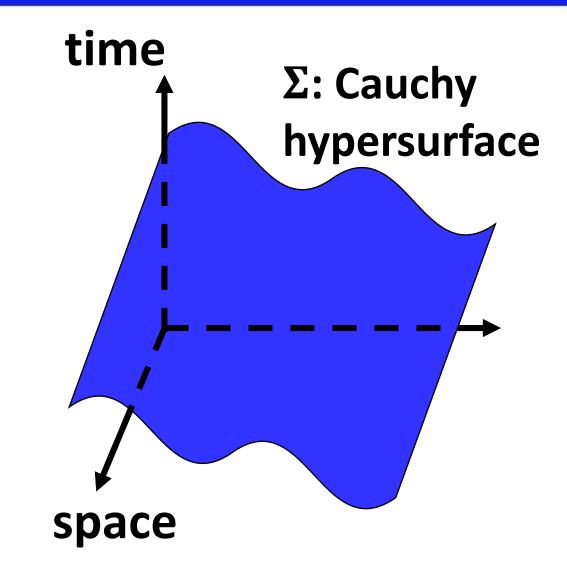
Recall:
$$P[\psi] = \frac{e^{\Phi[\psi]}}{Z} = \frac{e^{S[\psi] + \alpha_I^* Q^I[\psi]}}{Z}$$

Express extenstensive variables as fluxes of corresponding currents:

$$S = \int_{\Sigma} s^{\mu} d\Sigma_{\mu} \qquad Q^{I} = \int_{\Sigma} J^{I\mu} d\Sigma_{\mu}$$

Result:

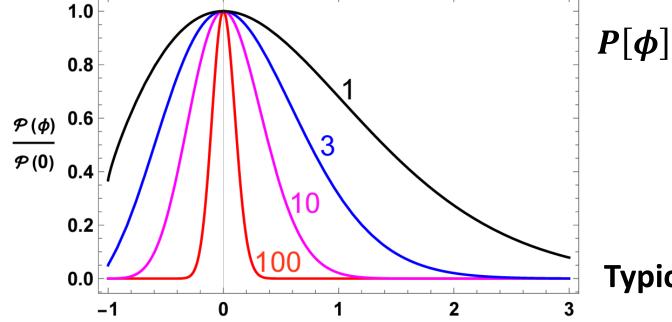
$$P[\psi] = \frac{e^{\int_{\Sigma} (s^{\mu}[\psi] + \alpha_{I}^{\star}J^{I\mu}[\psi])d\Sigma_{\mu}}}{Z}$$



Example: Relativistic kinetic theory

Kinetic distribution function:TEquilibirum distribution (MB statistics):jRelative non-equilibrium deviation:j

$$\psi = f(x^{\mu}, q^{I})$$
$$f_{eq} = e^{\alpha_{I}^{\star}q^{I}}$$
$$f = f_{eq}(1 + \phi)$$



$$P[\phi] \propto exp \int [\phi - (1 + \phi)ln(1 + \phi)] dN_{eq}$$

 $\approx exp \int -\frac{\phi^2}{2} dN_{eq}$
Typical fluctation: $\langle \phi^2 \rangle_{N_{eq}} \approx N_{eq}^{-1}$

Gaussian approximation

Expand the exponent to second order

Small fluctations: $\psi = \psi_{eq} + \delta \psi$ $\frac{P[\delta \psi]}{P[0]} = \frac{e^{\int_{\Sigma} \left(s^{\mu}[\psi_{eq} + \delta \psi] + \alpha_{I}^{*}J^{I\mu}[\psi_{eq} + \delta \psi]\right)d\Sigma_{\mu}}}{e^{\int_{\Sigma} \left(s^{\mu}[\psi_{eq}] + \alpha_{I}^{*}J^{I\mu}[\psi_{eq}]\right)d\Sigma_{\mu}}} \approx e^{-\int_{\Sigma} \sum_{e^{\mu}} [\delta \psi]d\Sigma_{\mu} + O(\delta \psi^{3})}$

Relevant properties:

- 1. It is a quadratic form in the fields: $E^{\mu} = \frac{1}{2} \delta \psi^T K^{\mu} \delta \psi$;
- **2.** It is timelike future directed, with K^0 positive definite;
- 3. In the absence of fluctations, one has $\partial_{\mu}E^{\mu} \leq 0$;
- 4. When the above facts hold, the linearised non-fluctuating theory is causal, stable, symmetric hyperbolic and thermodynamically consistent.
- 5. Onsager symmetry can be derived from the above facts.

Gaussian equal-time correlation functions

All equal-time correlators are Gaussian functional integrals:

$$\langle \psi(x)\psi^T(y)\rangle = rac{\int D\psi \ e^{-\int E^0 d^3x}\psi(x)\psi^T(y)}{\int D\psi \ e^{-\int E^0 d^3x}}$$

Example 1: Kinetic theory (massless MB)

Notation: $\langle F(x)G(y) \rangle = \overline{FG} \, \delta^3(x-y)$

$$\overline{\phi_p \phi_q} = \frac{(2\pi)^3}{f_{eq}(p)} \delta^3(p-q)$$

$$\overline{J^{\mu}J^{\nu}} = \frac{1}{3}n_{eq} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \overline{J^{0}T^{\mu\nu}} = P_{eq} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\overline{T^{00}T^{\mu\nu}} = 4TP_{eq} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \overline{T^{01}T^{\mu\nu}} = 4TP_{eq} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$E^{\mu} = \frac{1}{2} \int \phi^2 f_{eq} p^{\mu} \frac{d^3 p}{(2\pi)^3 p^0}$$

0

Example 2: Israel-Stewart fluid (massless MB)

$$\overline{J^{\mu}J^{\nu}} = \begin{bmatrix} E^{0} = \frac{1}{2} \left(\frac{(\delta n)^{2}}{n} + \frac{3n}{T^{2}} (\delta T^{2}) + 4n \delta u^{j} \delta u_{j} + b_{1} \delta \nu^{j} \delta \nu_{j} + b_{2} \delta \pi^{jk} \delta \pi_{jk} \right) \\ \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & \frac{n}{4} + \frac{1}{b_{1}} & 0 & 0 \\ 0 & 0 & \frac{n}{4} + \frac{1}{b_{1}} & 0 \\ 0 & 0 & 0 & \frac{n}{4} + \frac{1}{b_{1}} \end{bmatrix} \qquad \overline{J^{0}T^{\mu\nu}} = P \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \overline{T^{00}T^{\mu\nu}} = 4TP_{eq} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \overline{T^{01}T^{\mu\nu}} = 4TP_{eq} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example 3: Relativistic conductor

$$E^{0} = \frac{1}{2} \left(\rho^{2} + \frac{\tau}{D} J^{k} J_{k} + \frac{\Sigma}{D} \mathcal{E}^{k} \mathcal{E}_{k} + \frac{\Sigma}{D} \mathcal{B}^{k} \mathcal{B}_{k} \right)$$

With constraints: $\partial_k \mathcal{E}^k = \rho \quad \partial_k \mathcal{B}^k = 0$

$$\langle \rho(\mathbf{x})\rho(\mathbf{y})\rangle = \delta^3(x-y) - \frac{\Sigma e^{-\sqrt{\frac{\Sigma}{D}}|x-y|}}{4\pi D|x-y|}$$
 (Debye screening)

$$\langle \mathcal{B}_j(\mathbf{x})\mathcal{B}_k(\mathbf{0})m^k \rangle = \frac{\Sigma}{4\pi D} \left[\frac{3x_j(x \cdot m) - |x|^2 m_j}{|x|^5} + \frac{8\pi}{3}m_j\delta^3(x) \right]$$
 (Magnetic dipole

Example 4: Elastic medium

$$E^{0} = \frac{1}{2} \Big(\partial_{t} \xi_{j} \partial_{t} \xi^{j} + 2\mu \, \partial_{(j} \xi_{k)} \partial^{(j} \xi^{k)} + \lambda \big(\partial_{j} \xi^{j} \big)^{2} \Big)$$

$$\left\langle \xi_j(\mathbf{x})\xi_k(\mathbf{0})\right\rangle = \left(\frac{1}{\mu} + \frac{1}{2\mu + \lambda}\right)\frac{\delta_{jk}}{8\pi|\mathbf{x}|} + \left(\frac{1}{\mu} - \frac{1}{2\mu + \lambda}\right)\frac{x_j x_k}{8\pi|\mathbf{x}|^3}$$

Correlations at non-equal times

Add some noise

$$\mathcal{L}(\partial_{\mu})\psi = \xi \quad \Longrightarrow \quad \psi(x) = \int \mathcal{G}(x-x')\xi(x')d^{4}x'$$

Multiply the first evaluated at x and the second at 0: $\mathcal{L}(\partial_{\mu})\psi(x)\psi^{T}(0) = \xi(x)\int \xi^{T}(x')\mathcal{G}^{T}(-x')d^{4}x'$ Average:

$$\mathcal{L}(\partial_{\mu})\langle\psi(x)\psi^{T}(0)\rangle = \int \langle\xi(x)\xi^{T}(x')\rangle \mathcal{G}^{T}(-x')d^{4}x'$$

Assume covariant Markovianity of the noise:

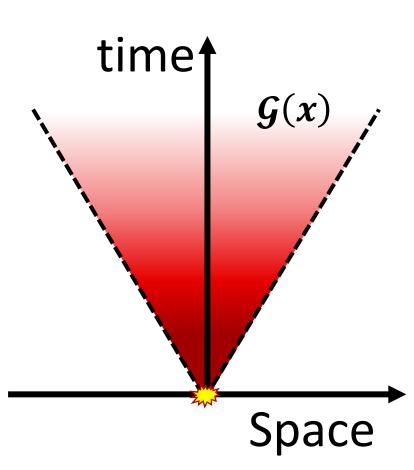
$$\langle \xi(x)\xi^T(x')\rangle = Q\delta^4(x-x')$$

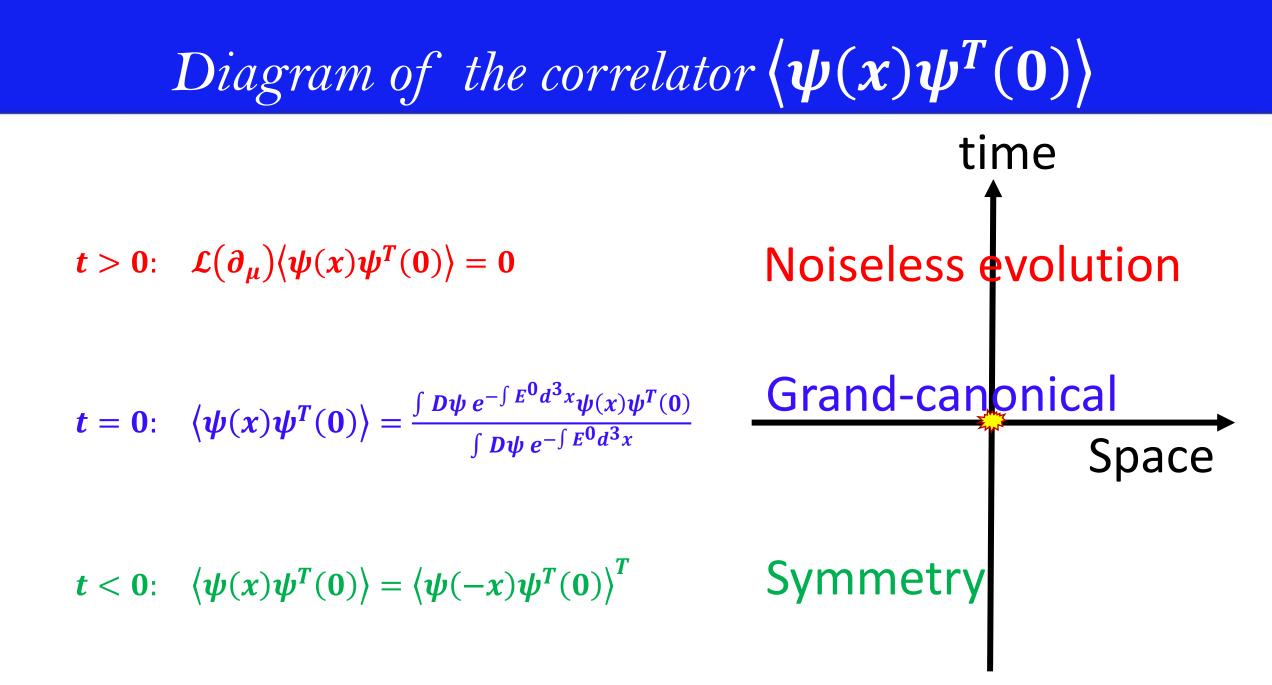
Result:

$$\mathcal{L}\big(\partial_{\mu}\big)\big\langle\psi(x)\psi^{T}(\mathbf{0})\big\rangle=Q\mathcal{G}^{T}(-x)$$

If x is outside the past lightcone:

$$\mathcal{L}(\partial_{\mu})\langle \psi(x)\psi^{T}(0)\rangle = 0$$



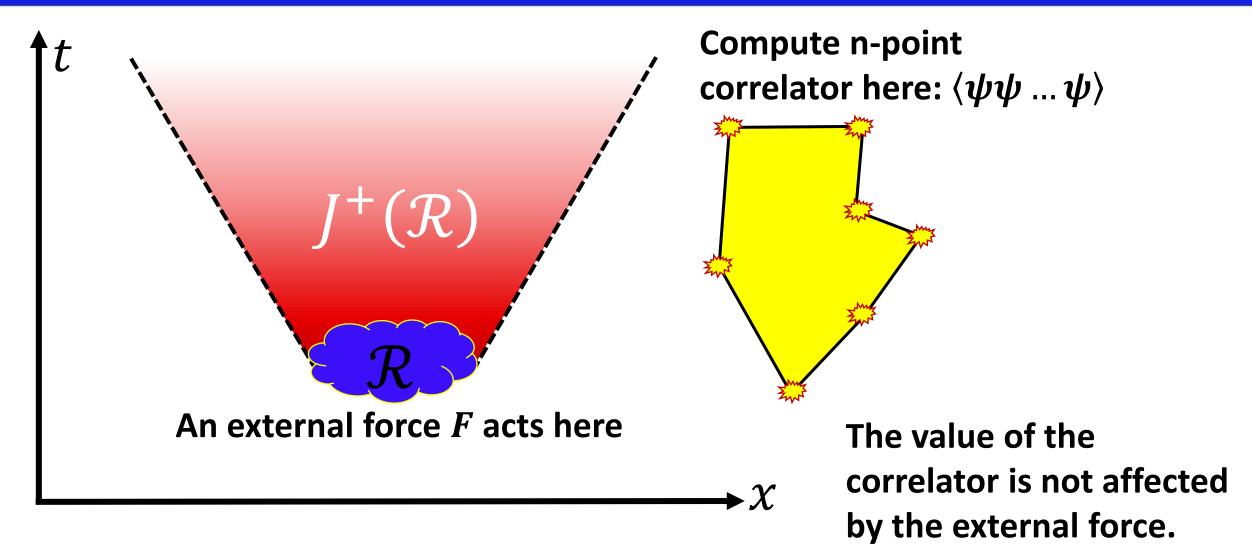


Main result

If you build linear fluctuations using the foregoing procedure, the following facts hold automatically:

- 1. All correlators exist and are well-defined distributions;
- 2. All uncertaintees are non-negative definite by construction: $\langle \delta A^2 \rangle \ge 0$;
- 3. The fluctuation-dissipation theorem (in all its formulations) is recovered;
- 4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;
- 5. The fluctuating theory is causal, in the sense that the fluctations cannot be used to send information faster than the speed of light;
- 6. The fluctuating theory is stable, in the sense that the macrostate $\delta \psi = 0$ is the most probable state, and the fluctations do not "condense";
- 7. The disperison relations fulfill all QFT-based microcausality criteria;
- 8. The Martin-Siggia-Rose effective action is well-defined and well-behaved;
- 9. There is a KMS-type symmetry for the theory.

Causality of fluctations



Application 1: BDNK and IS (single-charge diffusion)

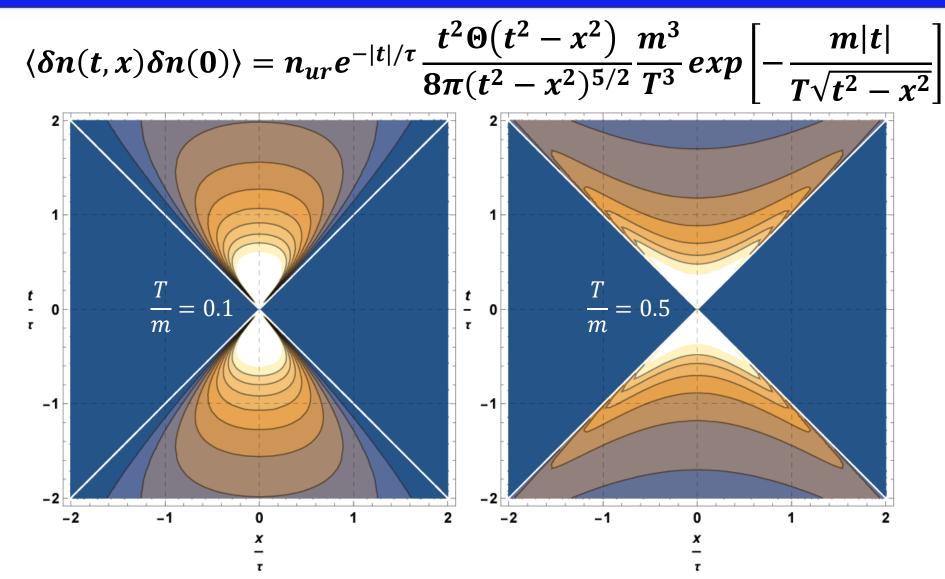
Equation of motion of average:

$$au \partial_t^2 \langle \delta n
angle + \partial_t \langle \delta n
angle = D \partial_x^2 \langle \delta n
angle$$

Two-point correlators:

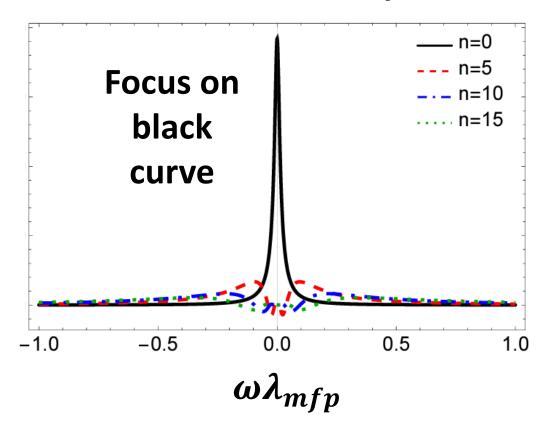
$$\langle \delta n(x) \delta n(y) \rangle = T \frac{dn}{d\mu} \int \frac{d^4k}{(2\pi)^4} e^{ik(x-y)} \frac{2Dk^j k_j}{\omega^2 + (Dk^j k_j - \tau \omega^2)^2}$$

Application 2: Chemically active diluted solution

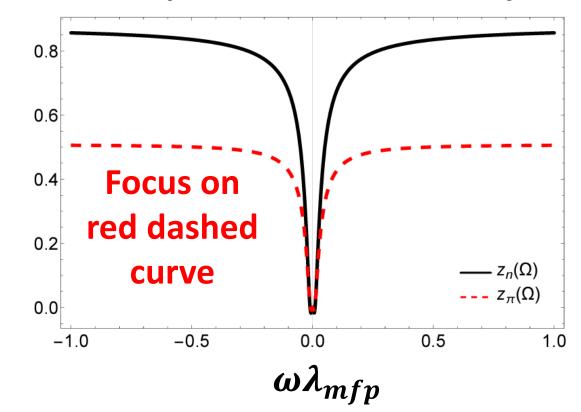


Application 3: Non-degenerate massless $\lambda \phi^4$ gas

 $\langle \pi_{12}\pi_{12} \rangle_{\omega}$ according to kinetic theory



Relative error of Israel-Stewart compared to kinetic theory



Appendices