Torsion-induced chiral magnetic current in equilibrium

Tatsuya Amitani

Department of Physics, Tokyo Institute of Technology (<u>TA</u> and Y. Nishida, arXiv:2204.13415)

Outline

1. Introduction

- Chiral transport phenomena
- Torsion
- 2. Torsion-induced chiral magnetic effect
- 3. Torsion-induced transport in Weyl semimetals
- 4. Summary

Outline

1. Introduction

- Chiral transport phenomena
- Torsion

2. Torsion-induced chiral magnetic effect

3. Torsion-induced transport in Weyl semimetals

4. Summary

Chiral transport phenomena

- Chiral transport phenomena
 - occurs in **massless fermionic systems**
 - relevant to the quantum anomaly
- ✓ Chiral magnetic effect (CME)¹

$$j = rac{\mu_5}{2\pi^2} B$$

Axial chemical potential

✓ Chiral vortical effect (CVE)²
$$\mu_5 := (\mu_R - \mu_L)/2$$

$$oldsymbol{j} = rac{\mu\mu_5}{\pi^2}oldsymbol{\omega}$$

[1] K. Fukushima et al., PRD, 78, 074033 (2008)[2] M. A. Stephanov and Y. Yin, PRL, 109, 162001 (2012)

Chiral transport phenomena

- Realization of the CME
 - Quark-gluon plasmas
 - Neutron stars
 - Dirac and Weyl semimetals

The chiral magnetic effect

has attracted wide interest

Chiral transport phenomena

The CME is absent in equilibrium.

= The CME cannot be activated simply

by applying the magnetic field.

The way to activate the CME in WSMs

• To apply the electric field³ 0.06 2.0 $\delta\mu_5 \sim \frac{\tau}{\chi} C \boldsymbol{E} \cdot \boldsymbol{B} \implies j^i = \left(\sigma_{\rm ohm} \delta^{ij} + \frac{\tau}{\chi} C^2 B^i B^j\right) E^j$ 0.02 0.00 1.5 m Ω cm) 40 80 Negative magnetoresistance T(K) To distort the WSMs with the strain⁴ 0.5 Another way? T = 20 K 0.0 3 9 B(T)[3] D. T. Son and B. Z. Spivak, PRB 88, 104412 (2013) Cited from Ref. [5] [4] A. Cortijo, et al., PRB 94, 241405(R) (2016) [5] Q. Li et al., Nature Physics 12, 550 (2016)

In this work, we activate the CME

by using a <u>TORSION</u>.

\checkmark Torsion

- Physical quantity introduced in the curved spacetime
- Torsion couples with the (3+1)d fermions as an axial gauge field⁶.
- It is expected that the torsion plays the role of the axial chemical potential and induces the CME!

Outline

1. Introduction

- Chiral transport phenomena
- Torsion

2. Torsion-induced chiral magnetic effect

3. Torsion-induced transport in Weyl semimetals

4. Summary

- ✓ Riemann geometry
 - Torsion tensor

Curved spacetime is described by the metric $\,g_{\mu
u}$

and the affine connection $\Gamma^{\lambda}_{\mu\nu}$. A torsion is defined as $T^{\lambda}_{\mu\nu} := \Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu}$.

Metric compatibility condition

$$\nabla_{\lambda}g_{\mu\nu} = 0$$

$$\Gamma^{\lambda}_{\ \mu\nu} = \overset{\circ}{\Gamma}^{\lambda}_{\ \mu\nu} + \underbrace{K^{\lambda}_{\ \mu\nu}}_{\text{Contortion tensor}}$$
Levi-Civita connection $Contortion \text{ tensor}$

$$K_{\lambda\mu\nu} := \frac{1}{2} (T_{\mu\lambda\nu} + T_{\nu\lambda\mu} + T_{\lambda\mu\nu})$$

✓ Cartan formalism

• Vielbein and spin connection

We can choose the basis as $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = \eta_{ab}e^a e^b$.

$$e^{a} = e^{a}_{\ \mu} dx^{\mu}$$

$$vielbein (vierbein in 4d)$$

$$g_{\mu\nu} = e^{a}_{\ \mu} e^{b}_{\ \nu} \eta_{ab}$$

We cannot determine the vielbein uniquely.

 $e^{a}_{\mu} \rightarrow e'^{a}_{\mu} = \Lambda^{a}_{\ b} e^{b}_{\ \mu}$ $\Lambda^{a}_{\ c} \Lambda^{b}_{\ d} \eta_{ab} = \eta_{cd}$ Local Lorentz (LL) transf. We introduce the gauge field for LL symmetry.

= spin connection $\omega_{ab\mu}$

✓ Cartan formalism

• Affine connection

$$\Gamma^{\lambda}_{\ \mu\nu} = e_a^{\ \lambda} (\partial_{\mu} e^a_{\ \nu} + \omega^a_{\ b\mu} e^b_{\ \nu}) \bigstar \nabla_{\mu} e^a_{\ \nu} = 0$$

• Torsion

$$T^a_{\mu\nu} = \partial_\mu e^a_{\ \nu} + \omega^a_{\ b\mu} e^b_{\ \nu} - (\mu \leftrightarrow \nu)$$

We decompose the spin connection as

$$\begin{split} \omega_{ab\mu} &= \underline{\mathring{\omega}_{ab\mu}} + \underline{K_{a\mu b}} \\ \text{Torsion-less spin connection} & \text{Contortion tensor} \\ \mathring{\omega}_{ab\mu} &= \frac{1}{2} e^c_{\ \mu} (\gamma_{cab} - \gamma_{abc} - \gamma_{bca}) \\ \gamma^c_{\ ab} &:= (e_a^{\ \mu} e_b^{\ \nu} - e_a^{\ \nu} e_b^{\ \mu}) \partial_\mu e^c_{\ \nu} \end{split}$$

- ✓ Spinor in curved spacetime
 - Local Lorentz transformation

$$\psi \to S(\Lambda)\psi$$

 $S(\Lambda) = \exp\left[-\frac{i}{4}\epsilon^{ab}\sigma_{ab}\right]$: Spinor representation of LL transf.
 $\sigma_{ab} := \frac{i}{2}[\gamma_a, \gamma_b]$

Covariant derivative w.r.t LL transf.

$$D_{\mu}\psi = (\partial_{\mu} + \omega_{\mu})\psi$$

Under the LL transf.

$$\omega_{\mu} \to S(\Lambda)\omega_{\mu}S(\Lambda)^{-1} - [\partial_{\mu}S(\Lambda)]S(\Lambda)^{-1}$$
$$\omega^{a}_{\ b\mu} \to \Lambda^{a}_{\ c}\omega^{c}_{\ d\mu}(\Lambda^{-1})^{d}_{\ b} - [\partial_{\mu}\Lambda^{a}_{\ c}](\Lambda^{-1})^{c}_{\ b}$$
$$D_{\mu}\psi = (\partial_{\mu} + \omega_{\mu})\psi = \left(\partial_{\mu} - \frac{i}{4}\omega_{ab\mu}\sigma^{ab}\right)\psi$$

✓ 4D fermions with torsion

• Action

$$S = \int d^4x e(\bar{\psi}i\gamma^a e^{\mu}_{\ a}D_{\mu}\psi + \bar{\psi}\overleftarrow{D}_{\mu}i\gamma^a e^{\mu}_{\ a}\psi)$$

$$\longrightarrow \int d^4x e\bar{\psi}i\gamma^a e^{\mu}_{\ a}\left(\partial_{\mu} + \omega_{\mu} + \frac{1}{2}T^{\lambda}_{\ \mu\lambda}\right)\psi$$

$$\longrightarrow \int d^4x e\bar{\psi}i\gamma^a e^{\mu}_{\ a}\left(\frac{\partial_{\mu} + \mathring{\omega}_{\mu}}{\text{torsion-less}} + \frac{iS_{\mu}\gamma^5}{\text{torsion}}\right)\psi$$

$$S_{\mu} := \frac{1}{8}\epsilon^{\mu\lambda\rho\sigma}T_{\lambda\rho\sigma}$$

Torsion couples with the 4D fermion as the axial gauge field!

✓ Torsion and dislocation

Torsion is set to be zero in general relativity

In condensed matter systems, we can realize the torsion

by the lattice dislocation⁷.

[7] H. Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, (2008)

- ✓ Torsion and dislocation
 - Displacement vector

$$u^i(\boldsymbol{x}) = x^i - \bar{x}^i(\boldsymbol{x})$$

• Burgers vector

$$b^{i} = -\oint du^{i} = -\iint dx^{j} \wedge dx^{k} (\partial_{j}\partial_{k} - \partial_{k}\partial_{j})u^{i}(\boldsymbol{x})$$

The deformation is regarded as a coordinate transformation $\bar{x}^i(x) \to x^i$. The vierbein is given by $e^a_{\ i}(x) = \frac{\partial \bar{x}^a}{\partial x^i} = \delta^a_{\ i} - \partial_i u^a$ $b^i = \iint dx^j \wedge dx^k T^i_{\ jk} + \mathcal{O}(\partial u^2)$

- ✓ Torsion and dislocation
 - Screw dislocation along the z axis

$$u^{z}(x) = \frac{b}{2\pi}\varphi = \frac{b}{2\pi}\tan^{-1}\frac{y}{x}$$

$$e^{z}_{x} = -\frac{b}{2\pi}\frac{y}{r^{2} + \epsilon^{2}} \quad e^{z}_{y} = \frac{b}{2\pi}\frac{x}{r^{2} + \epsilon^{2}}$$

$$T^{z}_{xy} = \lim_{\epsilon \to 0}\frac{b}{2\pi}\frac{2\epsilon^{2}}{(r^{2} + \epsilon^{2})^{2}} = b\delta(x)\delta(y)$$

$$S_{0} = -\frac{b}{4}\delta(x)\delta(y)$$

Oth component of axial gauge field = axial chemical potential

✓ Short summary

- The torsion couples with the 4D fermions as the axial gauge field.
- Torsion = Dislocation = 0th component of axial gauge field

$$S_0 = -\frac{b}{4}\delta(x)\delta(y)$$

We can use the torsion instead of
$$\mu_5$$

 $\underline{j^i \propto S_0(m{x})B^i} ~\left[{
m cf.}~j^i \propto \mu_5 B^i
ight]$

The axial chemical potential is spatially uniform.

The torsion depends on the space.

The CME may be induced locally even in the equilibrium.

Outline

1. Introduction

- Chiral transport phenomena
- Torsion

2. Torsion-induced chiral magnetic effect

3. Torsion-induced transport in Weyl semimetals

4. Summary

- ✓ Set up

 - Massless fermionic system

with the torsion and the magnetic field

$$S = \int d^4x \gamma^{\mu} \bar{\psi}(x) \left(i\partial_{\mu} - A_{\mu}(x) - S_{\mu}(x)\gamma^5 \right) \psi(x)$$
$$A^{\mu} = (0, \boldsymbol{A}(\boldsymbol{x})) \quad S^{\mu} = (S^0(\boldsymbol{x}), \boldsymbol{0})$$

- Magnetic field is spatially uniform.
- The spacetime is flat: $e^a_{\ \mu} = \delta^a_{\ \mu}$.

The generality is not lost since the torsion always appears as $\,S_{\mu}\,$

Current density

Pauli-Villars regularization

✓ Pauli-Villars regularization

$$\begin{split} I^{\mu\nu\rho}(p,q,k) & \longrightarrow I^{\mu\nu\rho}_{\mathrm{reg}}(p,q,k) \\ &:= \mathrm{tr} \left[\gamma^{\mu} \frac{1}{\not{k} + \not{p}} \gamma^{\nu} \frac{1}{\not{k}} \gamma^{\rho} \gamma^{5} \frac{1}{\not{k} - \not{q}} \right] + \mathrm{tr} \left[\gamma^{\mu} \frac{1}{\not{k} + \not{q}} \gamma^{\rho} \gamma^{5} \frac{1}{\not{k}} \gamma^{\nu} \frac{1}{\not{k} - \not{p}} \right] \\ & - \mathrm{tr} \left[\gamma^{\mu} \frac{1}{\not{k} + \not{p} - M} \gamma^{\nu} \frac{1}{\not{k} - M} \gamma^{\rho} \gamma^{5} \frac{1}{\not{k} - \not{q} - M} \right] \\ & - \mathrm{tr} \left[\gamma^{\mu} \frac{1}{\not{k} + \not{q} - M} \gamma^{\rho} \gamma^{5} \frac{1}{\not{k} - M} \gamma^{\nu} \frac{1}{\not{k} - \not{p} - M} \right] \end{split}$$

We introduce the ghost field with infinite mass $\,M
ightarrow\infty$

$$j^{\mu}(\boldsymbol{x}) = \frac{1}{\beta} \sum_{m} \int_{\boldsymbol{k},\boldsymbol{p},\boldsymbol{q}} I^{\mu\nu\rho}_{\text{reg}}(\boldsymbol{p},\boldsymbol{q},\boldsymbol{k}) e^{i\boldsymbol{p}\cdot\boldsymbol{x}} A_{\nu}(\boldsymbol{p}) e^{i\boldsymbol{q}\cdot\boldsymbol{x}} S_{\rho}(\boldsymbol{q})$$

✓ Gradient expansion

We expand the integrand w.r.t $\,p\,.\,$

$$j^{i}(\boldsymbol{x}) = \frac{1}{\beta} \sum_{m} \int_{\boldsymbol{k},\boldsymbol{p},\boldsymbol{q}} I_{\text{reg}}^{ij0}(\boldsymbol{p},\boldsymbol{q},k) e^{i\boldsymbol{p}\cdot\boldsymbol{x}} A_{j}(\boldsymbol{p}) e^{i\boldsymbol{q}\cdot\boldsymbol{x}} S_{0}(\boldsymbol{q})$$

$$= \frac{1}{\beta} \sum_{m} \int_{\boldsymbol{k},\boldsymbol{q}} I_{\text{reg}}^{ij0}(\boldsymbol{0},\boldsymbol{q},k) A_{j}(\boldsymbol{x}) e^{i\boldsymbol{q}\cdot\boldsymbol{x}} S_{0}(\boldsymbol{q}) + \frac{i}{\beta} \sum_{m} \int_{\boldsymbol{k},\boldsymbol{q}} \frac{\partial I_{\text{reg}}^{ij0}(\boldsymbol{p},\boldsymbol{q},k)}{\partial p_{l}} \bigg|_{\boldsymbol{p}=\boldsymbol{0}} \frac{\partial_{l} A_{j}(\boldsymbol{x}) e^{i\boldsymbol{q}\cdot\boldsymbol{x}} S_{0}(\boldsymbol{q})}{+\mathcal{O}(\partial^{2}A)}$$

These integrals are convergent without the regularization.
 Is the regularization essential? Yes.

Because...

the Oth order term does not vanish without the reg.

The regularization is essential for the gauge invariance.

✓ Result

$$j^{i}(\boldsymbol{q}) = \frac{1}{4\pi^{2}} (B^{i} - (\boldsymbol{B} \cdot \hat{\boldsymbol{q}}) \hat{q}^{i}) S_{0}(\boldsymbol{q}) \left[1 + \int_{0}^{\infty} dk \frac{k}{2q} \ln\left(\frac{q+2k}{q-2k}\right)^{2} N_{+}'(k) \right]$$

 $N_{+}(k) := n_{F}(k - \mu) + n_{F}(k + \mu)$

Conservation law

$$\boldsymbol{\nabla} \cdot \boldsymbol{j}(\boldsymbol{x}) \sim i \boldsymbol{q} \cdot \boldsymbol{j}(\boldsymbol{q}) = 0$$

We analyze the current density with $\begin{bmatrix} I. & S_0(x) = -\mu_5 \\ II. & S_0(x) = -\frac{b}{4}\delta(x)\delta(y) \end{bmatrix}$.

I. The uniform case: $S_0(x) = -\mu_5$

$$j^{i}(\boldsymbol{q}) = \frac{1}{4\pi^{2}} (B^{i} - (\boldsymbol{B} \cdot \hat{\boldsymbol{q}}) \hat{q}^{i}) S_{0}(\boldsymbol{q}) \left[1 + \int_{0}^{\infty} dk \frac{k}{2q} \ln\left(\frac{q+2k}{q-2k}\right)^{2} N_{+}'(k) \right]$$

igsquire Taking the zero frequency limit: $oldsymbol{q}
ightarrow oldsymbol{0}$

$$\lim_{q \to 0} \int_0^\infty dk N'_+(k) \frac{k}{q} \ln \left| \frac{2k+q}{2k-q} \right| = -1$$

The CME vanishes in equilibrium. $j^i(\mathbf{x}) = 0$

I. The uniform case: $S_0(x) = -\mu_5$

The integral is convergent without the reg.

$$j^{i}(\boldsymbol{x}) = j^{i}_{\mathrm{D}}(\boldsymbol{x}) - j^{i}_{\mathrm{PV}}(\boldsymbol{x})$$
$$j^{i}_{\mathrm{D}}(\boldsymbol{x}) = -\frac{B^{i}}{2\pi^{2}}S_{0}(\boldsymbol{x}) + j^{i}(\boldsymbol{x})$$
$$j^{i}_{\mathrm{PV}}(\boldsymbol{x}) = -\frac{B^{i}}{2\pi^{2}}S_{0}(\boldsymbol{x})$$

• $j_D^i(x)$ with $S_0(x) = -\mu_5$ is the chiral magnetic current: $j_D^i = \frac{\mu_5}{2\pi^2}B^i$.

$$j_{PV}^i(\boldsymbol{x})$$
 cancels the chiral magnetic current. The regularization is essential

for the absence of the CME in eq.

II. The case of the screw dislocation: $S_0(x) = -\frac{b}{4}\delta(x)\delta(y)$ We apply the magnetic field in parallel to the dislocation line: $\boldsymbol{B} = (0, 0, B_{\parallel})$. $i^{z}/(\mu^{2}bB)$ ✓ Current density at $r \neq 0$ 0.0004 -0 -0.1 -0.2 -0.5 -1 $j^{\bar{z}}/(\mu^2 bB)$ 0.0002 0.07 T/μ 0.0000 _ 0 _ 0.1 _ 0.2 _ 0.5 _ 1 0.06 -0.0002 0.05 -0.0004 0.04 -0.0006 0.03 0.02 0.01

U۲ The current is zero $J^{z} = \iint dx dy j^{z}(\boldsymbol{x}) = 0$

0.00

II. The case of the screw dislocation: $S_0(x) = -\frac{b}{4}\delta(x)\delta(y)$ We apply the magnetic filed

in perpendicular to the dislocation line.

✓ Current density at $T=\mu=0$

$$j^{i}(\boldsymbol{x}) = \frac{b}{32\pi^{3}} \frac{B^{i} - 2\hat{x}^{i}(\boldsymbol{B} \cdot \hat{\boldsymbol{x}})}{r^{2}}$$

• The circular current is induced.

- ✓ Short summary
- Evaluation of a current density induced by the dislocation S^0 and the magnetic field B^i

$$j^{i}(\boldsymbol{q}) = \frac{1}{4\pi^{2}} (B^{i} - (\boldsymbol{B} \cdot \hat{\boldsymbol{q}})\hat{q}^{i}) S_{0}(\boldsymbol{q}) \left[1 + \int_{0}^{\infty} dk \frac{k}{2q} \ln\left(\frac{q+2k}{q-2k}\right)^{2} N_{+}'(k) \right]$$

- $B = (0, 0, B_{\parallel})$ The current is induced along the dislocation line. (This is analog of the CME)
- $B = (B_{\perp}, 0, 0)$ \blacksquare The circular current is induced

around the dislocation line.

Outline

1. Introduction

- Chiral transport phenomena
- Torsion

2. Torsion-induced chiral magnetic effect

3. Torsion-induced transport in Weyl semimetals

4. Summary

Torsion-induced transport in WSMs

Weyl semimetal

- WSMs have a couple of the Dirac cones
- The splitting of the Dirac cones is given by the axial gauge filed A_5^i

$$\implies S = \int d^4x \bar{\psi}(x) (i\partial - \mathscr{F}(x)\gamma^5 - A_5\gamma^5) \psi(x)$$

What is a possible current in this system?

 $j^i \propto \mu S_0 A_5^i$

This current is consistent with P,T,C.

 $\left(\begin{array}{c} {\rm Cf.\,CME} \\ j^i \propto S_0 B^i \end{array} \right)$

In fact, such a current is numerically observed in a lattice calculation⁸.

[8] K. Kodama and Y. Takane, J. Phys. Soc. Jpn. 88, 054715 (2019)

Torsion-induced transport in WSMs

- ✓ Set up
 - Equilibrium state = Imaginary-time formalism
 - Massless fermionic system

r

with torsion and axial gauge field

$$S = \int d^4x \bar{\psi}(x) (i\partial - \mathscr{F}(x)\gamma^5 - \mathscr{A}_5\gamma^5)\psi(x)$$
$$A_5^{\mu} = (0, \mathbf{A_5}) \qquad S^{\mu} = (S^0(\mathbf{x}), \mathbf{0})$$

- The axial gauge field A_5^i is spatially uniform
- The spacetime is flat $e^a_{\ \mu} = \delta^a_{\ \mu}$

Torsion-induced transport in WSMs

- Pauli-Villars regularization
- ✓ Result

•
$$j^i \propto \mu S_0 A_5^i$$
 is absent.

$$j^i(\boldsymbol{x}) = 0$$

This result is **NOT** consistent with the lattice calculation.

Outline

1. Introduction

- Chiral transport phenomena
- Torsion

2. Torsion-induced chiral magnetic effect

3. Torsion-induced transport in Weyl semimetals

4. Summary

Summary

 \checkmark Evaluation of a current density induced by the dislocation S^0 and the magnetic field B^i

The local current is induced around the dislocation line even in the eq.

 \checkmark Evaluation of a current density induced by the dislocation S^0 and the Weyl node splitting A_5^i

Such a current vanishes.

This result is NOT consistent with the lattice calculation.

✓ Future work

To resolve this inconsistency