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Motivation: How does QCD thermalize?
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Problem: Real-time dynamics,  
MC-based lattice QCD

Issue #2: What actually means thermalization? 

Issue #1: No first-principle (QCD) approach! 

“piecewise” descriptions: QCD kinetic theory, hydrodynamics 
Arnold, Moore, Yaffe; JHEP 11 (2000) & 05 (2003) 
Baier, Mueller, Schiff, Son; PLB 502, 51 (2001) 
Berges, Heller, Mazeliauskas, Venugopalan, Rev. Mod. Phys. 93 (2021), 035003 
Keegan, Kurkela, Romatschke, van der Schee, JHEP 2016(4), 1

(spoiler: Entanglement has to do with it)



issue #1, perhaps soon no longer an issue?
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This talk: Mostly issue #2



Thermal equilibrium often taken for granted
• “Hydrodynamics works”  

= local thermal equilibrium?

bnl.gov

Thermalization of Gauge Theories

What means thermal equilibrium?

• Weak-coupling: QCD kinetic theory, 
“should thermalize … eventually”

Arnold, Moore, Yaffe; JHEP 11 (2000) & 05 (2003) 
Baier, Mueller, Schiff, Son; PLB 502, 51 (2001)

fluctuation-dissipation relation 
fluctuations of physical variable  response (”admittance”) to external change ↔

thermal expectation values
expectation values of physical variable predicted by Gibbs ensemble

Z ∼ ∑
k

e−βEk

⟨E⟩ = − ∂Z
∂β

β = 1/kBT

thermal equilibrium = system behaves statistically, i.e. according to the laws of thermodynamics



Thermalization of Gauge Theories
How to reach thermal equilibrium?

Quantum systems

formally, isolated quantum systems cannot
quantum mechanics is unitary

i∂t |ψ⟩ = H |ψ⟩ |ψ⟩ → e−βH

Eigenstate Thermalization Hypothesis
Deutsch, PRA 43, 2046 (1991); Srednicki PRE 50, 888 (1994)

Initial state characterized by 
lots of information

Thermal state “Gibbs ensemble”
only characterized by: temperature, chemical potential … “loss of information”?

Typicality: von Neumann (1929)  
Golstein, Lebowitz, Mastrodonato, Tumulk, Aznghi, Proc. R. Soc. A 466, 3203 (2010) 
Eisert, Friesdorf, Gogolin, Nature Phys. 11, 124130 (2015) 
Random Matrix Theory: Wigner, Dyson, Bohigas, Berry 
Borgonovi, Izrailev, Santos, Zelevinsky, Phys. Rep. 626, 1 (2016) 
Berry’s conjecture 
Berry, J Phys A 10, 2083 (1977)

Classical systems

ergodicity & chaos  
small systems can relax to micro-canonical ensemble



quantum mechanics is unitary

Thermalization of Gauge Theories
How does a (quantum) many-body system reach thermal equilibrium?

Classical systems

ergodicity & chaos  
small systems can relax to micro-canonical ensemble

Quantum systems

formally, quantum systems cannot

i∂t |ψ⟩ = H |ψ⟩ |ψ⟩ → e−βH

Eigenstate Thermalization Hypothesis
Deutsch, PRA 43, 2046 (1991); Srednicki PRE 50, 888 (1994)

Initial state characterized by 
lots of information

Thermal state “Gibbs ensemble”
only characterized by: temperature, chemical potential … “loss of information”

Typicality: von Neumann (1929)  
Golstein, Lebowitz, Mastrodonato, Tumulk, Aznghi, Proc. R. Soc. A 466, 3203 (2010) 
Eisert, Friesdorf, Gogolin, Nature Phys. 11, 124130 (2015) 
Random Matrix Theory: Wigner, Dyson, Bohigas, Berry 
Borgonovi, Izrailev, Santos, Zelevinsky, Phys. Rep. 626, 1 (2016) 
Berry’s conjecture 
Berry, J Phys A 10, 2083 (1977)

Finally we would like to comment on the much-discussed question of an appropriate definition for quantum chaos. Some time ago, van Kampen suggested that quantum 
chaos be defined as “that property that causes a quantum system to behave statistically [33]. 

If we replace “behave statistically” with “obey the laws of statistical mechanics,” then we have seen that the key feature is Berry’s conjectured properties of the energy 
eigenstates. In particular, properties of the energy eigenvalues (such as GOE rather than Poisson statistics for the unfolded level spacings [33]) have played no role at all 
in the present work. 

Steiner has suggested [21] that Berry’s conjecture be elevated to the status of the best definition of quantum chaos, a proposal which we see to be equivalent to (our 
version of) van Kampen’s. More generally, in quantum mechanics, where time evolution is always linear and therefore essentially trivial, the only place to encode 
the complexities of the classical limit is in the energy eigenfunctions: that is where quantum chaos, like thermal behavior, must be sought. 

Srednicki PRE 50, 888 (1994)

“complexities” & structure of quantum states: Quantify through Entanglement

ETH

C. Shen
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has not been explored yet for gauge theories



Basics



What is a (lattice) gauge theory?

F. Wegner 1979  
J. Math. Phys. 12, 2259

 Lattice Gauge TheoryZ2

1 2

3

4

ℓ
ℓ ≡ (n, i) H = − ∑

□
σz

1σz
2σz

3σz
4 −ϵ∑

ℓ
σx

ℓ

W* ≡ ∏
ℓ∈*

σz
ℓ

• Phase transition w/o local order parameter 
deconfinement vs. confinement

deconfined

 ~ perimeter lawW*

confined

 ~ area lawW*

ϵ
ϵc

TrivialTopological 
Order

ab

c d
Gn = σx

aσx
bσx

cσx
d [Gn, H] = 0

Gauss law
Gn |ψ⟩ = 1 |ψ⟩

physical states obey



Entanglement of Gauge Theories

≡ exp{−HA}ρA = TrB{ρ}

ℋphys ≠ ℋphys
A ⊗ ℋphys

B

 for a gauge theory?ρA

Buividovich. Polikarpov, PLB 670, 141 (2008),  
Casini, Huerta Rosabal,  PRD 89, 085012 (2014).   
Aoki, Iritani, Nozaki, Numasawa, Shiba, Tasaki,  JHEP 2015, 1 (2015).   
Ghosh, Soni, Trivedi,  JHEP, 1 (2015).   
Van Acoleyen, Bultinck, Haegeman, Marien,  
Scholz, Verstraete, PRL 117,  131602 (2016).  
Lin and D. Radicevic, NPB 958, 115118 (2020)

Entanglement Structure

Li, Haldane, PRL 101, 010504 (2008) 

HA = − log(ρA) “Entanglement Hamiltonian”

AB
Gn |ψ⟩ = 1 |ψ⟩

physical states obey



Entanglement of Gauge Theories
measurements determine state

Tr(ρO) = ⟨O⟩ ρ = ∑
O∈/

ρOO ρO = ⟨O⟩
2

1

2

3

4

ℓ

ℓ ≡ (n, i) H = − ∑
□

σz
1σz

2σz
3σz

4 −ϵ∑
ℓ

σx
ℓ

ab

c d

Gn = σx
aσx

bσx
cσx

d [Gn, H] = 0

Only gauge invariant operators have non-zero expectation value

= ∏
□

1 + W□
2 ∏

n

1 + Gn
2∏

n

1 + Gn
2

ρ ∼ 1
2# [0 + ∑

□
W□ + ∑

□≠□′ 

W□W□′ 
+ …] W□ = σz

1σz
2σz

3σz
4

Example ϵ = 0



Entanglement of Gauge Theories

PBC

PBC

AB ∂A ∂A

Consider subsystem A

• Gauss law on boundary ,σx
a = σx

bσx
cσx

d
(c)

(a)

(b)

(d) • commutes with all operators in system A
W□ = σz

1σz
2σz

3σz
4

does not commute, but outside A

• [  , ] = 0 defines symmetryσx
bσx

cσx
d ρA

ρA = ∏
□

1 + W□
2 ∏

n≠∂A

1 + Gn
2 × ( I∂A

22Ny )

□ …
⋮ □ …
⋮ ⋱
… □

von Neumann  
entanglement entropy

SE = 2Ny log(2)

• Entanglement: distillable vs. symmetry/classical
Casini, Huerta Rosabal,  PRD 89, 085012 (2014).  



compute Entanglement of LGTs 

(yet)
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cannot compute a heavy ion collision

“Quantum Quench”

deconfined
 confined

ϵ

ϵc

Topological Order trivial

H = − ∑
□

σz
1σz

2σz
3σz

4 − ϵ∑
ℓ

σx
ℓ

evolve with ϵ = 1

excited state

(product state)

ϵ = ∞



ρA ≡
χ−1

∑
λ=0

Pλ |ψλA
⟩⟨ψλA

|

Schmidt decomposition

Gauge Theory Thermalization

NM, Zache, Ott, PRL 129, 011601 2022) 

0.1

Maximization of 
Schmidt rank

1 50

Stage I: Maximization of Schmidt rank

ϵ ⋅ t
200

Pλ(t) ≡ e−ξλ(t)

ρA(t) ≡ e−HA(t)

Entanglement Structure



… seen in level 
spacings of  
Entanglement 
Hamiltonian
HA(t) ≡ − log[ρA(t)]
ξλ(t) ≡ − log[Pλ(t)]

quantum chaos

Stage II: Spreading of level repulsion
spreading of entanglement

and level repulsion

0.1

Maximization of 
Schmidt rank

1 50

NM, Zache, Ott, PRL 129, 011601 2022) 

Gauge Theory Thermalization

“Wigner’s surmise” 

levels repulse 
= chaos/thermalization

levels uncorrelated  
= many-body localization 

integrable

towards thermalization

MBL 
integrable



“Quantum Turbulence”

Gauge Theory Thermalization
Stage III: Self Similar Evolution

spreading of entanglement

and level repulsion

0.1

Maximization of 
Schmidt rank

1 50

self-similar  
evolution

NM, Zache, Ott, PRL 129, 011601 2022) 

P(λ, t) = τ−αP(τβλ)

τ = ϵ(t − t0)

• scaling form

α = 0.8 ± 0.1
β = 0.0 ± 0.1



Maximization of 
Schmidt rank

spreading of entanglement

and level repulsion

self-similar  
evolution

saturation of 
thermal entropy

ϵ ⋅ t
0.1 1 50 200

Stage IV: Saturation of von Neumann entropy
Gauge Theory Thermalization
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Time ≤ · t
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thermal ∼ TrB(e−βH)

von-Neumann entropy = thermal entropy

NM, Zache, Ott, PRL 129, 011601 2022) 



Conclusions

• Great opportunity for  
Quantum Information Technology 

• Understanding gauge theory thermalization from entanglement structure. 

•  Consistent with ETH, but LGTs “not special”.
C. 
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•  —> QCD much harder.ℤ2+1
2

• Characteristic sequence: quantum chaos, turbulence


