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We already know a lot. ..

A very good reference:
Kovtun (2012), ‘““Lectures on hydrodynamic fluctuations in relativistic theories’

However, our understanding of hydrodynamics has evolved considerably!

 Mathematics side (causality, stability, well-posedness...);

* Physics side (stable hydrodynamics frames, long-lived non-hydrodynamic modes,
analytic results on gradient expansion, exact results in kinetic theory...);

New challenging questions, e.g.:
* «ls fluctuating BDNK unstable?» ((SA)Z) <0 17!
 «How do we make a fluctuating theory causal?»

Often, the best way forward is to go back to the basics (i.e. to let Landau guide us).



Spoiler alert!

If the fluctuating theory is constructed very carefully (details later &2 ), the following
facts hold:

1. All correlators exist and are well-defined distributions;

2. All uncertainties are non-negative definite by construction: (6AZ) > 0;

3. The fluctuation-dissipation theorem (in all its formulations) is recovered;

4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;

5. The fluctuating theory is causal, in the sense that the fluctations cannot be used
to send information faster than the speed of light;

6. The fluctuating theory is stable, in the sense that the macrostate i) = () is the
most probable state, and the fluctations do not “‘condense”’;

7. The disperison relations fulfill all QFT-based microcausality criteria;

8. The Martin-Siggia-Rose effective action is well-defined and well-behaved,;

9. There is a KMS-type symmetry for the theory.



Quick introduction to fluctuations



Two not so consistent pictures
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Irreversible dynamics: Statistical mechanics:

Entropy grows until it is maximised All microscopic states have equal probability



They agree only for N — oo
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If N > oo, then Prob(X) — 6(X)

However, at finite N, there are corrections. In 5 1
particular, X acquires a finite uncertainty:




Fluctuation-dissipation theorem in a toy model

Only two macrostates: S (X )
« “Equilibrium” (i.e. high entropy); e
*  “Non-Equilibrium” (i.e. low entropy).

““Dissipation”

>

““Fluctuations’’

Markovian evolution equation:

d PE] _ (_RE—>N Ry g ) PE]
dt [Py Rg.n —Ryn-g/ [Py

L
: X

“Equilibrium ““Non-Equilibrium
Macrostate’”’ Macrostate’”’

Stationary state:

P o S
vl led FDT: Ry.y = eSN"SER,



Why should this be relevant for hydrodynamaics?

Hydrodynamics focuses on average values:  9,(J") =

Fluctuating theories compute uncertaintees: C*¥ = (J#JV) — (J*) (JV)

Why should hydrodynamics care about fluctations?
Two reasons:
1. Hydrodynamics is non-linear;

2. Hydrodynamics studies evolution over long times.

Example: X = X2 => (X) = (X?) = (X)? + AX?
The evolution of (X) is not a function of (X) alone.
You need to know also AX.

Suppose that AX is does not depend on time.

Then: X(t) = AX tan [arctan ( A( )) +t AX]
“Secular effect”: The impact of AX cumulates in time.
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A famous example: The “stickiness of sound’

P

Fluctuation-induced sound waves
diffuse just like particles, and lead
to a renormalization of the shear

viscosity!

coefficient

Nren = Nbare T 2
bare

Kovtun, Moore, Romatschke: PRD (2021)

NN

Credit: Kovtun (2012), “Lectures on
hydrodynamic fluctuations in
relativistic theories”



Relativity introduces subtleties



Relatroity of Simultaneity
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Some intuitive concepts are not invariant (eg “fitting in”)
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Without causality, “stability” 1s not nvariant!

/ ope . .
et Equilibrium is
unstable in frame B!



What makes a fluctuating theory causal?

o

/\,\A/\ » cannot cause “ [\
) But how do we enforce this in the equations?




Relativistic grand-canonical probabilities:
Formal derivation



An old trick

We split an isolated system in two parts:
Medium (M) and Heat-bath (H); H > M.

Noether Charges: Q! = {N,, Q,,p" J*", ...}

Ideal heat-bath: Sy(Qk) = —ajQ}; +constant
(aj are constants)

Second law of thermodynamics:
0 < AS;o; = ASy + A(—ajQY) = ASy — ajAQY,
= ASy + ajAQY, = A(Sy + ajQ)y) = Ad




Relatrvistic extremum principle

The equilibrium state of a Medium (M) in contact with a bath having

intensive parameters a; is the state that maximizes ® = S, + a;Q7, for
unconstrained variations.

Let us use this principle to find the Grand-Canonical density matrix pg :
Su=-Tr(plnp)
Qu =Tr(pQ")

Generalization of

e Q' . e FE-wN)
Pec = Pec ="
Z with arbitrary

Noether charges.



Probability of macrostates

Each macroscopic state ¥ has an associated projector T’(t[)):

P(¥)|n) =

In) if |n) is a microscopic realization of y
0 otherwise




Probability of macrostates

Each macroscopic state ¥ has an associated projector T’(t/}):

P)|n) = {In) if [n) is a microscopic realization of ¢

0 otherwise

The corresponding probability of occupation is

P(Y) = Tr|pecP()]
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Quaick example: Chemical potential of non-conserved

ultrarelativistic particles

Gas of non-conserved particles (like photons, but with Boltzmann statistics)
at fixed temperature T, whose chemical potential u(= ) fluctuates:

S(w) =Vvar3et’" (4 — p/T)
U(p) = 3VaT*eT

®(u) = VaT3er (1 _ g)

Therefore (&« = u/T):

P(a) _ exp(Nege®(1-a)) ~ (_ Neq@
P(0) exp(Neg) ~ €Xp 2
Typical fluctation: (a*) ~ N g




We are interested in apj)lzmtz'ons to continuum mechanics

W] Sl+ajel iy time
Recall: P[Yp]=——=— X: Cauchy

hypersurface

Express extenstensive variables as
fluxes of corresponding currents:

S = j stdx, Q' = f J'*tdz,
X X

Result:
els (s* Wl +ap) B [p])dz,
P[y] = ~

space



Kinetic distribution function:

Example: Relativistic kinetic theory

Y = f(x#,q")

Equilibirum distribution (MB statistics): f.,= e d'

Relative non-equilibrium deviation:

1.0
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#(0) 0.4-
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f:feq(1+¢)

¢2
= expf—; dN .,

. Typical fluctation: (¢2>N
eq

Plgl < exp [ 16— (1+B)n( + $)] AN,



Gaussian approximation



Small fluctations: Y = Y., + oY

P [611)] efZ (S” [¢eq+6l[}] +a’;]”1 [¢eq+8¢])dzﬂ

Pl0] s (sM[Weql+aji ¥ [peq])dz,

Relevant properties:
1.

Expand the exponent to second order

Information current

— ~ e f5 EF[8y]dE,+0(5y3)

It is a quadratic form in the fields: E* = %&IJTK"&/J;

2. It is timelike future directed, with K° positive definite;
3.
4. When the above facts hold, the linearised non-fluctuating theory is

In the absence of fluctations, one has O”E" < 0;

causal, stable, symmetric hyperbolic and thermodynamically consistent.
Onsager symmetry can be derived from the above facts.



Gaussian equal-time correlation functions

All equal-time correlators are Gaussian functional integrals:

[ DY e~ S E'Cxyp(x) T (y)
fDll) e—J E%d3x

(YY" (y)) =



Example 1: Kinetic theory (massless MB)

Notation: (F(x)G(y)) = FG&83(x—y)
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Example 2: Israel-Stewart fluid (massless MB)

(fSn)2 -
E° = 2( m TZ = (572) + 4néw du; + b1 6V v + by6m*émj,
m 0 0 0
n 1
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Example 3: Relatrvistic conductor

1 T ) )
EO — E( 2 +B]k]k +58k8k +BBkBk>

With constraints: 9, E¥=p d, B* =0

z
Ze—\glx—yl

(pX)p(y) =868 (x—-y) — Py (Debye screening)

> [3x;j(xm)—|x|?m; 8m « g
(Bj(x)Bk(O)mk) =4nD[ J P ’+?mj63(x)] (Magnetic dipole)




Example 4: Elastic medium

1 - - |
E° =5 (0:50.87 + 219141098 + 2(8;87)”)

0)) = 1 1 6] 1 1 x]-xk
<€j(x)€k( )> B ﬁ * 2u + A) 8m|x| + (ﬁ B 2u + 1) 8m|x|3



Correlations at non-equal times



Add some noise

L)Y =¢ mmmh P(x)=]G(x—x)E)d*x

Multiply the first evaluated at x and the second at O:
£(9,)Px)PT(0) = E(x) [ ET(x)GT (—x)d*x’

Average.:

£(8,)(w@P"(0)) = [(§(0)E (x))GT (—x")d*x’

Assume covariant Markovianity of the noise:

(E(x)ET(x)) = Q&*(x — x)

Result:

£(8,) (@Y™ (0)) = Q6T (—x)

If x is outside the past lightcone:

£(3,){¥p()yp"(0)) =0 Space




Diagram of  the correlator (l/) (x)l/)T(O)>

time

t>0: £(9,)(Y@)yp"(0)) =0 Noiseless ¢volution

rowelEPyayrey  Grand-canpnical

t =0: <¢(x)¢T(O)> — [ Dy e—J EVd3x

t<0: (YEP'(0)) = (Y0P () Symmetry



Main result

If you build linear fluctuations using the foregoing procedure, the following facts
hold automatically:

1. All correlators exist and are well-defined distributions;

2. All uncertaintees are non-negative definite by construction: (SAZ) > 0;

3. The fluctuation-dissipation theorem (in all its formulations) is recovered;

4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;

5. The fluctuating theory is causal, in the sense that the fluctations cannot be used
to send information faster than the speed of light;

6. The fluctuating theory is stable, in the sense that the macrostate 61 = 0 is the
most probable state, and the fluctations do not “‘condense”’;

7. The disperison relations fulfill all QFT-based microcausality criteria;

8. The Martin-Siggia-Rose effective action is well-defined and well-behaved,;

9. There is a KMS-type symmetry for the theory.



Causality of fluctations

t , Compute n-point
correlator here: (Y ... )
T
An external force F acts here The value of the

correlator is not affected
by the external force.



Application 1: BDNK and IS (single-charge diffusion)

Equation of motion of average:

102(6n) + 8,(6n) = DI%(én)

Two-point correlators:

Gnsney) =TI [ LK ueey 2Rk
n(x)én(y)) =T — e _
dp) (2m)* w? + (DKkik; — rwz)z




Application 2: Chemaically actrve diluted solution

t20(t* — x*) m3
(6n(t,x)én(0)) = n e lt/T g : 522 = exp [—
| _ 8n(t — X ) T o T\/tz - x2




Application 3: Non-degenerate massless Ap* gas

(1r19M17), according to
kinetic theory

Relative error of Israel-Stewart
compared to kinetic theory
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Appendices
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