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Extending hydrodynamics to include spin
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Similar to the one discussed in Hattori-MH-Huang-Matsuo-Taya: PLB795,100 (2019)
Three main messages from our new paper:

(1) Spin hydrodynamic equations in a torsionful geometry

(2) Mode mixing between shear and spin modes

(3) Green-Kubo formula for a rotational viscosity
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Outline

Motivation:

Hydrodynamics of
a relativistic fluid?

& Approach:

phenomenology based on local thermodynamics

. Result:
(1) Spin hydrodynamic equations in a geometry
(2) between shear and spin modes

€) for a rotational viscosity




derivation
of hydrodynamic equation



The oldest but state-ot-the-art
phenomenological field theory

okes (1819-1903)

B. Pascal (1623-1662) | D. Bernoulli (1700-1782)| L. Euler (1707-1783) C-L. Navier (1785-1836) | G. St

Euler equations Navier-Stokes equations
(Pertect fluid) (Viscous fluid)

Pascal’slaw  Hydrodynamics

1600 1700 1800 1900



: Charge diffusion

— & Bulding blocks of hydrodynamic equation
(1) Conservation law: on + V-J=0
(2) Constitutive relation: j — —Tﬁnﬁ(ﬁ ,u) ~ — Dﬁn
(3) Physical properties:  Values of kn, Xn (D = kn/Xn)




of diffusion

No-go for time-reversal process!

Thermodynamic concepts, especially, 2,4 law, should be there!



derivation

-Step 1. Determine dynamical d.o.m (& its equation of motion) —

Charge density: n(z) EoM: O0:n + V-J=0

—Step 2. Introduce entropy & conjugate variable

. , 0s
Entropy density: S(n) ‘Tds = @ Chemical pot.: Bu = 5

—Step 3. Write down all possible terms with finite derivatives —

Current: J = 0 — Tﬁnﬁ(ﬁ,u) + 0(62) = —T/fnﬁg:b | 0(62)

-Step 4. Restrict terms to be compatible with local 2nd law

d s such that 5’t5+6-520|:{>/<;n20with §’zﬁ,uf




way to determine

— & Linearized constitutive relation

Rn

Xn

J = —Tﬁnﬁ(ﬁu) ~ —DVn with D =

» Diffusion equation: O;n — DV2n =0
» Dispersion relation: w(k) = —iDk?

— & Green’s function interpretation of the result

~ B v, Dk? e Smng
GR (ka)_w+ka2 <Xn_1£1£>%GR (Cd—O,k))

» Charge density correlator enables us to obtain D



way to determine

- & Constitutive relation under external electric field
J=-Tk,V(5p) wap J=—Tk,|[V(Bu)-BE]

Matching condition

This hydrodynamic constitutive relation should match
with the field-theoretical expectation value of the current!

— & First-order perturbation w.r.t. the external gauge field

A i 7j 1 (2 ]
(J"(x)) = /dtdeG}é‘] (z —2')A;(2)) ~ lim —ImG% " E;(x)

w—0 W

1 x

Green-Kubo formula: «, = 113% ;Im G 7 (w, k= 0)




phenomenology

— & Bulding blocks of hydrodynamic equation
(1) Conservation law: on + V-J=0

(2) Constitutive relation: f — —T/{nﬁ( 5 ,U) ~ _ Dﬁn
(3) Physical properties:  Values of Kn, Xn (D = kn/Xn)

Ward-Takahashi identity
resulting from symmetry of systems

(1) Conservation law

Phenomenological analysis
based on local thermodynamics laws

Matching the hydrodynamic result

(3) Physical properties with the field-theoretical correlator
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phenomenology

Ward-Takahashi identity
resulting from symmetry of systems

(1) Conservation law




conservation

¢ What we expect for the angular momentum:
Conservation law: 8M(—)“” — 0, 5’M]/WP — ()
Decomposition: J""P = " QM — gPOHY 4 3H7F

Total AM  Orbital AM  Spin AM




Noether current often have unacceptable property!

» Gauge currents are often more useful!!

¢ Gauge current

Introduce background gauge fields A, coupled to symmetry

Gauge current: J/(x) = 52&03(’4;]
(T

(action : S|p; A,])

Symmetry of QCD = Poincare & flavor symmetries

Background field = Vierbein ¢, , spin connection w,*

and flavor gauge field A,



background

¢ Subtle issue

When there is no torsion (or 'V, , =T" ),

the spin connection is completely fixed by the vierbein!

' To make the spin connection independent bkg.,
we need to consider a torsionful curved spacetime!

a a a a b
1%, =0ue, —dve, +w e, —w " u £ ()

p oY

¢ Definition of EM tensor and spin current

1 o 2 )
o= L BSacm|p 2 B
e(x) o€, () o A ab e(r) 5wyfbb($) A




Spin current of OCD

1 _ a a — 1 vV O
EQCD = _§Q<7 edﬂﬁu — ﬁ,ueaufy )C] —qMq — 5 tr (gu g 6GuaGy6>

¢ EM tensor and spin current of QCD

OF, = %(J(V“B& — ﬁw“)q +2tr (G"Gap) + Lacpe,

R H
2 ab _§q€ {/y y ab}Q7

(1) Hermiticity
(2) Gauge invariance

Healthy operators satistying {

{ composed of only fermion spin

. ZM X . . o o
Besides, ab 15 totally anti-symmetric w.r.t 3 indices

— only 3 spin densities as d.o.f.



identity

(1) Difteomorphism

Poincare invariance # { : :
(2) Local Lorentz invariance

¢ EM conservation and spin eom as WT identities

b Eb
(D’u T glu)@'u& — —@'UJBT _|_ QZM R c,ua

: 4 eom

_ peo . O. : .
(D, —G,)% = (©,; —©;.), :3eom +3 constraints
o _ G G i . é o e

0,0M =0, 9,J"" =0

JHVP — P QHP _ P QMY L S IHVP

In flat limit, WT id. reproduces {



phenomenology

Ward-Takahashi identity
resulting from symmetry of systems

V/(I) Conservation law



phenomenology

Phenomenological analysis

(2) Constitutive relation based on local thermodynamics laws




derivation

-Step 1. Determine dynamical d.o.m (& its equation of motion) —

Charge density: n(z) EoM: O0:n + V-J=0

—Step 2. Introduce entropy & conjugate variable

. , 0s
Entropy density: S(n) ‘Tds = @ Chemical pot.: Bu = 5

—Step 3. Write down all possible terms with finite derivatives —

Current: J = 0 — Tﬁnﬁ(ﬁ,u) + 0(62) = —T/fnﬁg:b | 0(62)

-Step 4. Restrict terms to be compatible with local 2nd law

d s such that 5’t5+6-520|:{>/<;n20with §’zﬁ,uf




Step1-2. Identify

— e Equation of motion

1

o p b L épb
(Du_gu)@a—_@ BTM&+§EIS Rém
(Du _ QM)ZM&Z; — _(@&i, — @g@)a

° ° a/ 2 a/ . _ &
- 7dynamical variables: €, u”,0,; (or 0%) (0%uag =0 =0, ;u")

1 .;
- Entropy density: s(z) = s(€,0,;) with T'ds = de — §,ua’bd(7&l;
0s g 0s
- Conjugat iables: 5= —, ab — _9
onjugate variables: [ 5 B do

- Power counting scheme:

0(3°) = {8, u®, ¢} and O(d') = {u®, 0,;, w 2}




Step3-4. Local law

— & Tensor decomposition

a

oo M C C
Zaé_ &Bé(g oou’),

OF. = eutuy + pAL + utdqs — 0qHug + 00",

(AY = el +utuy satisfying Alu® =0 = Alu, )

Using eom, we find the entropy current (s" = su" + 0s") satisfies
(Vi = Gpu)s" = [3 — Ble —I-p)] (Vi = Gp)u" +(V, —Gp)ds”
G a b G
— (Duﬁ — Tlugﬁ — 5#% )5@M&‘(a)
— (DB = 1T°;8°)80%| ) + O0(8%)



Step3-4. Local law

Require the local second law: (V,, — G, )s"* >0 for V3, u", M&B
(Vi = Gu)s" :[S — B(e -|—p)] (V=G )u"+(V, —G,)os"
B (D“ﬁ& N T&uf)ﬁb - 6#/1&)5@%‘(&)

— (Duf* = T°;8°)00"| ,, + 0(8%)

Ts=¢c+p, 6s#=0(0°) =60 and n,(,ns >0

5@'“&‘(8) — _TnudVB(Dl/ﬁb o Tbuéﬁé)

1 1
(o0t =2 <§(A“”Aaz; +AJAL) - gASAS) + CAZAY,
with < .
pv o _ o~ BUA . AMAV
L(??s) P 2778(A A&b Ag Aa)'




Result

— ¢ Equation of motion

(DH o gﬂ)@’u& — _@MBTb T 22# CRbc,uaa (DM o gﬂ)zu — _(@ai) - @ba)

— ¢ Constitutive relation
0", = eulug + pAL — " " (Dyul — T ) — (n,)" b(Dvu — Tl — g,

1%

— EU'LLU/CL —I_pA'u — 77 lO)yub — (778) A b(lo)vub T ucKcy o /'Lub)v

Eﬂ = g,u ¢ . . . i
ab abc ) Wlth a contorsion tensor: K

1 o i
p §€a e’ (Tuwp — Topu + Tpou)

)

— & Transport coefhicient: n, (, ns

174 1 14 174

a

1
U AV H AV

S

v ]‘ 1% v
L= oM (A A — ALAY).

(775)

Q>




phenomenology

Phenomenological analysis

\{(2) Constitutive relation based on local thermodynamics laws




phenomenology

Matching the hydrodynamic result

(3) Physical properties with the field-theoretical correlator




way to compute Ns

on spin-hydro



spin-hydro

Perturbation on the top of e(r) = €o + 0¢(x)
global static thermal equilibrium: ¢ v*(z) = 0 + dv*(2)
Pickup O(0)-terms only o%(z) =0+ do(z)
with the flat background

— & Linearized spin-hydrodynamic equations:

0= 8056 &;6#’,

: : : 1 :
0= 8057‘('2' + ci&;ée — 7||@i8]57Tj — (’VJ_ + ’}/3)(52‘-7V2 — (%8”57‘[7 -+ §F880ijk6‘750‘k,

0 = dod0; + T's60; + 2vs€0ij1 0" O7",

9, 1 4
r-CgE—p, = C+on), L= L
h 4 set of ) € €0 + Po 3 €0 + Po
with a set of parameters: ¢ N o oo 2ns
Y T o 2(c0 +po)” T Xs




analysis

Linearized eom can be solved by the use of Fourier tr.!

50(2) = @R 50(k) mup EoM: A(w, k)SO(k) = 0
(A(w, k) : 7 X Tmatrix)

Characteristic equation: det A(w,k) =0

— & Dispersion relation
wround(k) = Eeg|k| — Syk? + O(k?),

wspin,”(k) = —1l'
_irs +i(yL + 73)’42 — i\/Fg —20(yL — 7s)k? + (v +7s)°K*
2

il +i(ye +s)k? +iy/TE = 205(ye — vs) k% + (v +7s) %k
2

Wshear (k) —

Wspin,J_(k:) —




relation

(a) Longitudinal modes (b) Transverse modes
w(k) w(k)
0.4 f
’ 0.6 -0.4 - : > oa o5 K
~0.05"
~0.15
0200  Mode mixing!
o0l (Level repulsion)
f * \
0.4+
Re wsound(k) — Im wsound(k) Re wshear(k) — Im wshear(k)
_____ Re Wepin (k) —— Im wgpin (k) -——-= Re Wspin 1 (k) —— Im wgpin, 1 (k)

_irs +i(yL + 73)’42 — i\/Fg — 20s(yL — vs)k2 + (v + 7s)2k?
2

il iy + )k +1y/T2 = 2T (v — 9s)k? + (v + 7s) 2k
2

Wshear (k) —

Wspin,J_(k) —




correlator

Taking k£ = 0, all spin modes has wspin(k =0) = —il',

l Spin densities shows a gapped relaxation dynamics

° ° ° ° - - 1
with a characteristic time scale 7s = 1,

— & Green’s function interpretation of the result

xsl's + -
w~+ il + O(k?)

5"

Spin-spin correlator: CN?‘E{‘” (w, k) =

(Deﬁnition of spin susceptibility: %in% égj(’j (w=0,k) = ys09 )
—

27
X s

» Spin-spin correlator enables us to obtain 1'; =



way to compute Ns

w.r.t. background field



— ¢ Constitutive relation

00", ‘ 778) AV (lo)l/ul; —u Kcz/l; o MVB)




— ¢ Constitutive relation

—(773)“ VA([O)VUB — uéKéyi’ — ,uyi’) when I'c < w Tl
0 when w < I’y

By perturbing the system with a contorsion K, we obtain

R 1 O~ |(a)7 OuA ;
M ~ —— ] | k)K;
(0@l = 5 lim i Gy s W), (o)

Unusual but necessary limit!!

— & Green-Kubo formula for the rotational viscosity s

~OT | () 720:13

"(w, k)

— lim lim Gy

'l [ <Lw<T k—0




formula

NEND

WT identity: — iwiﬁxg (w, k) + ikizx@(w, k) = —2@‘@

— & Three expressions of Green-Kubo formula for ns
~07%:(a), 27"
ns =—_lim lim Gy (@)% (w,k)
s <<w<T k—0
1 ~071(a),0%; (a
=2 lim lim —ImGy 20 |()(w,k)
I <w<T k—0 W
1 . E@x E(A)a:A
= - lim limwImGy Y(w, k)
2 I's<w<T k—0

Constrained limit indeed agrees with the result of the linear-mode analysis!

w + 1F + - W

wé‘};"j (w,k=0) = = 2in,



phenomenology

Ward-Takahashi identity
resulting from symmetry of systems

\/(I) Conservation law

Phenomenological analysis
based on local thermodynamics laws

Matching the hydrodynamic result
with the field-theoretical correlator

\/ (3) Physical properties




of our result

— ¢ Equation of motion

(DH o gﬂ)@’u& — _@MBTb T 22,& CRbc,uaa (DH o gﬂ)zu — _(@af) - @ba)

— ¢ Constitutive relation
0", = eulug + pAL — " " (Dyul — T ) — (n,)" b(Dvu — Tl — g,

1%

A

= eu“ua —I—Z?A'u — 77 lO)I/ub — (778) . b(lo) ub _ UCKCI/ _ :uub)v

edyebP(Tuw} —Lypp + Tpvu)

C 1
Z'LL e €'LL Yo : . . ab -
ab abé ? with a contorsion tensor: K/,L 9

)

— # Green-Kubo-formula for rotational viscosity 1

v _ 1 v v
(ns)" b 5%(“ Agp — A&LA&)

1 @x | a 7@x | a
ns =2 lim lim —ImGy @ @
I <w<T k—0 W

(w, k)




When occurs?
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derivation

-Step 1. Determine dynamical d.o.m (& its equation of motion) —

dof.: {©°,¢} EoM: §,0" =0, d,¢ = f,

—Step 2. Introduce entropy & conjugate variable

Entropy: s(0", ¢) B, = aiy, T = 0
00 O

—Step 3. Write down all possible terms with finite derivatives —

O" = euu” + pA + O/, fu = qu, + [V

-Step 4. Restrict terms to be compatible with local 2nd law

0
S0, 0 T =m0 Thisgives Bl




Spin hydro as

[See Stephanov-Yin, PRD, 98, 036006 (2018) , ...]
Hydro+ is a general framework describing both

— ¢ Hydrodynamic (gapless) mode

- Conserved charge densities: Normal hydrodynamics

- Nambu-Goldstone mode: Superfluid hydrodynamics

— ¢ Non-hydrodynamic (gapped) mode

- Critical fluctuation around 7~7¢: Original Hydro+

> well-defined

- SU(2)a charge density in QCD: Chiral hydrodynamics |
- Spin density: Spin hydrodynamics j

- Stress tensor: Muller-Israel-Stewart theory > ill-defined

- U(1)a charge density in QCD: Chiral hydrodynamics -

There are well-defined and (possibly) ill-defined Hydro+!



from old paper

PHYSICAL REVIEW A VOLUME 6, NUMBER 6 DECEMBER 1972

Unified Hydrodynamic Theory for Crystals, Liquid Crystals, and Normal Fluids™

P. C. MartinT ¥\
Lyman Labovatory of Physics, Harvard University, Cambridge, Massachusetts 02138 O%

and Laboratoive de Physique des Solides, Faculté des Sciences, 91—Ovsay, FranceT & \ C’y
and Sevvice de Physique Théovique, C.E.A. Saclay, Orme des Mevisiers, / O\
91~Gif-sur-Yvette, France <->\
<
and ®>> \
O. Parodi a>

Labovatoive de Physique des Solides, Faculté des Sciences, 91-Orsay, France® _ . .
Liquid crystal can

and have spin density!

P. S. Pershan?®
Division of Engineeving and Applied Physics, Havvavd Univevsity, Cambvidge, Massachusetts 02138

and Labovatoive de Physique des Solides, Faculté des Sciences, 91—Ovsay, Francelk
(Received 31 May 1972)

A unified hydrodynamic theory is presented that is appropriate for crystals; smectic,
cholesteric, and nematic liquid crystals; glasses; and normal fluids. In the theory, the in-
creased spatial degeneracy as the system progresses from crystalline and mesomorphic
phases to the isotropic fluid phase is marked by successive reductions in the number of first-
order elastic constants and in the number of transport coefficients. Distinction between local
lattice dilations and local mass changes, and recognition of processes like vacancy diffusion
that this difference makes possible, are crucial for understanding the connection between
theories in different phases. Formulas are derived that give the number of hydrodynamic
modes and the frequencies, lifetimes, and intensities of these modes in all of the above sys-
tems. In the nematic and cholesteric phases, the results agree with some found previously.
In more complex systems, they are new. An attempt is made to explain the differences be-
tween the present hydrodynamic theory and other phenomenological proposals.



from old paper

11 the hydrodynamic regime for nematics, the “ex-
tension” of H., W. Hwang, Phys. Rev. Letters 26, 1525
(1971), is equivalent to FLMPS, Outside of the hydro-
dynamic regime, the terms he keeps in addition are ad
hoc and incomplete and there is no reason to think experi-
ments would necessarily give the line shapes they pre-
dict even if the experiments could be performed. They
are just the “irrelevant transport coefficients” which
should be discarded as discussed in Ref. 11. Some
readers may object to our use of the word irrelevant,
since under certain circumstances nonhydrodynamic
modes are slow and measurable, e.g., near phase transi-
tions. We agree but point out in response that the same
arguments apply in such cases to other variables that
have been omitted (e.g., to the magnitude of the order
parameter as well as its direction).




Spin hydro is

— & Scenario 1 (Bad: Spin hydro = Hydro++++?)
w(k) At finite k Atk=0

~

> Infinite towers of
non-hydrodynamic modes

w
0 } Hydrodynamic modes
— & Scenario 2 (Better but still not good: Spin hydro = Hydro+?) -
w(k) At finite k Atk=0

~

> Infinite towers of
non-hydrodynamic modes

O Lo .. } Hydrodynamic modes




HYDRO+

— ¢ When Hydro+ is well-defined
At finite k Atk=0

Infinite towers of
non-hydrodynamic modes

} Quasi-hydrodynamic modes
} Hydrodynamic modes

If I'y, <1 issatisfied, Hydro+ becomes well-defined!!

This generally happens when

emergent symmetry appears by tuning parameters (7, m, ...)!

- Critical fluid: Scale symmetry emerges at 7= 7.
- SU(2)a chiral fluid: SU(2)a symmetry emerges at my; = 0



HQ-spin hydro is

3®1f for some reason the coupling between “spin’* and
orbital angular momentums vanishes, or can be neglected,
a separate conservation for “spin” angular momentum
will follow from the microscopic Hamiltonian. This is
actually the case for a number of models employed to
describe magnetic problems.

When we consider heavy quark limit: mg — 00,

emergent heavy quark symmetry appears!

— & Heavy quark spin hydrodynamics

Heavy quark spin damping rate is suppressed by 1/my,
so that HQ-spin hydro is well-defined Hydro+!

(But I do not know whether there is enough # of heavy quarks...)
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