Solitonic Symmetry beyond Homotopy Groups

Shi Chen

Department of Physics, the University of Tokyo

QCD Theory Seminar

$$S = \frac{1}{2g^2} \int d\phi \wedge \star d\phi - \lambda \int (1 - \cos \phi), \ \phi \sim \phi + 2\pi \qquad \pi_1(S^1) = \mathbb{Z} \qquad U_{\alpha}(M_1) = \exp\left\{i\alpha \int_{M_1} \frac{d\phi}{2\pi}\right\}, \ \alpha \sim \alpha + 2\pi$$
• Example: 2D S¹ boson ((•)) ~ exp(-mr)
• Example: 3D S¹ boson ((•)) ~ exp(-m\sigma)
• Example: 3D S¹ boson ((•)) ~ exp(-m\sigma)
• $\phi = 3\pi/2$
 $\phi = \pi/4$
 $\phi = -\pi/4$
 $\phi = -\pi/2$
 $\phi = -\pi/2$

$$S = \frac{1}{2g^2} \int da \wedge \star da$$

$$\pi_2(\mathrm{BU}(1)) = \mathbb{Z}$$

$$U_{\alpha}(M_2) = \exp\left\{i\alpha \int_{M_2} \frac{da}{2\pi}\right\}, \quad \alpha \sim \alpha + 2\pi$$

• Example: **3D** U(1) gauge theory

⟨⊕ ●⟩ ~ Coulombmonopoles

Magnetic **0-form** U(1) is spontaneously broken Photons as Goldstone bosons

• Example: 4D U(1) gauge theory

Magnetic **1-form** U(1) is spontaneously broken Photons as Goldstone bosons Solitonic symmetry is believed to be classified by Homotopy Group.

In this talk...

Solitons of different dimensions

Categorical solitonic symmetry beyond homotopy groups

٠

Mar. 20, 2023

$$5/12$$
U(1) gauge redundancy $\vec{z}(x) \sim e^{i\alpha(x)}\vec{z}(x)$
eld ----- $a \equiv i\vec{z}^{\dagger} \cdot d\vec{z}$ $da \wedge da = 0$

$$Vortex \dots \pi_{2}(\mathbb{C}P^{1})$$

$$charge: \int_{S^{2}} \frac{da}{2\pi} = n$$

$$for all for al$$

unit \mathbb{C}^2 vector $\vec{z}(x)$

+

Auxiliary U(1) gauge field $\dots a \equiv i\vec{z}^{\dagger} \cdot d\vec{z}$

 $\mathbb{C}\mathrm{P}^1$

=

S. C.

- $A_{n\neq 0}$ has 2|n| deformation classes, classified by the $\mathbb{Z}_{2|n|}$ hopfion charge, denoted by $A_{n,\ell}$ with $\ell \sim \ell + 2|n|$.
- The existence of these deformation classes can also be studied via algebraic topology. e.g. [Pontryagin, 1941]

An explicit description of the 2 deformation classes of $A_{1,\ell}$

- At each τ , we have a map ϕ_{τ} : $S^2 \mapsto \mathbb{CP}^1$.
- $\tau \mapsto \phi_{\tau}$ describes a rotation process of S^2 , which is reduced to $\tau \mapsto SO(3)$.
- Due to $\pi_1(SO(3)) = \mathbb{Z}_2$, we have two deformation classes.

 $A_{1,0} \equiv$ the untwisted class $A_{1,1} \equiv$ the twisted class Symmetry generator always well-defined:

$$\mathcal{H}_{\pi}(M^3) = \exp\left\{i\int_{M^3} \frac{ada}{4\pi}\right\} \to \pm 1 \qquad \Longrightarrow \qquad \mathbb{Z}_2 \text{ symmetry}$$

even m: $\langle A_{1,0} B_m \rangle \neq 0$ $\langle A_{1,1} B_m \rangle = 0$ odd m: $\langle A_{1,0} B_m \rangle = 0$ $\langle A_{1,1} B_m \rangle \neq 0$

- $A_{1,0}$ absorbs/emits any **even** number of hopfions.
- $A_{1,1}$ absorbs/emits any **odd** number of hopfions.
- B_m and B_{m+2} must share the same hopfion charge, provided invertibility.

The \mathbb{Z}_2 charge is classified by reduced spin bordism group.

$$\widetilde{\Omega}_3^{Spin}(\mathbb{C}\mathrm{P}^1) = \mathbb{Z}_2$$

We have shown...

To encode all above...

We need **non-invertible charge**.

We need **bordism covariant** (i.e. TQFT) instead of **bordism invariant** to construct $\mathcal{H}_{\alpha}(M^3)$.

This is possible for **rational** coefficients $\alpha \in 2\pi \frac{\mathbb{Q}}{\mathbb{Z}}$.

For
$$\alpha = \frac{\pi}{N}$$
 $\mathcal{H}_{\frac{\pi}{N}}(M^3) = \int \mathfrak{D}b \exp\left\{-i\int_{M^3} \left(\frac{N}{4\pi}bdb + \frac{1}{2\pi}bda\right)\right\}$

$$\mathcal{B}_{m}^{S^{3}} \qquad \qquad \mathcal{H}_{\overline{N}}^{\pi}(S^{3}) = \exp\left\{\frac{\mathrm{i}}{N}\int_{S^{3}}\frac{a\mathrm{d}a}{4\pi}\right\} = \mathrm{e}^{\mathrm{i}\frac{\pi}{N}m}$$

For
$$\alpha = \frac{p}{N}\pi$$
 $\mathcal{H}_{\frac{p}{N}\pi}(M^3) = \mathcal{A}^{N,p}(M^3, \mathbb{C}\mathrm{P}^1)$

 $\mathcal{A}^{N,p}$ denotes the **minimal** spin TQFT₃ with \mathbb{Z}_N 1-form symmetry whose 't Hooft anomaly is labeled by p.

e.g.
$$\mathcal{A}^{N,1} \simeq U(1)_N$$

Symmetry indeed becomes **non-invertible**

$$\mathcal{H}_{\alpha} \times \mathcal{H}_{\alpha}^{\dagger} \neq 1 \qquad \qquad \mathcal{H}_{\alpha} \times \mathcal{H}_{-\alpha} \neq 1 \qquad \qquad \mathcal{H}_{\alpha} \times \mathcal{H}_{\beta} \neq \mathcal{H}_{\alpha+\beta}$$

4D $\mathbb{C}P^1$ sigma model

- Hom $(\widetilde{\Omega}_3^{Spin}(\mathbb{C}\mathrm{P}^1), U(1))$ gives invertible 0-form solitonic symmetry.
- Minimal spin TQFT₃(CP¹) gives **non-invertible** 0-form solitonic symmetry.

 $3D \mathbb{C}P^1$ sigma model

- Hom $(\widetilde{\Omega}_3^{Spin}(\mathbb{C}P^1), U(1))$ classifies couplings to invertible topological phase ($\mathbb{Z}_2 \theta$ -angle).
- Minimal spin $TQFT_3(\mathbb{CP}^1)$ classifies couplings to **non-invertible** topological phase (topological order).
- \implies "(-1)-form solitonic symmetry"

Thank you for listening!