Effective field theoretical approach to weakly bound Borromean nuclei

Masaru Hongo (Niigata University \mathcal{L}^{\dagger})

2022/04/18, QCD theory Seminars

M. Hongo, D. T. Son, arXiv:2201.09912 [nucl-th]

Introduction: What is **Borromean nuclei?**

Atom = Nuclei + Electrons

Nuclei = Proton + Neutron?

Nuclear (strong) force

Yukawa theory (1935)

Nuclear (strong) force

Nuclear (strong) force

Yukawa theory (1935) \rightarrow (QCD) \rightarrow HAL QCD method (2007-)

Isotope and stability of nuclei

Given the atomic number *Z*, **how many neutrons** can the nuclei have?

Chart of Nuclides

A naive expectation

Exotic nuclei

A + 1n does not form the bound state. BUT, A + 2n does form the bound state!!

Borromean nuclei

Examples of Borromean nuclei

 ${}^{6}\text{He} = {}^{4}\text{He} + 2n$ ${}^{11}\text{Li} = {}^{9}\text{Li} + 2n$ ${}^{22}\text{C} = {}^{20}\text{C} + 2n$

What is measured special?

Can we understand these phenomena from a simple EFT?
Do we have certain universal relation for Borromean nuclei?

[M. Hongo, D. T. Son, arXiv:2201.09912 [nucl-th]]

Outline

P Motivation:

Exotic (but universal) properties of Borromean nuclei?

Effective field theory

(I) Ratio of the charge and matter radii

(2) EI dipole strength function

Assumption for EFT to work

Two scales at present

s-wave neutron scattering length: $a \simeq -19 \text{ fm} \Leftrightarrow \epsilon_n = \frac{1}{m_n a^2} \simeq 120 \text{ keV}$

Binding energy of Borromean: $B(=S_{2n}) \sim 100 \text{ keV}$ for ²²C

We assume only these two scales are relevant! (For instance, the neutron effective range is $r_0 \simeq 2.8$ fm $\ll |a|$)

Review on EFT of neutrons

◆ Effective Lagrangian

$$\mathcal{L}_{n} = \sum_{\sigma} \psi_{\sigma}^{\dagger} \left(\mathrm{i}\partial_{t} + \frac{\nabla^{2}}{2m_{n}} \right) \psi_{\sigma} + c_{0}\psi_{\uparrow}^{\dagger}\psi_{\downarrow}^{\dagger}\psi_{\downarrow}\psi_{\uparrow}$$
$$= \sum_{\sigma} \psi_{\sigma}^{\dagger} \left(\mathrm{i}\partial_{t} + \frac{\nabla^{2}}{2} \right) \psi_{\sigma} - \frac{1}{c_{0}}d^{\dagger}d + \psi_{\uparrow}^{\dagger}\psi_{\downarrow}^{\dagger}d + d^{\dagger}\psi_{\downarrow}\psi_{\uparrow}$$

[Neutron field: ψ_{σ} , Auxiliary dimer ("di-neutron") field: d]

Green's function & scaling dimension of dimer

$$D(p) = -\frac{4\pi}{\sqrt{-p_0 + \frac{p^2}{4} - \frac{1}{a}}} \quad \left(\frac{1}{4\pi a} = -\frac{1}{c_0} + \int \frac{\mathrm{d}q}{(2\pi)^3} \frac{1}{q^2}\right) \quad d \longrightarrow \psi$$

$$\underbrace{D(p)}_{=-1} \equiv \int \underbrace{\mathrm{d}t \mathrm{d}^3 x}_{=-2-3} \mathrm{e}^{\mathrm{i}(p^0 t - \boldsymbol{p} \cdot \boldsymbol{x})} \langle \underbrace{\mathrm{d}(x) \mathrm{d}^{\dagger}(0)}_{=2[d]} \rangle \Rightarrow [d] = 2$$

EFT for Borromean nuclei

• Effective Lagrangian

$$\mathcal{L} = h^{\dagger} \left(\mathrm{i}\partial_t + \frac{\nabla^2}{2m_h} + B \right) h + \phi^{\dagger} \left(\mathrm{i}\partial_t + \frac{\nabla^2}{2m_{\phi}} \right) \phi + g(h^{\dagger}\phi d + \phi^{\dagger}d^{\dagger}h) + \mathcal{L}_n + \text{counterterms}$$

[Borromean nucleus: *h*, Core nucleus: ϕ with $m_h = (A + 2)m_n$ and $m_{\phi} = Am_n$]

Noting that
$$[\mathcal{L}] = 5$$
 and $[\psi] = [\phi] = \frac{3}{2}$ and $[d] = 2$,

we find that the coupling constant g is dimensionless: [g] = 0

Need to renormalize by computing

Renormalization
• Green's function of Borromean nucleus

$$G_h^{-1}(p) = Z_h \left(p_0 - \frac{p^2}{2m_h} + B_0 \right) + 4\pi g^2 \int \frac{dq}{(2\pi)^3} f_a \left(-p_0 + \frac{1}{2m_h} p^2 + \frac{q^2}{2\mu} \right)$$

with the field renormalization factor Z_h and $f_a(x) = \frac{1}{\sqrt{x - \frac{1}{a}}}$
• On-shell renormalization scheme
 $G_h^{-1}(p_0, \mathbf{0})|_{p_0 = -B} = 0$
 $\frac{\partial}{\partial p_0} G_h^{-1}(p_0, \mathbf{0})|_{p_0 = -B} = 1$ \Leftrightarrow $\left\{ \begin{array}{c} Z_h(B_0 - B) + 4\pi g^2 \int \frac{dq}{(2\pi)^3} f_a(B_q) = 0 \\ Z_h - 4\pi g^2 \int \frac{dq}{(2\pi)^3} f_a'(B_q) = 1 \end{array} \right\}$
Bare (physical) binding energy $B_0(B)$ and $B_q = B + \frac{q^2}{2\mu}$ and $\mu = \frac{2m_\phi}{m_h}$

Noting $Z_h = g^2/g_0^2$, we rewrite the second eq. as $g_0^2 = \frac{g^2}{1 + 4\pi g^2 \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} f_a'(B_{\boldsymbol{q}})}$

RG equation and running coupling

Noting $Z_h = g^2/g_0^2$, we can rewrite the second condition as

$$Z_h - 4\pi g^2 \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} f'_a(B_{\boldsymbol{q}}) = 1 \quad \Leftrightarrow \quad g_0^2 = \frac{g^2}{1 + 4\pi g^2 \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} f'_a(B_{\boldsymbol{q}})}$$

◆ RG equation and its solution
$$\frac{\partial g}{\partial \ln E} = \beta(g) = \frac{2}{\pi} \left(\frac{A}{A+2}\right)^{3/2} g^3 \quad (>0)$$

$$g^2(E) = \frac{\pi}{4} \left(\frac{A+2}{A}\right)^{3/2} \frac{1}{\ln \frac{E_0}{E}} \quad (E_0: \text{Energy of the Landau pole})$$

(i) Use experimental data to determine the running coupling at E(ii) Compute ratio of two observables at the same order of g^2

Outline

P Motivation:

Exotic (but universal) properties of Borromean nuclei?

Effective field theory of point-like particles based on two relevant scales: binding energy *B* and scattering length *a*

Result:

(I) Ratio of the charge and matter radii

(2) EI dipole strength function

(I) Charge and Matter radii

"Sizes" of Borromean nuclei

Mean-square radii

- Core size = Charge radius: $\langle r_c^2 \rangle$
- Di-neutron radius: $\langle r_n^2 \rangle$
- Matter radius: $\langle r_m^2 \rangle = \frac{2}{A+2} \langle r_n^2 \rangle + \frac{A}{A+2} \langle r_c^2 \rangle$

Charge radius

- <u>Charge radius of Borromean nuclei</u>-

Di-neutron radius

Di-neutron radius of Borromean nuclei

The leading coupling between a dimer and "photon" is *not* given by a minimal gauge coupling!!

Effective dimer-photon vertex Analytic formula for effective vertex at small k^2 - $\Gamma_{dd\gamma}(k,p) = \Gamma_0(P_0) + k^2 \Gamma_1(P_0) + K_0^2 \Gamma_2(P_0)$ $\Gamma_0(P_0) = \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \, \frac{2}{\left(P_0 - \boldsymbol{q}^2\right)^2} = \frac{1}{4\pi} \frac{1}{\sqrt{-P_0}} \,,$ with $\Gamma_1(P_0) = \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \left| \frac{1}{2} \frac{1}{(P_0 - \boldsymbol{q}^2)^3} + \frac{1}{6} \frac{\boldsymbol{q}^2}{(P_0 - \boldsymbol{q}^2)^4} \right| = -\frac{5}{384\pi} \frac{1}{(-P_0)^{3/2}},$ $\Gamma_2(P_0) = \frac{1}{2} \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \frac{1}{(P_0 - \boldsymbol{q}^2)^4} = \frac{1}{128\pi} \frac{1}{(-P_0)^{5/2}}.$

Di-neutron radius

- Charge radius of Borromean nuclei

Universal relation

Charge radius:
$$\langle r_c^2 \rangle = \frac{4}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{g^2}{B} f_c(\beta)$$

Di-neutron radius: $\langle r_n^2 \rangle = \frac{g^2}{\pi B} \left(\frac{A}{A+2}\right)^{3/2} \left[f_n(\beta) + \frac{A}{A+2} f_c(\beta)\right]$
Matter radius: $\langle r_m^2 \rangle = \frac{2}{A+2} \langle r_n^2 \rangle + \frac{A}{A+2} \langle r_c^2 \rangle$

Each result is *not* universal because it is proportional to the running coupling, which is not expressed by *B* and *a* • Universal ratio of matter and charge radii

$$\frac{\langle r_m^2 \rangle}{\langle r_c^2 \rangle} = \frac{A}{2} \left[1 + \frac{f_n(\beta)}{f_c(\beta)} \right]$$

Universal relation

Each result is *not* universal because it is proportional to the running coupling, which is not expressed by *B* and *a* • <u>Universal ratio of matter and charge radii</u> $\frac{\langle r_m^2 \rangle}{\langle r_c^2 \rangle} = \frac{A}{2} \left[1 + \frac{f_n(\beta)}{f_c(\beta)} \right] = \begin{cases} \frac{2}{3}A, & B \gg \epsilon_n \\ A, & B \ll \epsilon_n \end{cases}$

Suggest a large matter radius of Borromean nuclei?

(2) Dipole strength function

Dipole strength function
• Definition

$$\frac{dB(E1)}{d\omega}(\omega) = \sum_{n} |\langle n|\mathcal{M}|0\rangle|^2 \delta(E_n - E_0 - \omega), \quad \mathcal{M} = \sqrt{\frac{3}{4\pi}} Ze(\mathbf{r}_c - \mathbf{R}_{cm})$$
[Coordinate of the core: \mathbf{r}_c , Coordinate of the cms: \mathbf{R}_{cm}]
• Formula in terms of current correlation

$$\frac{dB(E1)}{d\omega} = -\frac{3}{4\pi} \frac{1}{\pi\omega^2} \operatorname{Im} G_{JJ}(\omega), \quad iG_{JJ}(\omega) = \int dt \, e^{i\omega t} \langle 0|TJ(t)J(0)|0\rangle$$
[Total electric current operator : J]
Derivation.

Noting
$$\frac{\partial}{\partial t}\mathcal{M} = \sqrt{\frac{3}{4\pi}}\mathbf{J}$$
, we find $\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega} = \frac{3}{4\pi}\frac{1}{\omega^2}\sum_n |\langle n|\mathbf{J}|0\rangle|^2\delta(E_n - E_0 - \omega)$, which is the spectral representation of the above formula.

Result on dipole strength function <u>- Sum rules</u>- $\int d\omega \, \frac{\mathrm{d}B(E1)}{\mathrm{d}\omega} = \frac{3}{4\pi} Z^2 e^2 \langle r_c^2 \rangle, \qquad \int \mathrm{d}\omega \, \omega \frac{\mathrm{d}B(E1)}{\mathrm{d}\omega} = \frac{3}{4\pi} Z^2 e^2 \frac{3}{A(A+2)}$ $q + \omega$ Analytic formula - $\frac{\mathrm{d}B(E1)}{\mathrm{d}\omega} = -\frac{3}{4\pi} \frac{1}{\pi\omega^2} \operatorname{Im} G_{JJ}(\omega) = -\frac{3}{4\pi} \frac{1}{\pi\omega^2} \operatorname{Im} \xrightarrow{p} \left(\frac{q}{\sqrt{2}} \right)$ $= -\frac{3}{4\pi} \frac{1}{\pi\omega^2} (Ze)^2 \frac{g^2}{m_{\scriptscriptstyle \perp}^2 \omega^2} \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} \,\boldsymbol{q}^2 \operatorname{Im} D\left(\omega - B - \frac{\boldsymbol{q}^2}{2m_{\scriptscriptstyle \perp}}, -\boldsymbol{q}\right)$ $= \frac{3}{4\pi} Z^2 e^2 \frac{12g^2}{\pi} \frac{A^{1/2}}{(A+2)^{5/2}} \frac{(\omega - B)^2}{\omega^4} f_{E1} \left(\frac{1}{-\alpha\sqrt{\omega - R}}\right)$ with $f_{E1}(x) = 1 - \frac{8}{3}x(1+x^2)^{3/2} + 4x^2\left(1 + \frac{2}{3}x^2\right)$

Normalized dipole strength function

Applicability of real systems

Examples of Borromean nuclei

 ${}^{6}\text{He} = {}^{4}\text{He} + 2n$ ${}^{11}\text{Li} = {}^{9}\text{Li} + 2n$ ${}^{22}\text{C} = {}^{20}\text{C} + 2n$

Examples of Borromean nuclei

Two scales at present

s-wave neutron scattering length: $a \simeq -19 \text{ fm} \Leftrightarrow \epsilon_n = \frac{1}{m_n a^2} \simeq 120 \text{ keV}$

Binding energy of Borromean: $B(=S_{2n}) \sim 100 \text{ keV}$ for ²²C

We assume only these two sales are relevant! (For instance, the neutron effective range is $r_0 \simeq 2.8 \text{ fm} \ll |a|$)

$${}^{6}\text{He} = {}^{4}\text{He} + 2n : B \simeq 975 \text{ keV}$$

$${}^{11}\text{Li} = {}^{9}\text{Li} + 2n : B \simeq 369 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

$${}^{22}\text{C} = {}^{20}\text{C} + 2n : B \sim 100 \text{ keV}$$

Summary

Summary

P Motivation:

Exotic (but universal) properties of Borromean nuclei?

Approach:

Effective field theory of point-like particles based on two relevant scales: binding energy *B* and scattering length *a*

