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We already know a lot…

A very good reference:
Kovtun (2012), ‘‘Lectures on hydrodynamic fluctuations in relativistic theories’’

However, our understanding of hydrodynamics has evolved considerably!
• Mathematics side (causality, stability, well-posedness…);
• Physics side (stable hydrodynamics frames, long-lived non-hydrodynamic modes, 

analytic results on gradient expansion, exact results in kinetic theory…);

New challenging questions, e.g.:

• «Is fluctuating BDNK unstable?» (𝜹𝑨)𝟐 < 𝟎 !? !
• «How do we make a fluctuating theory causal?»

Often, the best way forward is to go back to the basics (i.e. to let Landau guide us).



Spoiler alert!
If the fluctuating theory is constructed very carefully (details later ), the following 
facts hold:
1. All correlators exist and are well-defined distributions;

2. All uncertainties are non-negative definite by construction: 𝜹𝑨𝟐 ≥ 𝟎;
3. The fluctuation-dissipation theorem (in all its formulations) is recovered;
4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;
5. The fluctuating theory is causal, in the sense that the fluctations cannot be used 

to send information faster than the speed of light;
6. The fluctuating theory is stable, in the sense that the macrostate 𝝍 = 𝝍 is the 

most probable state, and the fluctations do not ‘‘condense’’;
7. The disperison relations fulfill all QFT-based microcausality criteria;
8. The Martin-Siggia-Rose effective action is well-defined and well-behaved;
9. There is a KMS-type symmetry for the theory.



Quick introduction to fluctuations



Two not so consistent pictures

𝐒 𝐗

𝐗

𝒅𝑺 𝑿

𝒅𝒕
≥ 𝟎

Irreversible dynamics: 
Entropy grows until it is maximised

𝐞𝑺 𝑿

𝐗

𝑷𝒓𝒐𝒃 𝑿 ∝ 𝐞𝑺 𝑿

Statistical mechanics: 
All microscopic states have equal probability



They agree only for 𝑁 → ∞

𝐞𝑺 𝑿

𝐗

𝑷𝒓𝒐𝒃 𝑿 =
𝐞𝑺 𝑿

∫ 𝐞𝑺 𝑿 𝒅𝑿
=

𝐞𝑵𝒔 𝑿

∫ 𝐞𝑵𝒔 𝑿 𝒅𝑿

≈
𝐞

−
𝟏
𝟐𝑵𝒔′′𝑿𝟐

∫ 𝐞
−

𝟏
𝟐

𝑵𝒔′′𝑿𝟐
𝒅𝑿

=
𝑵𝒔′′

𝟐𝝅
𝐞−

𝟏

𝟐
𝑵𝒔′′𝑿𝟐

If 𝑵 → ∞, then  𝑷𝒓𝒐𝒃 𝑿 → 𝜹 𝑿

However, at finite N, there are corrections. In 
particular, X acquires a finite uncertainty: 𝑿𝟐 ≈

𝟏

𝑵𝒔′′



Fluctuation-dissipation theorem in a toy model

𝑺 𝑿

𝐗
‘‘Equilibrium

Macrostate’’
‘‘Non-Equilibrium

Macrostate’’

‘‘Dissipation’’

‘‘Fluctuations’’

Only two macrostates:
• ‘‘Equilibrium’’ (i.e. high entropy);
• ‘‘Non-Equilibrium’’ (i.e. low entropy).

Markovian evolution equation:
𝒅

𝒅𝒕

𝑷𝑬

𝑷𝑵
=

−𝑹𝑬→𝑵 𝑹𝑵→𝑬

𝑹𝑬→𝑵 −𝑹𝑵→𝑬

𝑷𝑬

𝑷𝑵

Stationary state:
𝑷𝑬

𝑷𝑵
= 𝒆𝑺𝑬

𝒆𝑺𝑵
FDT:        𝑹𝑬→𝑵 = 𝒆𝑺𝑵−𝑺𝑬𝑹𝑵→𝑬



Why should this be relevant for hydrodynamics?
Hydrodynamics focuses on average values: 𝝏𝝁 𝑱𝝁 = 𝟎

Fluctuating theories compute uncertaintees: 𝐂𝝁𝝂 = 𝑱𝝁𝑱𝝂 − 𝑱𝝁 𝑱𝝂

Why should hydrodynamics care about fluctations?
Two reasons:
1. Hydrodynamics is non-linear;
2. Hydrodynamics studies evolution over long times.

Example: ሶ𝑿 = 𝑿𝟐 => ሶ𝑿 = 𝑿𝟐 = 𝑿 𝟐 + 𝚫𝐗𝟐

The evolution of 𝑿 is not a function of 𝑿 alone.
You need to know also 𝚫𝑿.
Suppose that 𝚫𝑿 is does not depend on time.

Then: 𝑿 𝒕 = 𝚫𝐗 𝐭𝐚𝐧 𝐚𝐫𝐜𝐭𝐚𝐧
𝑿 𝟎

𝚫𝐗
+ 𝐭 𝚫𝐗

‘‘Secular effect’’: The impact of 𝚫𝑿 cumulates in time.



A famous example: The ‘‘stickiness of  sound’’

Fluctuation-induced sound waves 
diffuse just like particles, and lead 
to a renormalization of the shear 
viscosity!

𝜼𝒓𝒆𝒏 ≈ 𝜼𝒃𝒂𝒓𝒆 +
𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭

𝜼𝒃𝒂𝒓𝒆
𝟐

Kovtun, Moore, Romatschke: PRD (2021)

Credit: Kovtun (2012), ‘‘Lectures on 
hydrodynamic fluctuations in 
relativistic theories’’



Relativity introduces subtleties



Relativity of  Simultaneity

ቊ
𝒕′ = 𝜸 𝒕 − 𝒗𝒙

𝒙′ = 𝜸 𝒙 − 𝒗𝒕

!?!



Some intuitive concepts are not invariant  (e.g. “fitting in’’)

Parking at rest, moving car Car at rest, moving parking



𝑡𝐵

𝑥𝐵

𝑡𝐴

𝑥𝐴

Equilibrium is 
unstable in frame B!

Without causality, “stability”  is not  invariant!



𝑡𝐵

𝑥𝐵

𝑡𝐴

𝑥𝐴

What makes a fluctuating theory causal?
‘‘       ’’ cannot cause ‘‘       ’’ 

But how do we enforce this in the equations? 



Relativistic grand-canonical probabilities:
Formal derivation



An old trick

𝑺𝑯, 𝑸𝑯
𝑰

𝑺𝑴, 𝑸𝑴
𝑰

We split an isolated system in two parts: 
Medium (𝑴) and Heat-bath (𝑯); 𝑯 ≫ 𝑴.

Noether Charges:  𝑸𝑰 = 𝑵𝒃, 𝑸𝒆, 𝒑𝝁, 𝑱𝝁𝝂, …

Ideal heat-bath:    𝑺𝑯 𝑸𝑯
𝑰 = −𝜶𝑰

⋆𝑸𝑯
𝑰 +constant

                                (𝜶𝑰
⋆ are constants)

Second law of thermodynamics: 

𝟎 ≤ 𝚫𝑺𝒕𝒐𝒕 = 𝚫𝑺𝑴 + 𝚫 −𝜶𝑰
⋆𝑸𝑯

𝑰 = 𝚫𝑺𝑴 − 𝜶𝑰
⋆𝚫𝑸𝑯

𝑰

= 𝚫𝑺𝑴 + 𝜶𝑰
⋆𝚫𝑸𝑴

𝑰 = 𝚫 𝑺𝑴 + 𝜶𝑰
⋆𝑸𝑴

𝑰 = 𝚫𝚽

𝑺𝑴 + 𝑺𝑯, 𝑸𝑴
𝑰 + 𝑸𝑯

𝑰



Relativistic extremum principle

The equilibrium state of a Medium (𝑴) in contact with a bath having 

intensive parameters 𝜶𝑰
⋆ is the state that maximizes 𝚽 = 𝑺𝑴 + 𝜶𝑰

⋆𝑸𝑴
𝑰  for 

unconstrained variations.

Let us use this principle to find the Grand-Canonical density matrix ෝ𝝆𝑮𝑪 :
𝑺𝑴 = −𝑻𝒓 ෝ𝝆 𝒍𝒏ෝ𝝆

𝑸𝑴
𝑰 = 𝑻𝒓(ෝ𝝆 ෡𝑸𝑰 )

ෝ𝝆𝑮𝑪 =
𝒆𝜶𝑰

⋆ ෡𝑸𝑰

𝒁

Generalization of

ෝ𝝆𝑮𝑪 =
𝒆−𝜷⋆( ෡𝑯−𝝁⋆ ෡𝑵)

𝒁

with arbitrary 
Noether charges.



Probability of  macrostates

Each macroscopic state 𝝍 has an associated projector ෡𝑷 𝝍 :

෡𝑷 𝝍 | ۧ𝒏 = ቊ
ۧ𝒏 𝐢𝐟 ۧ𝒏 𝐢𝐬 𝐚 𝐦𝐢𝐜𝐫𝐨𝐬𝐜𝐨𝐩𝐢𝐜 𝐫𝐞𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝝍

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

𝝍

| ۧ𝒏



Probability of  macrostates

Each macroscopic state 𝝍 has an associated projector ෡𝑷 𝝍 :

෡𝑷 𝝍 | ۧ𝒏 = ቊ
ۧ𝒏 𝐢𝐟 ۧ𝒏 𝐢𝐬 𝐚 𝐦𝐢𝐜𝐫𝐨𝐬𝐜𝐨𝐩𝐢𝐜 𝐫𝐞𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝝍

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

The corresponding probability of occupation is

𝑷 𝝍 = 𝑻𝒓 ෝ𝝆𝑮𝑪
෡𝑷 𝝍

= 𝑻𝒓
𝒆𝜶𝑰

⋆ ෡𝑸𝑰

𝒁
෡𝑷 𝝍

≈ 𝑻𝒓 ෡𝑷 𝝍
𝒆𝜶𝑰

⋆𝑸𝑰 𝝍

𝒁

=
𝒆𝐒 𝝍 +𝜶𝑰

⋆𝑸𝑰 𝝍

𝒁

𝑷 𝝍 =
𝒆𝚽 𝝍

𝒁∗

𝚽

𝑺𝒑𝒂𝒄𝒆 𝒐𝒇 𝒂𝒍𝒍 𝝍



Quick example: Chemical potential of  non-conserved 
ultrarelativistic particles

Gas of  non-conserved particles (like photons, but with Boltzmann statistics) 
at fixed temperature 𝑻, whose chemical potential 𝝁 = 𝝍 fluctuates:

𝑺 𝝁 = 𝑽𝒂𝑻𝟑𝒆𝝁/𝑻 𝟒 − 𝝁/𝑻
𝑼 𝝁 = 𝟑𝑽𝒂𝑻𝟒𝒆𝝁/𝑻 

𝚽 𝝁 = 𝑽𝒂𝑻𝟑𝒆
𝝁

𝑻 𝟏 −
𝝁

𝑻

Therefore (𝜶 = 𝝁/𝑻):

𝑷 𝜶

𝑷 𝟎
=

𝒆𝒙𝒑 𝑵𝒆𝒒𝒆𝜶 𝟏−𝜶

𝒆𝒙𝒑 𝑵𝒆𝒒
≈ 𝒆𝒙𝒑 −

𝑵𝒆𝒒𝜶𝟐

𝟐

Typical fluctation:  𝜶𝟐 ≈ 𝑵𝒆𝒒
−𝟏

3

30

300



We are interested in applications to continuum mechanics

𝑺 = න
𝚺

𝒂

𝒔𝝁𝒅𝚺𝝁

Result:

𝑷 𝝍 =
𝒆∫𝚺

𝒂
𝒔𝝁 𝝍 +𝜶𝑰

⋆𝑱𝑰𝝁 𝝍 𝒅𝚺𝝁

𝒁

𝑸𝑰 = න
𝚺

𝒂

𝑱𝑰𝝁𝒅𝚺𝝁

space

time
𝚺: Cauchy 
hypersurface

Recall:   𝑷 𝝍 =
𝒆𝚽 𝝍

𝒁
=

𝒆𝑺 𝝍 +𝜶𝑰
⋆𝑸𝑰 𝝍

𝒁

Express extenstensive variables as 
fluxes of corresponding currents: 



Example: Relativistic kinetic theory

Kinetic distribution function: 𝝍 = 𝒇 𝒙𝝁, 𝒒𝑰

Equilibirum distribution (MB statistics): 𝒇𝒆𝒒= 𝒆𝜶𝑰
⋆𝒒𝑰

Relative non-equilibrium deviation:          𝒇 = 𝒇𝒆𝒒 𝟏 + 𝝓

𝑷 𝝓 ∝ 𝒆𝒙𝒑 න 𝝓 − 𝟏 + 𝝓 𝒍𝒏 𝟏 + 𝝓 𝒅𝑵𝒆𝒒

≈ 𝒆𝒙𝒑 ∫ −
𝝓𝟐

𝟐
𝒅𝑵𝒆𝒒

Typical fluctation:    𝝓𝟐
𝑵𝒆𝒒

≈ 𝑵𝒆𝒒
−𝟏



Gaussian approximation



Expand the exponent to second order
Small fluctations: 𝝍 = 𝝍𝒆𝒒 + 𝜹𝝍

𝑷 𝜹𝝍

𝑷 𝟎
=

𝒆
∫𝚺

𝒂
𝒔𝝁 𝝍𝒆𝒒+𝜹𝝍 +𝜶𝑰

⋆𝑱𝑰𝝁 𝝍𝒆𝒒+𝜹𝝍 𝒅𝚺𝝁

𝒆∫𝚺
𝒂

𝒔𝝁 𝝍𝒆𝒒 +𝜶𝑰
⋆𝑱𝑰𝝁 𝝍𝒆𝒒 𝒅𝚺𝝁

≈ 𝒆− ∫𝚺
𝒂

𝑬𝝁 𝜹𝝍 𝒅𝚺𝝁+𝑶 𝜹𝝍𝟑

Relevant properties:

1. It is a quadratic form in the fields: 𝑬𝝁 =
𝟏

𝟐
𝜹𝝍𝑻𝑲𝝁𝜹𝝍;

2. It is timelike future directed, with 𝑲𝟎 positive definite;
3. In the absence of fluctations, one has 𝝏𝝁𝑬𝝁 ≤ 𝟎;

4. When the above facts hold, the linearised non-fluctuating theory is 
causal, stable, symmetric hyperbolic and thermodynamically consistent.

5. Onsager symmetry can be derived from the above facts.

Information current 𝑡

𝑥

𝑬𝝁



Gaussian equal-time correlation functions

All equal-time correlators are Gaussian functional integrals:

𝝍 𝒙 𝝍𝑻 𝒚 =
∫ 𝑫𝝍 𝒆−∫ 𝑬𝟎𝒅𝟑𝒙𝝍 𝒙 𝝍𝑻 𝒚

∫ 𝑫𝝍 𝒆−∫ 𝑬𝟎𝒅𝟑𝒙



Example 1: Kinetic theory (massless MB)

Notation:  𝐅 𝐱 𝐆 𝐲 = 𝐅𝐆 𝛅𝟑 𝐱 − 𝐲

𝝓𝒑𝝓𝒒 =
𝟐𝝅 𝟑

𝒇𝒆𝒒(𝒑)
𝜹𝟑 𝒑 − 𝒒

𝑱𝝁𝑱𝝂 =
𝟏

𝟑
𝒏𝒆𝒒

𝟑 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑱𝟎𝑻𝝁𝝂 = 𝑷𝒆𝒒

𝟑 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑻𝟎𝟎𝑻𝝁𝝂 = 𝟒𝑻𝑷𝒆𝒒

𝟑 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑻𝟎𝟏𝑻𝝁𝝂 = 𝟒𝑻𝑷𝒆𝒒

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

𝑬𝝁 =
𝟏

𝟐
න 𝝓𝟐𝒇𝒆𝒒𝒑𝝁

𝒅𝟑𝒑

𝟐𝝅 𝟑𝒑𝟎



Example 2: Israel-Stewart fluid (massless MB)

𝑱𝝁𝑱𝝂 =

𝒏 𝟎 𝟎 𝟎

𝟎
𝒏

𝟒
+

𝟏

𝒃𝟏
𝟎 𝟎

𝟎 𝟎
𝒏

𝟒
+

𝟏

𝒃𝟏
𝟎

𝟎 𝟎 𝟎
𝒏

𝟒
+

𝟏

𝒃𝟏

𝑱𝟎𝑻𝝁𝝂 = 𝑷

𝟑 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑻𝟎𝟎𝑻𝝁𝝂 = 𝟒𝑻𝑷𝒆𝒒

𝟑 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟏

𝑻𝟎𝟏𝑻𝝁𝝂 = 𝟒𝑻𝑷𝒆𝒒

𝟎 𝟏 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

𝑬𝟎 =
𝟏

𝟐

𝜹𝒏 𝟐

𝒏
+

𝟑𝒏

𝑻𝟐
𝜹𝑻𝟐 + 𝟒𝒏𝜹𝒖𝒋𝜹𝒖𝒋 + 𝒃𝟏𝜹𝝂𝒋𝜹𝝂𝒋 + 𝒃𝟐𝜹𝝅𝒋𝒌𝜹𝝅𝒋𝒌



Example 3: Relativistic conductor

With constraints:   𝝏𝒌 ℰ𝒌 = 𝝆 𝝏𝒌 ℬ𝒌 = 0

𝝆 𝐱 𝝆 𝐲 = 𝜹𝟑 𝒙 − 𝒚 −
𝚺𝒆

−
𝚺
𝐃|𝒙−𝒚|

𝟒𝝅𝑫|𝒙−𝒚|
(Debye screening)

ℬ𝒋 𝐱 ℬ𝒌 𝟎 𝒎𝒌 =
𝚺

𝟒𝝅𝑫

𝟑𝒙𝒋 𝒙∙𝒎 −|𝒙|𝟐𝒎𝒋

𝒙 𝟓 +
𝟖𝝅

𝟑
𝒎𝒋𝜹𝟑 𝒙 (Magnetic dipole)

𝑬𝟎 =
𝟏

𝟐
𝝆𝟐 +

𝝉

𝑫
𝑱𝒌𝑱𝒌 +

𝚺

𝐃
ℰ𝒌ℰ𝒌 +

𝚺

𝐃
ℬ𝒌ℬ𝒌



Example 4: Elastic medium

𝝃𝒋 𝐱 𝝃𝒌 𝟎 =
𝟏

𝝁
+

𝟏

𝟐𝝁 + 𝝀

𝜹𝒋𝒌

𝟖𝝅|𝒙|
+

𝟏

𝝁
−

𝟏

𝟐𝝁 + 𝝀

𝒙𝒋𝒙𝒌

𝟖𝝅 𝒙 𝟑

𝑬𝟎 =
𝟏

𝟐
𝝏𝒕𝝃𝒋𝝏𝒕𝝃𝒋 + 𝟐𝝁 𝝏(𝒋𝝃𝒌)𝝏(𝒋𝝃𝒌) + 𝝀 𝝏𝒋𝝃𝒋 𝟐



Correlations at non-equal times



Add some noise

𝓛 𝝏𝝁 𝝍 = 𝝃 𝝍 𝒙 = ∫ 𝓖 𝒙 − 𝒙′ 𝝃 𝒙′ 𝒅𝟒𝒙′

Multiply the first evaluated at 𝒙 and the second at 𝟎:

𝓛 𝝏𝝁 𝝍 𝒙 𝝍𝑻 𝟎 = 𝝃 𝒙 ∫ 𝝃𝑻 𝒙′ 𝓖𝑻 −𝒙′ 𝒅𝟒𝒙′

Average:

𝓛 𝝏𝝁 𝝍 𝒙 𝝍𝑻 𝟎 = ∫ 𝝃 𝒙 𝝃𝑻 𝒙′ 𝓖𝑻 −𝒙′ 𝒅𝟒𝒙′

Assume covariant Markovianity of the noise:

𝝃 𝒙 𝝃𝑻 𝒙′ = 𝑸𝜹𝟒 𝒙 − 𝒙′
Result:

𝓛 𝝏𝝁 𝝍 𝒙 𝝍𝑻 𝟎 = 𝑸𝓖𝑻 −𝒙

If 𝒙 is outside the past lightcone:

𝓛 𝝏𝝁 𝝍 𝒙 𝝍𝑻 𝟎 = 𝟎

time

Space

𝓖 𝒙



Diagram of  the correlator 𝝍 𝒙 𝝍𝑻 𝟎  

time

Space
𝒕 = 𝟎: 𝝍 𝒙 𝝍𝑻 𝟎 =

∫ 𝑫𝝍 𝒆−∫ 𝑬𝟎𝒅𝟑𝒙𝝍 𝒙 𝝍𝑻 𝟎

∫ 𝑫𝝍 𝒆−∫ 𝑬𝟎𝒅𝟑𝒙

𝒕 > 𝟎: 𝓛 𝝏𝝁 𝝍 𝒙 𝝍𝑻 𝟎 = 𝟎

𝒕 < 𝟎: 𝝍 𝒙 𝝍𝑻 𝟎 = 𝝍 −𝒙 𝝍𝑻 𝟎
𝑻

Grand-canonical

Noiseless evolution

Symmetry



Main result 
If you build linear fluctuations using the foregoing procedure, the following facts 
hold automatically:
1. All correlators exist and are well-defined distributions;

2. All uncertaintees are non-negative definite by construction: 𝜹𝑨𝟐 ≥ 𝟎;
3. The fluctuation-dissipation theorem (in all its formulations) is recovered;
4. If the noise is covariantly Markovian, the fluctuating theory is Lorentz-covariant;
5. The fluctuating theory is causal, in the sense that the fluctations cannot be used 

to send information faster than the speed of light;
6. The fluctuating theory is stable, in the sense that the macrostate 𝜹𝝍 = 𝟎 is the 

most probable state, and the fluctations do not ‘‘condense’’;
7. The disperison relations fulfill all QFT-based microcausality criteria;
8. The Martin-Siggia-Rose effective action is well-defined and well-behaved;
9. There is a KMS-type symmetry for the theory.



Causality of  fluctations

𝐽+ ℛ

𝑡

An external force 𝑭 acts here

𝑥

ℛ

Compute n-point 
correlator here: 𝝍𝝍 … 𝝍

The value of the 
correlator is not affected 
by the external force.



Application 1: BDNK and IS (single-charge diffusion)

Equation of motion of average:

𝝉𝝏𝒕
𝟐 𝜹𝒏 + 𝝏𝒕 𝜹𝒏 = 𝑫𝝏𝒙

𝟐 𝜹𝒏

Two-point correlators:

𝜹𝒏 𝒙 𝜹𝒏 𝒚 = 𝑻
𝒅𝒏

𝒅𝝁
න

𝒅𝟒𝒌

𝟐𝝅 𝟒
𝒆𝒊𝒌 𝒙−𝒚

𝟐𝑫𝒌𝒋𝒌𝒋

𝝎𝟐 + 𝑫𝒌𝒋𝒌𝒋 − 𝝉𝝎𝟐 𝟐



Application 2: Chemically active diluted solution

𝑇

𝑚
= 0.1

𝑇

𝑚
= 0.5

𝜹𝒏 𝒕, 𝒙 𝜹𝒏 𝟎 = 𝒏𝒖𝒓𝒆−|𝒕|/𝝉
𝒕𝟐𝚯 𝒕𝟐 − 𝒙𝟐

𝟖𝝅 𝒕𝟐 − 𝒙𝟐 𝟓/𝟐

𝒎𝟑

𝑻𝟑
𝒆𝒙𝒑 −

𝒎 𝒕

𝑻 𝒕𝟐 − 𝒙𝟐



Application 3: Non-degenerate massless 𝜆𝜙4 gas

𝝅𝟏𝟐𝝅𝟏𝟐 𝝎 according to 
kinetic theory

𝝎𝝀𝒎𝒇𝒑

Focus on 
black 
curve

𝝎𝝀𝒎𝒇𝒑

Relative error of Israel-Stewart 
compared to kinetic theory

Focus on 
red dashed 

curve
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