Transport coefficients of resonating fermions in the quantum virial expansion

KF & Y. Nishida, PRA **102**, 023310 (2020); [arXiv:2004.12154]. KF & Y. Nishida, PRA **103**, 053320 (2021); [arXiv:2103.10123].

Keisuke Fujii

Institut für Theoretische Physik, Universität Heidelberg

QCD theory seminar 5 October 2021

Plan of this talk

1. Introduction

- Resonating fermions
- Quantum virial expansion

2. Transport coefficients in the quantum virial expansion

- Review: previous results
- Shear viscosity & Thermal conductivity KF & Y. Nishida, PRA (2021).
- Bulk viscosity KF & Y. Nishida, PRA (2020).

3. Summary

Ultracold atoms

Atomic cluster : trapped and cooled down T ~ 50 nK (T/T_F ~ 0.05) n ~ 5×10¹² cm⁻³ ► Cold & dilute

✓ High tunability

- Spatial dimensions

https://physics.aps.org/story/v21/st11

Ultracold atoms

Atomic cluster : trapped and cooled down T ~ 50 nK (T/T_F ~ 0.05) n ~ 5×10¹² cm⁻³ ► Cold & dilute

✓ High tunability

- Spatial dimensions
- Quantum statistics & internal degrees of freedom

Bosons : ⁷Li, ²³Na, ... Fermions : ⁶Li, ⁴⁰K, ...

https://physics.aps.org/story/v21/st11

Ultracold atoms

Atomic cluster : trapped and cooled down T ~ 50 nK (T/T_F ~ 0.05) n ~ 5×10¹² cm⁻³ ► Cold & dilute

✓ High tunability

- Spatial dimensions
- Quantum statistics & internal d.o.f.
- s-wave scattering length

via Feshbach resonance

https://physics.aps.org/story/v21/st11

C.A. Regal & D.S. Jin PRL90 (2003)

4/29

Resonating fermions

Interacting Fermionic system (spin-1/2) with large scattering length Interaction potential : V(r) Scattering length : *a* Potential radius : *T*_e

► Resonance regime : $r_e \ll |a|, n^{-3}, \lambda_T$

thermal de Broglie wavelength : $\lambda_T \, \sim \, T^{-1/2}$

The interaction is characterized only by the scattering length. $r_e \rightarrow 0$ Universal !! : Independent of the details of V(r)

E.g. - Neutrons : $|a|/r_e \sim 18$

- Ultracold atoms : $|a|/r_e$ tunable

Properties of resonating fermions

6/29

(The system shows superfluidity and BCS-BEC crossover below the critical temperature.)

► In this talk, we work only above the critical temperature, especially at high temperatures.

Properties of resonating fermions

Shear & bulk viscosity are anomalously small.

- Shear viscosity : close to a lower limit conjectured by AdS/CFT

 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B}$ P. K. Kovtun, D. T. Son, & A. O. Starinets (2005)

- Bulk viscosity : vanishing at unitarity because of conformality

 $\zeta=0$ at $a^{-1}=0$ D. T. Son (2007)

Properties of resonating fermions

8/29

Shear & bulk viscosity are anomalously small.

Our Research Investigation of transport coefficients of the resonating fermions for an arbitrary scattering length

Model Hamiltonian

 $(4\pi)^{d/2}$

(2-d/2)

"Contact Interaction"

Fermions with contact interaction

$$\hat{H} = \sum_{\sigma=\uparrow,\downarrow} \int d\boldsymbol{x} \, \hat{\psi}^{\dagger}_{\sigma}(\boldsymbol{x}) \frac{-\nabla^2}{2m} \hat{\psi}_{\sigma}(\boldsymbol{x}) + \frac{g}{2} \sum_{\sigma,\rho} \int d\boldsymbol{x} \, \hat{\psi}^{\dagger}_{\sigma}(\boldsymbol{x}) \hat{\psi}^{\dagger}_{\rho}(\boldsymbol{x}) \hat{\psi}_{\rho}(\boldsymbol{x}) \hat{\psi}_{\sigma}(\boldsymbol{x})$$

$$G_{d-1} = \frac{\Omega_{d-1}}{m} \frac{d-2}{\frac{a^{2-d} - \frac{\Lambda^{d-2}}{\Gamma(\frac{d}{2})\Gamma(2-\frac{d}{2})}}{\Omega_{d-1} = \frac{1}{2!}}$$

Plan of this talk

1. Introduction

- Resonating fermions
- Quantum virial expansion

2. Transport coefficients in the quantum virial expansion

- Review: previous results
- Shear viscosity & Thermal conductivity
- Bulk viscosity

3. Summary

Quantum Virial Expansion

Resonating fermions : Strongly correlated

need a non-perturbative approach

 \checkmark Systematic expansion in terms of fugacity : $z = e^{\beta\mu}$

At high temperatures with fixed density, $\ z \sim n \lambda_T^3 \sim n T^{-3/2}$

$$n \sim \int \frac{d^3 p}{(2\pi)^3} e^{-\beta(\frac{p^2}{2m} - \mu)} = \frac{z}{\lambda_T^3}$$

Thermal de Broglie wavelength : $\lambda_T = \sqrt{2\pi\beta/m}$

 $z \ll 1$ High

High-temperature & Low-density regime

► Suitable for dilute gases

How to expand w.r.t fugacity

- \checkmark Systematic expansion in terms of fugacity : $z = e^{\beta \mu}$
 - e.g. thermal expectation value $Tr[e^{-\beta(\hat{H}-\mu\hat{N})}\hat{\mathcal{O}}] = \sum_{N=0}^{+\infty} Tr_{N}[e^{-\beta(\hat{H}-\mu\hat{N})}\hat{\mathcal{O}}]$ restricted to N-body sector $= \sum_{N=0}^{+\infty} e^{\beta\mu N} Tr_{N}[e^{-\beta\hat{H}}\hat{\mathcal{O}}]$ $= Tr_{0}[e^{-\beta\hat{H}}\hat{\mathcal{O}}] + zTr_{1}[e^{-\beta\hat{H}}\hat{\mathcal{O}}] + z^{2}Tr_{2}[e^{-\beta\hat{H}}\hat{\mathcal{O}}] + \cdots$ Zero-body sector One-body sector Two-body sector
 - Lower order terms can be computed as few-body problems Well studied thermodynamic quantities theoretically and experimentally in ultracold atoms Xia-Ji Liu, Phys. Rep. 524, 37-83 (2013)

12/29

Field theoretic method 1

Propagator & Vertex in Matsubara frequency representation

► Free fermion propagator

$$= G(i\omega^F, \mathbf{p}) = \frac{1}{i\omega^F - \frac{\mathbf{p}^2}{2m} + \mu}$$

Pair propagator in the vacuum

$$= \times + \times \times + \times \times + \cdots$$

$$= D(i\omega^{B}, \mathbf{p}) = \frac{\Omega_{d-1}}{m} \frac{d-2}{\mathbf{a}^{d-2} - [-m(i\omega^{B} - \frac{\mathbf{p}^{2}}{4m} + 2\mu)]^{d/2 - 1}}$$

On-shell pair propagator in center-of-mass frame $D(\frac{k^2}{m} - 2\mu + i0^+, \mathbf{0}) \propto f(k)$ $\int \mathbf{Scattering amplitude} = \begin{cases} -\frac{1}{a^{-1} + ik} & (3D) \\ -\frac{2\pi}{\ln(ka) - i\pi} & (2D) \end{cases}$ Matsubara frequency $\omega^F = 2\pi (m + 1/2)/\beta$ $\omega^B = 2\pi m/\beta$

Field theoretic method 1

Propagator & Vertex in Matsubara frequency representation

► Free fermion propagator

$$= G(i\omega^F, \mathbf{p}) = \frac{1}{i\omega^F - \frac{\mathbf{p}^2}{2m} + \mu}$$

► Pair propagator in the vacuum

$$= \times + \times \times + \times \times + \cdots$$

$$= D(i\omega^B, \mathbf{p}) = \frac{\Omega_{d-1}}{m} \frac{d-2}{\mathbf{a}^{d-2} - [-m(i\omega^B - \frac{\mathbf{p}^2}{4m} + 2\mu)]^{d/2 - 1}}$$

- Good point : Clear correspondence with the real frequency $i\omega^{B/F} \rightarrow \omega + i0^+$
- Bad point : No explicit dependence on fugacity

The fugacity emerges from the Matsubara frequency summation

e.g.
$$\frac{1}{\beta} \sum_{m} h(i\omega_{m}^{F}) = \sum_{w_{i}} f_{F}(w_{i}) \operatorname{Res}_{w=w_{i}} h(w_{i}) \quad \text{with} \quad f_{F}(\varepsilon - \mu) = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1} = ze^{-\beta\varepsilon} + O(z^{2})$$

Matsubara frequency $\omega^F = 2\pi (m + 1/2)/\beta$ $\omega^B = 2\pi m/\beta$

Field theoretic method 2

Propagator & Vertex in imaginary time representation

X. Leyronas, PRA 84, 053633 (2011).

Imaginary time: $-\beta < \tau < \beta$

► Free fermion propagator

0

- Good point : Explicit dependence on fugacity $f_F(\varepsilon - \mu) = \frac{1}{e^{\beta(\varepsilon - \mu)} + 1} = ze^{-\beta\varepsilon} + O(z^2)$

- Bad point : No clear correspondence with the real frequency

Zeroth-order part of $G(\tau, p) \propto \theta(\tau)$: Runs only forward in imaginary time

Order of the fugacity for a given diagram

 \geq A number of propagators running backwards in imaginary time

Example: Fermion Self-energy

$$= \Sigma(i\omega^F, \boldsymbol{p}) = z \int_{\boldsymbol{q}} e^{-\beta \frac{\boldsymbol{q}^2}{2m}} D(i\omega^F + \frac{\boldsymbol{q}^2}{2m} + \mu, \boldsymbol{p} + \boldsymbol{q}) + O(z^2)$$

 $\operatorname{Re}\Sigma = \operatorname{Im}\Sigma = O(z)$

 $\int_{\boldsymbol{p}} \equiv \int \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^3}$

Plan of this talk

16/29

1. Introduction

- Resonating fermions
- Quantum virial expansion

2. Transport coefficients in the quantum virial expansion

- Review: previous results
- Shear viscosity & Thermal conductivity
- Bulk viscosity

3. Summary

Microscopic theory & kinetic theory

17/29

- Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.
- Bulk viscosity : disagreement between microscopic and kinetic results

Plan of this talk

1. Introduction

3.

- Resonating fermions
- Quantum virial expansion

2. Transport coefficients in the quantum virial expansion

- Review: previous results
- Shear viscosity & Thermal conductivity KF & Y. Nishida, PRA (2021).
- Bulk viscosity KF & Y. Nishida, PRA (2020).
- Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.
- Bulk viscosity : disagreement between microscopic and kinetic results

For shear viscosity & thermal conductivity

19/29

Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.

Bulk viscosity : disagreement between microscopic and kinetic results

The **approximated** results at leading order in the quantum virial expansion = the results from the kinetic theory in **the relaxation-time approximation**

Q. Do they agree more exactly?

The exact results at leading order in the quantum virial expansion = the exact results from the kinetic theory

For shear viscosity & thermal conductivity 20/29

Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.

Bulk viscosity : disagreement between microscopic and kinetic results

The **approximated** results at leading order in the quantum virial expansion = the results from the kinetic theory in **the relaxation-time approximation**

Q. Do they agree more exactly? A. Yes!! KF & Y. Nishida, PRA 103, 053320 (2021). The exact results at leading order in the quantum virial expansion = the exact results from the kinetic theory

We give an exact microscopic computation by taking into account a singularity.

Our Result

Self-consistent equation for resummation = Linearized Boltzmann equation

"Microscopic results = kinetic results" without any approximation

Pinch singularity

Product of single-particle Green functions Eliashberg (1962); Jeon (1995); Jeon & Yaffe (1996)

 \blacktriangleright Appear in the static limit $\omega \to 0$ of response function

 $\chi_{\mathcal{O}}(i\omega^B) = \int_0^\beta d\tau \int d^d x \, e^{i\omega^B_{\tau}} \langle \mathcal{T}_{\tau} \hat{\mathcal{O}}(\tau, x) \hat{\mathcal{O}}(0, \mathbf{0}) \rangle$ **Kubo formula** $\sigma_{\mathcal{O}} = \lim_{\omega \to 0} \frac{\operatorname{Im}[\chi_{\mathcal{O}}(\omega + i0^+)]}{\omega}$ with $\hat{\mathcal{O}}(\boldsymbol{p}=\boldsymbol{0}) = \sum \sum \hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{k}) \mathcal{Q}(\boldsymbol{k}) \hat{\psi}_{\sigma}(\boldsymbol{k})$: One-body operator $\sigma = \uparrow \downarrow \mathbf{k}$ $\eta = \lim_{\omega \to 0} \frac{\operatorname{Im}[\chi_{\Pi_{xy}}(\omega + i0^+)]}{\omega}$ $\hat{\Pi}_{xy}(\boldsymbol{p}=\boldsymbol{0}) = \sum_{\sigma=\uparrow,\downarrow \boldsymbol{k}} \sum_{\boldsymbol{k}} \hat{\psi}^{\dagger}_{\sigma}(\boldsymbol{k}) \frac{k_{x}k_{y}}{m} \hat{\psi}_{\sigma}(\boldsymbol{k})$ $\hat{\mathcal{J}}_{x}^{q}(\boldsymbol{p}=\boldsymbol{0}) = \sum_{\sigma=\uparrow,\downarrow} \sum_{\boldsymbol{k}} \hat{\psi}_{\sigma}^{\dagger}(\boldsymbol{k}) \frac{k_{x}}{m} \left(\frac{\boldsymbol{k}^{2}}{2m} - \frac{\mathcal{E}+p}{n}\right) \hat{\psi}_{\sigma}(\boldsymbol{k}) + \frac{\text{Two-body operator}}{\text{Negligible}}$ $T\kappa = \lim_{\omega \to 0} \frac{\operatorname{Im}[\chi_{\mathcal{J}_x^q}(\omega + i0^+)]}{\omega}$ at high temperatures

Pinch singularity

1

cR(--)

Product of single-particle Green functions Eliashberg (1962); Jeon (1995); Jeon & Yaffe (1996)

11

$$\mathcal{G}^{R}(\varepsilon, \boldsymbol{p})\mathcal{G}^{A}(\varepsilon, \boldsymbol{p}) = \frac{\operatorname{Im}[\mathcal{G}^{R}(\varepsilon, \boldsymbol{p})]}{\operatorname{Im}[\Sigma(\varepsilon+i0^{+}, \boldsymbol{p})]} \sim \frac{O(z^{-1})}{\operatorname{Requiring}} \operatorname{resummation} \qquad \operatorname{Im}\Sigma(\omega, \boldsymbol{k}) \sim O(z^{1})$$

 \blacktriangleright Appear in the static limit $\omega \rightarrow 0$ of response function

 $\mathbf{T} \quad [\mathbf{\rho} \mathbf{R}]$

Self-consistent eq. for vertex function

22/29

Linearized Boltzmann equation

✓ Linearized Boltzmann equation

$$\mathcal{Q}(\boldsymbol{k}) = \int_{\boldsymbol{k}_2, \boldsymbol{p}_1, \boldsymbol{p}_2} e^{-\beta \frac{\boldsymbol{k}_2^2}{2m}} \mathcal{W}(\boldsymbol{p}_1, \boldsymbol{p}_2 | \boldsymbol{k}, \boldsymbol{k}_2) \left[\varphi(\boldsymbol{k}) + \varphi(\boldsymbol{k}_2) - \varphi(\boldsymbol{p}_1) - \varphi(\boldsymbol{p}_2) \right] \qquad \int_{\boldsymbol{p}} \equiv \int_{(2\pi)^3} \frac{\mathrm{d}\boldsymbol{p}}{(2\pi)^3}$$

Transition rate :

 $\mathcal{W}(\boldsymbol{p}_1, \boldsymbol{p}_2 | \boldsymbol{k}_1, \boldsymbol{k}_2) = |D(\frac{\boldsymbol{p}_1^2}{2m} + \frac{\boldsymbol{p}_2^2}{2m} - 2\mu + i0^+, \boldsymbol{p}_1 + \boldsymbol{p}_2)|^2 (2\pi)^{d+1} \delta(\frac{\boldsymbol{p}_1^2}{2m} + \frac{\boldsymbol{p}_2^2}{2m} - \frac{\boldsymbol{k}_1^2}{2m} - \frac{\boldsymbol{k}_2^2}{2m}) \delta^d(\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{k}_1 - \boldsymbol{k}_2)$

Boltzmann equation at high temperatures 24/29

✓ Linearized Boltzmann equation

$$\mathcal{Q}(\boldsymbol{k}) = \int_{\boldsymbol{k}_2, \boldsymbol{p}_1, \boldsymbol{p}_2} e^{-\beta \frac{\boldsymbol{k}_2^2}{2m}} \mathcal{W}(\boldsymbol{p}_1, \boldsymbol{p}_2 | \boldsymbol{k}, \boldsymbol{k}_2) \Big[\varphi(\boldsymbol{k}) + \varphi(\boldsymbol{k}_2) - \varphi(\boldsymbol{p}_1) - \varphi(\boldsymbol{p}_2) \Big]$$

Transition rate :

- - -

$$\mathcal{W}(p_1, p_2 | k_1, k_2) = |D(\frac{p_1^2}{2m} + \frac{p_2^2}{2m} - 2\mu + i0^+, p_1 + p_2)|^2 (2\pi)^{d+1} \delta(\frac{p_1^2}{2m} + \frac{p_2^2}{2m} - \frac{k_1^2}{2m} - \frac{k_2^2}{2m}) \delta^d(p_1 + p_2 - k_1 - k_2)$$

Transport coefficient: $\sigma_{\mathcal{O}} = 2\beta \int_{k} e^{-\beta \frac{k^2}{2m}} \mathcal{Q}(k) \varphi(k)$ In 3D $|D|^2 = \left(\frac{4\pi}{m}\right)^2 \frac{1}{a^{-2} + \frac{(p_1 - p_2)^2}{4}}$

Boltzmann equation For shear viscosity : P. Massignan, G. M. Bruun, & H. Smith, (2005); G. M. Bruun & H. Smith (2005) For thermal conductivity : M. Braby, J. Chao & T. Schäfer (2010)

$$\left[\frac{\partial}{\partial t} + \frac{\mathbf{k}}{m} \cdot \frac{\partial}{\partial \mathbf{x}}\right] f(\mathbf{k}) = \left(\frac{\partial f_{\mathbf{k}}}{\partial t}\right)_{\text{coll.}} \qquad f(\mathbf{k}) = f(t, \mathbf{x}, \mathbf{k}) : \text{distribution function}$$

Collision term : $\left(\frac{\partial f_{k}}{\partial t}\right)_{\text{coll.}} = \int_{k_{2},p_{1},p_{2}} \mathcal{W}(p_{1},p_{2}|k,k_{2}) \left[f(p_{1})f(p_{2}) - f(k)f(k_{2})\right]$

Result: Shear viscosity & Thermal conductivity 25/29

0.1

10

100

1000

In the high-temperature limit for an arbitrary scattering length

Plan of this talk

1. Introduction

3.

- Resonating fermions
- Quantum virial expansion

2. Transport coefficients in the quantum virial expansion

- Review: previous results
- Shear viscosity & Thermal conductivity KF & Y. Nishida, PRA (2021).
- Bulk viscosity KF & Y. Nishida, PRA (2020).
- Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.
- Bulk viscosity : disagreement between microscopic and kinetic results

For bulk viscosity

Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.

Bulk viscosity : disagreement between microscopic and kinetic results

✓ Two-body operator is essential

 $\zeta = \lim_{\omega \to 0} \frac{\operatorname{Im}[\chi_{\tilde{\Pi}}(\omega + i0^+)]}{\omega}$

$$\hat{\Pi} = \frac{1}{d} \sum_{i} \hat{\Pi}_{ii} - \left(\frac{\partial \mathcal{P}}{\partial n}\right)_{\mathcal{E}} \hat{\mathcal{N}} - \left(\frac{\partial \mathcal{P}}{\partial \mathcal{E}}\right)_{n} \hat{\mathcal{H}} \sim \frac{\mathcal{C}}{d\Omega_{d-1}ma^{d-2}}$$
Contact density : $\hat{\mathcal{C}}(x) = \frac{(mg)^{2}}{2} \sum_{\sigma,\rho} \hat{\psi}_{\sigma}^{\dagger}(x) \hat{\psi}_{\rho}^{\dagger}(x) \hat{\psi}_{\rho}(x) \hat{\psi}_{\sigma}(x)$

• ζ cannot be calculated in the Boltzmann eq.

 $\zeta = 0$ in the Boltzmann eq. : $\left[\frac{\partial}{\partial t} + \frac{k}{m} \cdot \frac{\partial}{\partial x}\right] f(k) = \left(\frac{\partial f_k}{\partial t}\right)_{\text{coll.}}$

Need to beyond the Boltzmann equation to calculate ζ

Landau kinetic theory

Shear viscosity & Thermal conductivity : agreement between microscopic and kinetic results under approx.

Bulk viscosity : disagreement between microscopic and kinetic results

Landau kinetic equation for quasi-particles

At high temperatures, $\,{
m Re}\Sigma\propto z$ & ${
m Im}\Sigma\propto z$

Non-negligible

► Excitation energy of quasi-particles : $E = E[t, x, k; f] = \frac{k^2}{2m} + \frac{\text{Re}\Sigma[t, x, k; f]}{2m}$

on-shell self-energy correction

cf. weak coupling regime $\operatorname{Re}\Sigma \propto g$ & $\operatorname{Im}\Sigma \propto g^2$

✓ Quasiparticle approx. is broken in O(z): $A(\omega, p) = 2\pi\delta(\omega - \frac{p^2}{2m} + \mu) + O(z)$ KF & Y. Nishida, PRA 102, 023310 (2020).

non-peak function

Summary

Resonating fermions

• Quantum virial expansion : expansion w.r.t $z = e^{\beta\mu}$

valid for high-temperature & low-density regime $~z \sim n \lambda_T^3$

29/29

► For shear viscosity & thermal conductivity KF & Y. Nishida, PRA(2021).

- Pinch singularity $\mathcal{G}^{\mathrm{R}}(\omega, \mathbf{k})\mathcal{G}^{\mathrm{A}}(\omega, \mathbf{k}) \sim O(z^{-1})$
- Self-consistent eq. = Linearized Boltzmann eq.

► For bulk viscosity

- Kinetic theory is not capable of computing the bulk viscosity up to $O(z^2)$ KF & Y. Nishida, PRA(2020)
- Pinch singularity in the bulk viscosity calculation KF & T. Enss, in preparation.

Future work : Quantum virial expansion in Keldysh formalism