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How do quantum effects manifest in
relativistic fluids?
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Hot and dense QCD matter
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Picture by Chun Shen
Quark-gluon plasma (QGP) - Universe microseconds after Big Bang

Relativistic hydrodynamics: Main tool for model-to-data comparison
Heinz, Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013)
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How to combine relativity and dissipation?
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Heavy-ion collisions define the state fo the art of relativistic dissipative
hydrodynamics research
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Macroscopic quantum effects in hydrodynamics
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Quantum anomalies can affect behavior of fluids
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Chiral (Anomalous) Hydrodynamics
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Hydrodynamics
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Assumptions of hydrodynamics

Conservation laws in long-wavelength, low-energy limit

Separation of length scales: Microscopic Ay, Macroscopic Liydro

hydro

Amf
Knudsen number: Kn = L—p <1 J # FLUID

Expansion in Kn = Gradient expansion
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Nonrelativistic Navier-Stokes equations

Conservation linear momentum
p( + v;0;)vi = 05T} |

Assumption: Stress tensor is symmetric T;; = Tj;
Ty = —Pdoy; + 11;;
e ~~
ideal O(Kn®) dissipation O(Kn)+O(Kn?)+---
Truncation at first order O(Kn)
2
Hij =7 6,'1)3' + 8jvi — gakvkéij + C@kvkéij

71 - Shear viscosity , ¢ - Bulk viscosity
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Relativistic hydrodynamics

Energy-momentum tensor T” = (T*"), Current JH = (J*)
Conservation of energy, momentum and charge

energy energy
density flux

\
TOl T02 T03
8 TH’V _ 0 T;u/ . Tl() Tll T12 T13
K " T 20| p2r | 22| 28
8HJ =0 30| | 31 32 | a3

momentum  momentum isotropic
density flux pressure

picture from Rezzolla, Zanotti, Relativistic Hydrodynamics

™ = eutu” + PAM  + 11"
——— ~~
ideal part dissipation
Jr = nut + Z
S~~~ \J/
ideal part dissipation

Variables ideal fluid: ¢, u* (ufu, = —1), n
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Consistency of relativistic hydrodynamics

Any physical theory of hydrodynamics must be:

Local well-posed — Unique solutions for ¢
arbitrary initial conditions

Causal — Information cannot propagate at
speeds greater than the speed of light

S~ (2)NT

8y,

Stable — Systems slightly away from

equ|||br|um W|” return tO |t Bemfica, Disconzi, Noronha, 2018

Landau-Lifhsitz theory is acausal and unstable
— cannot be used for numerical simulations J
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How to formulate local well-posed,

causal and stable relativistic
hydrodynamics?
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Initial-value problem

Nonlinear system of second order partial differential equations

AT (9)0,0,V ;1 + By (¥) (0,9 1) (0, Vi) + Cp, (¥)9, ¥y = 0
ILLJK=1,...,N
U, (2%, 2) - vector of N unknowns
AP(W), BY (W), CY,(F) - Coefficients
AR (W) - Principal part
Arbitrary initial data on hypersurface 2 = 0

V(2 =0,2") = f(a'),  ¥(2°,2")]0—0 = g(a")

Find solution: Need to express 9y ¥ in terms of initial data f(z?), g(z?)

—> A% must be invertible

Characteristic determinant = det A% (¥ (2° = 0,2%)) # 0
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Local well-posedness

(see e.g., Courant and Hilbert, Choquet-Bruhat, Wald,...)

Initial-value problem is locally well-posed in some function space (e.g., analytic
functions) along a hypersurface X if
Arbitrary initial data on 3 = Exists unique solution in a neighborhood of ¥

“Small changes” of initial data = “Small changes” of solution

Examples of well-posed theories: Ideal hydrodynamics, BDNK, GR, ...

Given arbitrary initial data, if
det A%%(U) =0 = System is ill-posed and acausal

— No unique solution for arbitrary initial data
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Causality is necessary for covariant stability

Bemfica, Disconzi, Noronha, PRX 12, 021044 (2022)); Gavassino, PRX 12, 041001 (2022)

Time
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When Alice sees a

decaying perturbation...

acausal

—

Bob -

Position

...Bob sees it as

an explosion.

unstable J
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Lorentz-covariant linear stability:
Stability of ALL homogeneous equilibria

Fourier decomposition: de, on, dut ~ e~ {(2—k-Z)

Im[Q(k)] <0 Vk

for all modes

If theory is causal, stability in one Lorentz frame implies stability in any
frame!
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Hydrodynamic frames

Eckart, Phys. Rev. 58 919 (1940); Landau, Lifshitz, Fluid Mechanics (1987);
Israel, Stewart, Ann. Phys. 118, 341 (1979); Tsumura, Kunihiro, Ohnishi, Phys. Lett. B656, 274 (2007)

Most general decomposition
T = (e + A)utu” + (P + 1) A" + 7t + QFu” + QVu
JH = (n+N)u" + T

Hydrodynamic variables out of equilibrium can be defined in many
ways

Hydrodynamic frames are specific choices of hydrodynamic variables

Examples:
Landau frame: T* u, = —cu*
Eckart frame: J# = nut

Causality must hold regardless how you define out of equilibrium
variables

How does one formulate causal and stable relativistic hydrodynamics? |
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Israel-Stewart theory

Israel, Stewart, Ann. Phys. 118 3417372 (1979)
Energy-momentum tensor out of equilibrium

T" = eufu” + (P + 1) A" + 7t

AHY = L(//II,/ + utu?
I1, 7" are promoted to be dynamical variables
— Relaxation-type equations

il + 101 = —(Out + ...

Tt ) 4 o = _9pahV 4 .

Causal and stable
Hiscock, Lindblom, Annals of Physics (1983); Bemfica, Disconzi, Hoang, Noronha, Radosz, PRL (2021)

Different formulations: BRSSS, DNMR, ...

Baier, Romatschke, Son, Starinets, Stephanov JHEP (2008); Denicol, Niemi, Molnar, Rischke, PRD (2012)

In heavy-ion simulations one solves Israel-Stewart hydrodynamics J
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State of the art of conventional hydrodynamics

Most general decomposition out of equilibrium.
™ = (e + A)uu” + (P + I A + 7l 4+ OFu” + QY

Generalized Israel-Stewart theory: A, 11, O", ©#" are promoted to be
dynamical variables, e.g.,
Noronha, Spalinski, ES, PRL 128, 252302 (2022)

TAUOY A+ A = oTuy0% (;)

First-order (BDNK) theory: write A, II, O, 7 with the most general

expression using first-order derivatives of u/ and T, e.g.
Bemfica, Disconzi, Noronha, PRD 98, 104064 (2018); PRD 100, 104020 (2019); PRX 12, 021044 (2022);
Kovtun JHEP 10, 034 (2019); Hoult, Kovtun, JHEP 06, 067 (2020)

1
A = ajuy, 0 <T> + ag0yu®
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Navier-Stokes — Relativistic diffusion equation

Diffusion of charge density n on stationary background velocity u#

J* = nu* —dA*O,n
—_———
O(Kn)
ARV = gt 4 yHy?, d = diffusion coefficient
Conservation law

OuJ" = ua0%n 4+ ndyu® — dAF*0,,0,n = 0

ACAUSAL!
Stability in the “rest” frame: on ~ e~

i(Qt—Fk-T)

Q = —idk?
Looks stable... HOWEVER for a general u* it is UNSTABLE!

NOT suitable for numerical simulations! J
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BDNK approach for relativistic diffusion

Bemfica, Disconzi, Noronha, PRD 98, 104064 (2018); PRD 100, 104020 (2019); PRX 12, 021044 (2022); Kovtun
JHEP 10, 034 (2019); Hoult, Kovtun, JHEP 06, 067 (2020)

Effective field theory approach: Include all possible terms O(Kn)
JH = (n+ Tund%n)ut — dA*Yd,n

O(Kn)

Additional term Tu,0%n ~ O(Kn) = Wave-like equation

0y J* = 0 causal and stable if, and only if:

7>0 and \/Egl
N

wave propagation speed

Suitable for numerical simulations! J
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Chiral (Anomalous) Hydrodynamics

A
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Quantum Anomaly

Symmetry of Lagrangian = Noether's theorem = Conservation law
oJ" =0

Associated charge ) constant in time

Is this ensured when we consider quantum corrections?
Not necessarily!

9T £ 0

Quantum anomaly: Classical symmetry destroyed b
y Y y Y y
quantum corrections
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Chiral anomaly

Massless QED/QCD Lagrangian is invariant under axial U4(1)

up
= down | ¢/ =€y
strange

Noether's theorem = Conservation axial vector J/ = 1hy*vy51)
o, Jl =0

Quantum corrections

d,J' = CE,B* ) A

- ~

P ~
N
’ ~

E* - electric field, B* - magnetic field, C' - Anomaly coefficient

d(Right-handed - Left-handed)
dt

£0
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Right-handed: Left-handed:
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Chiral transport: Chirality + Polarization + Anomaly J

Chiral magnetic effect: Jiy = 5, uaB  (ua - Axial chemical potential)

™.

Wl
=]
™!

3.

u=0 p=0 u=0 p>0 u>0 p=0
Chiral vortical effect
L R 5 1 .
Jv=— pis
ST? &Ts y 2 2 2
‘ 7 py tpa [ TN S
Ja= | /72 + —
A < o2 + 6 )w

10 ot 5=V x7

Kharzeev, Liao, Voloshin, Wang, Prog. Part. Nucl. Phys. 88, 1-28 (2016) 23/40



Polarization in magnetic and vortical field

Roy et al PRC 96 (2017) 054909

Florkowski et al Prog. Part. Nucl. Phys. 108, 103709 (2019)

Noncentral nuclear collisions = Large vorticity and magnetic field
= Particle polarization
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Basic polarization mechanisms

Electromagnetic interaction Spin-vorticity coupling
— — — =
~ —qS-B ~—=5-W

~ Quantum - Classical

S - Particle spin, B - Magnetic field, ¢J - Medium rotation, ¢ - Charge

25 /40



Experimental observation - Global A polarization

—~
o

By (%
o]

L. Adamczyk et al
Quark-gluon plasma is the "most vortical fluid ever observed"

Au+Au 20-50%
¥ A this study —
@ A this study B
$ A PRC76 024915 (2007)

O A PRC76 024915 (2007) |

| +%i%$

Polarization along global angular momentum

|

10

10°

[ (GEV)

(STAR), Nature 548 62-65 (2017)

w=(Py + Py)kpT/h~10*s"!
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Chiral (Anomalous) Hydrodynamics
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Chiral viscous hydrodynamics from entropy

Son, Surowka, PRL 103, 191601 (2009); Erdmenger, Haack, Kaminski, Yarom, JHEP 01, 055 (2009);
Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganayagam, Surowka, JHEP 01, 094 (2011)

Constitutive relations (Landau frame)

TH = eulu” 4 (P — (Ozu™) AMY — 2notv
JH =nut — e TA* O, (1/T) + o E* + EwH + Ep B

wh = (1/2)e" By, (qup) - vorticity
FY* - Maxwell tensor, E¥ = FH vy, B* = (1/2)e"*Pu, F.4
&, £ - ldeal chiral coefficients, C' - anomaly coefficient
Equations of motion

9, T = F" ]y,  9,J"=CE,B"

with constraint u,u® = —1
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Chiral hydrodynamics from kinetic theory

e.g., Chen, Son, Stephanov, PRL 115, no.2, 021601 (2015); Yang, PRD 98, no.7, 076019 (2018)
Consider ensemble of particles (and antiparticles) with chirality +
Distribution function

-1
Jeq.x(z,p) = exp(g+) + 1]

Pt L o
g:t(xvp):_ﬁ'p_?_ 55’# Wy

Spin-vorticity coupling

SH - Rank-2 spin tensor,

Thermal vorticity - wh” = —5 (9" 3" — 9"pBH)

Hydrodynamic densities from distribution function: energy-momentum
tensor 7+, vector and axial vector currents J{;, J',

T =0 9 Jh=0 94 =0

This is great. But can one solve it? )
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Is chiral hydro a local well-posed, causal
and stable theory?
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Ideal chiral hydrodynamics from kinetic theory

ES, Bemfica, Disconzi, Noronha, PRD 107, no.5, 054029 (2023)
H H . uy Ho_ wo_
Consider the full nonlinear system: 9, 7" =0, 9,Ji, =0, 0,J =0

™ = eutu” + PAM + &p(wHu” 4+ w”ul)
J = nyut + &y w!
Jﬁ =naut 4+ &4 W
e.g., Chen, Son, Stephanov, PRL 115, no.2, 021601 (2015); Yang, PRD 98, no.7, 076019 (2018)
Vorticity - w” = (1/2)e"*Pu,dqup
One can prove:

System is ill posed:
No unique solution exists for arbitrary initial data! J

Conventional ideal case: &7, &y, 64 = 0 = Well-posed, causal and
stable
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Proof of ill-posedness

ES, Bemfica, Disconzi, Noronha, PRD 107, no.5, 054029 (2023)
Calculate characteristic determinant

b+¢&ér.c &rnyC Ermac O1x4 R
Lot 4 epbwh (Ep) bwh Epp,bw’ Lérbuyvae
det[A(T, = det |37 e T/ny Tina 25TV %A% Y
[ ( 80)] EV,EC b+£V,nvC gV,nAc 01)(4
€aeC €anve b+&anac O1x4

§Tb 4 b+ {T,Ec §T,nv & ET.nAC
(7> det | &vec b4+&vanyc  Evnac [
{AAEC gA,nv c b ol gA.nAC

0,
Valid both at linear and nonlinear regime

[ll-posedness because of vorticity
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Why is the bad term bad

Gavassino, Abboud, ES, Noronha, to appear
Consider only heat diffusion term

™ = (e + P)ulu” + QFu” + Q"ut
Perturbation around equilibrium
= (1,6u) = OTY = (e + P)ou! + Q7 % du’
In ideal chiral hydro

—

§Q7 ~ %ﬁT(ﬁ xou)Y = ou= f(t)(sin(kz),cos(kz),0)
with k& = 2(8 + P)/fT

f(t) can be any function of time = System is ill-posed! |
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Local well-posedness demands heat
diffusion along vorticity to vanish

How do we fix it?
We change hydrodynamic frame
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Ideal chiral hydrodynamics in Landau frame

ES, Bemfica, Disconzi, Noronha, PRD 107, no.5, 054029 (2023)
Shift of velocity

I
u”—u“—LTwL
L e4P

Landau frame (consider one current for simplicity)

T = euffuf + PAM

"
JM:Z”A“Z‘*{ALWZ

The theory is well-posed and causal if

Definition of hydrodynamic variables (hydrodynamic frames) matter

even in the ideal case
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BDNK First-order viscous chiral hydrodynamics

Abboud, ES, Noronha, arXiv:2308.02928 ]
For simplicity, we switch off electromagnetic fields

dof =g u* n 0, T"" =0 0, J" =0
Constitutive relations in a general hydrodynamic frame
™ = (e + A)ufu” + (P + Iu'u” + Q*u” + Q"ut + 7t
JH =+ Nyt +T"

Consider the theory
A =e1De + e30\u” + e3Dn, 7 = —2not¥
I = m De + md\u + m3Dn
0" = 0, AP dze + 0, Dur 4 03 AP Oxn + Epwt
N = vy De 4+ 50 \u™ + v3Dn
T" =11 A" 05e + 72 Dut + 3 AP 0zn + & jwh

When is the theory causal and stable? J
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Causality demands heat diffusion along
vorticity to vanish

37/40



Causality conditions

Abboud, ES, Noronha, arXiv:2308.02928
Causal if, and only if, 0 < n/f3 <1 and

2
At/ X0 3

A;'s are combinations of transport parameters
Causality only depends on three combinations

These conditions imply local well-posedness too
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Necessary and sufficient conditions for stability

Abboud, ES, Noronha, arXiv:2308.02928

> = {(a,b,c 3la>0,e>0,b> — ).
0:>0 and 73>0, So = {(a,b,c) € R*la > 0,¢>0,b > —2+\/ac}
— — f— _— S . az0 and b>0 and ¢>0 and d2=0,

AN >0 and A>0 and F>0 and A3>0, 3:
Ay >0 and Ag g >0,
(A(ZA)"A(Z'?)'A(IO)) €52, e a>0 and €>0 and xp<-2 and L<0 and xi+xs>0,
L=0 and “*x.;/\u}

(A(S’S)'A(S'G%A(z’@' A(3’2)) € S, e 050 ad ¢>0 wd ~2<x<6 and { or
(A(,le) y A(xl,ll])-, A(,Lg) y A(d,(}) s AMA)) € Sy. L20 ad Ki<0

a>0 and d>0 and Discs(a.b.c,d) <0,
a=0 and (bed) €5
d=0 and (a,b.c) € 5o,

L0 and xitxs >0

© 030 and >0 and 236 and {30 and x>0
L>0 and Kr<0
« a=0 and (hede) €8s
e=0 and (abcd) €S,

5
Ki=(u-xa) - 160 +xa+xa+2), K= (o) (a4 v+ 4V =)

ar
s+ s+ @)+ (50
s+ 0+ (@) (0:)”

5.7} -+l 0} + (o2 + 02)(3)

Ay = NAEA2 - MTAu.y + by - ToA"

Conditions look complicated but can be easily checked numerically!

Completed causality and stability analysis of conventional BDNK too
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Conclusions

Complete formulation of local well-posed, causal and stable first-order
chiral hydrodynamics

Effective field theory approach

Consistent first-order theory = Heat diffusion along vorticity must
be absent both in ideal and first-order theories

Future: dynamical magnetic fields; applications in QGP physics,
astrophysics, condensed matter, ...
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