NuclearScience Computing CenteratCCNU

QCD phase structure in strong magnetic fields

online QCD theory seminars

July 20, 2021

Heng-Tong Ding (丁亨通) Central China Normal University (華中師範大學)

HTD, S.-T. Li, A. Tomiya, X.-D. Wang and Y. Zhang, arXiv:2008.00493 HTD, S.-T. Li, Q. Shi and X.-D. Wang, arXiv:2104.06843

Strong magnetic fields

Earth

A common, hand-held magnet

0.6 Gauss

100 Gauss

 $1 \text{ Gauss} = 1.95 \times 10^{-14} \text{ MeV}^2$

Magnetar

Heavy-Ion collision

1015 Gauss

1017-18 Gauss

$\Lambda^2_{OCD} \sim 10^4 \text{ MeV}^2 \sim 10^{17} \text{ Gauss}$

Chiral properties of (2+1)-flavor QCD in strong magnetic fields at zero temperature

HTD, S.-T. Li, A. Tomiya, X.-D. Wang and Y. Zhang, arXiv:2008.00493

Gell-Mann-Oakes-Renner relation aggagging qB scaling Masses of pseudo-scalar mesons

12 June 1997

Physics Letters B 402 (1997) 351-358

Quark condensate in a magnetic field

I.A. Shushpanov^a, A.V. Smilga^{a,b}

^a Institute for Theoretical and Experimental Physics, B. Cheremushkinskaya 25, Moscow 117259, Russia ^b TPI, 116 Church St. S.E., University of Minnesota, MN 55455, USA

> Received 5 March 1997; revised manuscript received 25 March 1997 Editor: M. Dine

Abstract

We study the dependence of quark condensate Σ on an external magnetic field. For weak fields, it rises linearly: $\Sigma(H) = \Sigma(0) [1 + eH \ln 2/(16\pi^2 F_{\pi}^2) + ...]$. M_{π} and F_{π} are also shifted so that the Gell-Mann-Oakes-Renner relation is satisfied. In the strong field region, $\Sigma(H) \propto (eH)^{3/2}$. © 1997 Published by Elsevier Science B.V.

ChPT: T=o: $eB \uparrow \langle \psi \psi \rangle \uparrow \Rightarrow T_{\rm pc} \uparrow$

PHYSICS LETTERS B

An external magnetic field increases the condensate which means that it should make the chiral restora tion phase transition in temperature and/or in baryo chemical potential more difficult. That means, in par ticular, that the critical temperature T_c (at H = 0, i is estimated to be of order 200 MeV [1]) should in crease with H. According to recent work [18], fo strong fields, T_c is of order of the dynamically gener ated mass (23) and grows with H, indeed. The esti mate $T_c \sim \alpha_s \sqrt{|e_q H|}$ obtained earlier in [19] is prob ably too rough and can be treated as an upper limit fo

Surprise came later... Continuum extrapolated lattice QCD results with physical pion mass

Inverse magnetic catalysis

Chiral condensate always increases as eB at $T < T_{pc}$ reduction of T_{pc} associated with inverse magnetic catalysis?

Bali et al., JHEP02(2012)044

$eB \uparrow T_{pc} \downarrow$

See recent reviews e.g. G. Cao, arXiv:2103.00456 Andersen et al., Rev. Mod. Phys. 88(2016)02001

HTD, P. Hegde, O. Kaczmarek et al.[HotQCD], Phys. Rev. Lett. 123 (2019) 062002 HTD, arXiv:2002.11957

Is (neutral) pion still a Goldstone boson at eB=/=0 ?

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

 $(m_u + m_d) \left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) = 2f_\pi^2 M_\pi^2$

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

Spontaneous chira

$$\left< \sum_{u}^{u} + \left< \bar{\psi}\psi \right>_{d} \right) = 2 f_{\pi}^{2} M_{\pi}^{2}$$

I symmetry breaking

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

Spontaneous chira

$$\begin{vmatrix} u + \langle \bar{\psi}\psi \rangle_d \end{pmatrix} = 2f_{\pi}^2 M_{\pi}^2 (1 - \delta_{\pi})$$
At physical symmetry breaking breaking $\delta_{\pi} \sim 6\%$

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

Explicit chiral symmetry breaking $(m_u + m_d) (\langle \bar{\psi} \psi \rangle)$

Spontaneous chira

• At T=0, in the weak magnetic field the 2-flavor GMOR relation holds true for chiral (& point-like) pions from LO ChPT Shushpanov and Smilga, PLB402(1997)351

$$\begin{vmatrix} u + \langle \bar{\psi}\psi \rangle_d \end{pmatrix} = 2f_{\pi}^2 M_{\pi}^2 (1 - \delta_{\pi})$$
At physical symmetry breaking for matrix $\delta_{\pi} \sim 6\%$

M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968), J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

Explicit chiral symmetry breaking $(m_u + m_d) \left(\langle \bar{\psi} \psi \rangle \right)$

Spontaneous chira

- (& point-like) pions from LO ChPT

$$\lambda_{u} + \langle \bar{\psi}\psi \rangle_{d} = 2f_{\pi}^{2}M_{\pi}^{2} (1 - \delta_{\pi})$$
At physical symmetry breaking pion matrix $\delta_{\pi} \sim 6\%$

• At T=0, in the weak magnetic field the 2-flavor GMOR relation holds true for chiral

Shushpanov and Smilga, PLB402(1997)351

• At eB = 1 = 0, additional pion decay constants appear due to a nonzero pion-tovacuum transition via the vector electroweak current Fayazbakhsh & Sadooghi, PRD 88(2013)065030 Bali et al., PRD121(2018)072001 Coppola et al., PRD.99 (2019)0540312

Lattice QCD in a background magnetic field No sign problem: detM(*eB*) >0

B pointing to the z direction & Gauge link multiplied by a U(1) factor

$$\begin{aligned} u_x(n_x, n_y, n_z, n_\tau) &= \begin{cases} \exp[-iqa^2 B N_x n_y] & (n_x = N_x - 1) \\ 1 & (\text{otherwise}) \end{cases} \\ u_y(n_x, n_y, n_z, n_\tau) &= \exp[iqa^2 B n_x], \\ u_z(n_x, n_y, n_z, n_\tau) &= u_t(n_x, n_y, n_z, n_\tau) = 1. \end{cases} \end{aligned}$$

Quantization of the magnetic field

$$qB = \frac{2\pi N_b}{N_x N_y} a^{-2}$$

q_u=2/3e, q_d=-1/3e, q_s=-1/3e
$$eB = \frac{6\pi N_b}{N_x N_y} a^{-2}$$

Lattice setup HTD et al., arXiv:2008.00493,2104.06843

- Symanzik-improved gauge action with HISQ fermions
- In our setup f_{π} = 96.93(2) MeV, f_{K} = 112.50(2) MeV, f_{K}/f_{π} = 1.1606(3)

- + Magnetic field is quantized as ϵ
- ◆ Magnetic flux: N_b=0,1,2,3,4,6,8,10,12,16,20,24,32,48 & 64
- ◆ 0 ≤ eB ≤ 3.35 GeV² (~70 M_{π}^2)

Fixed scale approach to nonzero T up to 281 MeV

 $32^{3}x96$ lattices, with a=0.117 fm (a⁻¹=0.17 GeV), m_l/m_s =1/10 (M_π =220 MeV)

FLAG 2019: At physical mass point f_{π} = 92.1(6) MeV, f_{K} =110.1(5) MeV, f_{K}/f_{π} =1.1917(37)

$$eB = \frac{6\pi N_b}{N_x N_y} a^{-2}$$

UV-divergence term dominates by the linear-in-quark-mass term

$$\langle \bar{\psi}\psi \rangle_{q,UV-div} = rac{v_f}{2} \left(rac{\pi}{a}
ight)^2 rac{1}{(2\pi)^2} m_q + rac{v_f}{2} ln(rac{am_q}{2\pi}) rac{1}{(2\pi)^2} m_q^3.$$

Commonly used methods to get rid of the UV-divergence part

Subtracted chiral condensate: $\langle \psi' \rangle$

UV divergence of chiral condensate $(m_u + m_d) \left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d \right) = 2f_\pi^2 M_\pi^2 \left(1 - \delta_\pi\right)$

$$\psi\rangle_{sub} = \langle \bar{\psi}\psi\rangle_l - \frac{m_l}{m_s}\langle \bar{\psi}\psi\rangle_s \quad \mathbf{X}$$

Zero T/eB subtraction: $\langle \bar{\psi}\psi \rangle_{UVfree} = \langle \bar{\psi}\psi \rangle_l (eB \neq 0) - \langle \bar{\psi}\psi \rangle_l (eB = 0)$ X

1.5 $= \int_{0}^{\infty} \frac{4m_{l}\rho}{\lambda^{2} + m_{l}^{2}} \,\mathrm{d}\lambda$

()

0.5

 $\left(\right)$

HTD, S.-T. Li, S. Mukherjee, A. Tomiya, X.-D. Wang, Y. Zhang, Phys. Rev. Lett. 126 (2021) 082001

A complete Eigenvalue spectrum

UV-free chiral condensate

$$\langle \bar{\psi}\psi \rangle_{sub} \equiv \langle \bar{\psi}\psi \rangle_l - \frac{m_l}{m_s} \langle \bar{\psi}\psi \rangle_s = \int_0^\infty \frac{2m_l \left(m_s^2 - m_l^2\right)\rho}{(\lambda^2 + m_l^2)(\lambda^2 + r_l)}$$

 $\lambda_{cut}^{\rm UV} \in [0.12, 0.36]$

Magnetic catalysis at T=0

Linear in eB at large eB \ge 0.5 GeV²

Dimensional reduction & Quark mass gap T. Kojo and N. Su, *Phys.Lett.B* 720 (2013) 192

Comparison to ChP'I'

2-loop: E. S. Werbos, Phys. Rev. C77, 065202 (2008)

ChPT: Extended to nonzero values of pion mass all consider degenerate u and d chiral condensates I-loop: T. D. Cohen, D. A. McGady, and E. S. Werbos, Phys. Rev. C76, 055201 (2007)

qB scaling of up and down quark chiral condensates

In contrast to Quenched QCD results where M increases monotonously with eB Bali et al., PRD 97, 034505 (2018) Luschevskaya et al, PLB 761 (2016) 393

Not point particles anymore? Effects from dynamic quarks?

Mass of neutral pseudo scalar meson decreases with eB

Masses of neutral pseudo scalar mesons

Decay constants of neutral pion and kaon

- All the decay constants increase with eB
- \bullet qB scaling observed in u and d quark flavor components of f_{π}

se with eB d quark flavor components of f_{π}

$$4m_u \langle \bar{\psi}\psi \rangle_u = 2f_{\pi_u^0}^2 M_{\pi_u^0}^2 \left(1 - \delta_{\pi_u^0}\right)$$
$$4m_d \langle \bar{\psi}\psi \rangle_d = 2f_{\pi_d^0}^2 M_{\pi_d^0}^2 \left(1 - \delta_{\pi_d^0}\right).$$
$$(m_u + m_d) \left(\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d\right) = 2f_{\pi}^2 M_{\pi}^2 \left(1 - \delta_{\pi}\right)$$

neutral pion remains as a Goldstone boson with eB up to ~3.5 GeV²

T_{pc} decreases with eB regardless of (inverse) magnetic catalysis

Low T: Hadron resonance gas model

Non-interacting hadron resonance gas

With eB=/=o pressure: $p = p_c^{M/B} + p_n^{M/B}$ Charged Meson/Baryons: $p_c^{M/B} = \mp \frac{|q_i|E}{2\pi^2}$ Neutral Meson/Baryons: $p_n^{M/B} = \mp \frac{d_i T}{2\pi^2}$

> Bhattacharyya et al., EPL 115 (2016) 62003 Fukushima and Hidaka, Phys.Rev. Lett. 117 (2016)102301 HTD, S.-T. Li, Q. Shi and X.-D. Wang, arXiv:2104.06843

Dashen, Ma & Bernstein, Phys. Rev. 187 (1969) 345.

$$\frac{BT}{2} \sum_{s_z = -s_i}^{s_i} \sum_{l=0}^{\infty} \int_0^\infty dp_z \ln\left[1 \mp e^{-(E_c - \mu_i)}\right]$$
$$\int_0^\infty dp |\vec{p}|^2 \ln\left[1 \mp e^{-(E_n - \mu_i)/T}\right]$$

Contributions to pressure and energy density from individual hadrons in HRG

HTD, S.-T. Li, Q. Shi, A. Tomiya, X.-D. Wang, Y. Zhang, arXiv: 2011.04870

 $\langle \psi \psi \rangle_f = m_f \chi_{ps_f^0}$

At eB=0: At eB = = : G. W. Kilcup and S. R. Sharpe, Nucl. Phys. B283, 493 (1987) HTD et al., PRD 104(2021)014505

$$\chi_{\rm ps_{f}^{0}} = \sum_{\tau=0}^{N\tau-1} G_{\rm ps_{f}^{0}}(\tau)$$

 $\lim_{\tau \to \infty} G_{ps_f^0}(\tau) \sim e^{-M_{ps_f^0}\tau}$

$$eB \uparrow \langle \bar{\psi}\psi \rangle_l \uparrow M_{\pi}$$

Ward Identities

Fluctuations and correlations of net baryon number, electric charge and strangeness in a background magnetic field

HTD, S.-T. Li, Q. Shi and X.-D. Wang, arXiv:2104.06843

Possibilities to detect the existence of a magnetic field in heavy-ion collisions

Signaled by the condensation of rho

M. N. Chernodub, Phys. Rev. Lett. 106 (2011) 142003

Chiral magnetic effects

Axial U(1) anomaly & deconfined phase & magnetic field

See recent reviews e.g. D.E. Kharzeev and J. Liao, Nature Rev. Phys. 3(2021)55

QCD critical end point

$T-\mu_B$ plane

Lifetime of the magnetic field created in the early stage of HIC

Skokov, Illarionov and V.Toneev, IJMPA 24 (2009) 5925

Isospin symmetry breaking at $eB \neq 0$ manifested in chiral condensates

HTD, S.-T. Li, A. Tomiya, X.-D. Wang and Y. Zhang, arXiv:2008.00493 See also in Bali et al., Phys.Rev.D86(2012)071502

Not accessible in experiments

Explore the QCD phase diagram through fluctuations of conserved charges x=B,Q,S

$$\frac{M_x(\sqrt{s})}{\sigma_x^2(\sqrt{s})} = \frac{\langle N_x \rangle}{\langle (\delta N_x)^2 \rangle} =$$

$$\frac{S_x(\sqrt{s})\,\sigma_x^3(\sqrt{s})}{M_x(\sqrt{s})} = \frac{\left\langle (\delta N_x)^3 \right\rangle}{\left\langle N_x \right\rangle}$$

 $\kappa_x^h(\sqrt{s})\,\sigma_x^4(\sqrt{s}) = \frac{\langle (\delta N_x)^6 \rangle}{\langle (\delta N_x)^2 \rangle}$

$$\kappa_x(\sqrt{s})\,\sigma_x^2(\sqrt{s}) = \frac{\langle}{\langle}$$

$$\frac{S_x^h(\sqrt{s})\,\sigma_x^5(\sqrt{s})}{M_x(\sqrt{s})} = \frac{\left\langle (\delta N_x)^5 \right\rangle}{\langle N_x \rangle} = \frac{\chi_5^x(T,\mu_B)}{\chi_1^x(T,\mu_B)} = R_{51}^x(T,\mu_B)$$

 $(\delta N_x)^4$

 $(\delta N_r)^2$

 $\langle (OIV_X) \rangle$

Proxies: proton, charge particles, kaons

> See recent reviews e.g. X.F. Luo and N. Xu, Nucl. Sci. Tech. 28 (2017) 112, HTD, S. Mukherjee and F. Karsch, Int. J. Mod. Phys. E24 (2015) 1530007

HIC

mean: M_x variance: σ_x^2 skewness: S_x kurtosis: κ_{x} hyper-skewness: S^h_x hyper-kurtosis: κ_x^h

$$=\frac{\chi_1^x(T,\mu_B)}{\chi_2^x(T,\mu_B)}=R_{12}^x(T,\mu_B)$$

$$=\frac{\chi_3^x(T,\mu_B)}{\chi_1^x(T,\mu_B)}=R_{31}^x(T,\mu_B)$$

$$= \frac{\chi_4^x(T,\mu_B)}{\chi_2^x(T,\mu_B)} = R_{42}^x(T,\mu_B)$$

LQCD generalized susceptibilities $\chi_n^x(T,\mu_B) = \frac{1}{VT^3} \frac{\partial^n \ln Z(T,\vec{\mu})}{\partial (\mu_n/T)^n}$

$$=\frac{\chi_6^x(T,\mu_B)}{\chi_2^x(T,\mu_B)}=R_{62}^x(T,\mu_B)$$

Changes of degrees of freedom in thermal QCD

HotQCD: PRL 111(2013) 082301, HTD, F. Karsch, S. Mukherjee, arXiv: 1504.05274

V. Koch, A. Majumder, and J. Randrup, PRL95 (2005) 182301

Fluctuations of net baryon number, electric charge and strangeness

Taylor expansion of the QCD pressure: Allton et al., Phys.Rev. D66 (2002) 074507 Gavai & Gupta et al., Phys.Rev. D68 (2003) 034506

$$\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{Z}(T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \frac{\chi_{ijk}^{BQS}}{i!j!k!} \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

Faylor expansion coefficients at $\mu=0$ are computable in LQCD

$$\hat{\chi}_{ijk}^{uds} = \frac{\partial^{i+j+k} p/T^4}{\partial \left(\mu_u/T\right)^i \partial \left(\mu_d/T\right)^j \partial \left(\mu_d/T\right)^j \partial \left(\mu_d/T\right)^j}$$
$$\hat{\chi}_{ijk}^{BQS} = \frac{\partial^{i+j+k} p/T^4}{\partial \left(\mu_B/T\right)^i \partial \left(\mu_Q/T\right)^j \partial \left(\mu_d/T\right)^j}$$

At eB = 1 = 0 a lot more need to be explored

HRG: G. Kadam et al., JPG 47 (2020) 125106, Ferreira et al., PRD 98(2018)034003, Fukushima and Hidaka, PRL117 (2016)102301 Bhattacharyya et al., EPL115(2016)62003 **PNJL:** W.-J. Fu, Phys. Rev. D 88 (2013) 014009

$$\begin{split} \mu_u &= \frac{1}{3} \mu_{\rm B} + \frac{2}{3} \mu_{\rm Q} \;, \\ \mu_d &= \frac{1}{3} \mu_{\rm B} - \frac{1}{3} \mu_{\rm Q} \;, \\ \mu_s &= \frac{1}{3} \mu_{\rm B} - \frac{1}{3} \mu_{\rm Q} - \mu_{\rm S} \;. \end{split}$$

2nd order fluctuations and correlations B,Q & S \iff u, d & s

$$\begin{split} \chi_{2}^{B} &= \frac{1}{9} \left(\chi_{2}^{u} + \chi_{2}^{d} + \chi_{2}^{s} + 2\chi_{11}^{us} + 2\chi_{11}^{ds} + 2\chi_{11}^{ud} \right) ,\\ \chi_{2}^{Q} &= \frac{1}{9} \left(4\chi_{2}^{u} + \chi_{2}^{d} + \chi_{2}^{s} - 4\chi_{11}^{us} + 2\chi_{11}^{ds} - 4\chi_{11}^{ud} \right) ,\\ \chi_{2}^{S} &= \chi_{2}^{s} ,\\ \chi_{11}^{BQ} &= \frac{1}{9} \left(2\chi_{2}^{u} - \chi_{2}^{d} - \chi_{2}^{s} + \chi_{11}^{us} - 2\chi_{11}^{ds} + \chi_{11}^{ud} \right) ,\\ \chi_{11}^{BS} &= -\frac{1}{3} \left(\chi_{2}^{s} + \chi_{11}^{us} + \chi_{11}^{ds} \right) ,\\ \chi_{11}^{QS} &= \frac{1}{3} \left(\chi_{2}^{s} - 2\chi_{11}^{us} + \chi_{11}^{ds} \right) . \end{split}$$

At eB=o (isospin symmetric cases and the equation of the equation of

High T: Ideal gas limit

At eB=0: $\varepsilon^2 = m^2 + |\vec{p}|^2$ Kapusta & Gale, Finite-temperature field theory: Principles and applications

$$\frac{p}{T^4} = \frac{8\pi^2}{45} + \frac{7\pi^2}{20} + \sum_{f=u,d,s} \left[\frac{1}{2} \hat{\mu}_f^2 + \frac{1}{4\pi^2} \hat{\mu}_f^4 \right]$$

At eB=/=0: $\varepsilon_l^2 = p_z^2 + m^2 + 2qB(l+1/2-s_z)$ HTD, S.-T. Li, Q. Shi and X.-D. Wang, 2104.06843

 $\frac{p}{T^4} = \frac{8\pi^2}{45} + \sum_{f=u,d,s} \frac{3|q_f|B}{\pi^2 T^2} \left[\frac{\pi^2}{12} + \frac{\hat{\mu}_f^2}{4} + 2\frac{\sqrt{2}|q_f|}{T} \right]$

$$\frac{f|B}{k} \sum_{l=1}^{\infty} \sqrt{l} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \cosh\left(k\hat{\mu}_{f}\right) \times K_{1}\left(\frac{k\sqrt{2|q_{f}|}}{T}\right)$$

$$\begin{array}{|c|c|c|c|c|}\hline & \sqrt{eB}/T \to \infty \\ \hline & & & & \\ \hline & & \chi_2^u/eB & & & & \\ & & \chi_2^{u'}/eB & & & & & \\ & & \chi_2^{d/s/S}/eB & & & & & & \\ & & \chi_2^{ud}/eB = \chi_{11}^{us}/eB = \chi_{11}^{ds}/eB = 0 & & & & \\ & & & \chi_2^u/eB & & & & & \\ & & & & \chi_2^Q/eB & & & & & \\ & & & & \chi_2^{Q'}/eB & & & & & & \\ & & & & & \chi_{11}^{BQ}/eB & & & & & & \\ & & & & & \chi_{11}^{QS}/eB = -\chi_{11}^{BS}/eB = \chi_2^S/3eB & & & & & & \\ \hline \end{array}$$

Holds at both eB=0 and eB=/=0 with $T \rightarrow \infty$ $\chi_{11}^{
m BS}/\chi_2^{
m S} = -\chi_{11}^{
m QS}/\chi_2^{
m S} = -rac{1}{3}$

No evidence for a Superconducting phase at T=0

Isospin symmetry breaking at $eB\neq 0$

Experimentally accessible quantities for probing isospin symmetry breaking

Experimentally accessible quantities for probing the (non-)existence of a magnetic field

Experimentally accessible quantities for probing the (non-)existence of a magnetic field

At both eB=0 and eB=/=0 with T $\rightarrow \infty$: $-3\chi_{11}^{BS}/\chi_2^{S} = 3\chi_{11}^{QS}/\chi_2^{S} = 1$

2nd order fluctuations of net baryon number, electric charge and strangeness

Signal for a Critical end point in the T-eB plane of QCD phase diagram?

Comparisons to HRG and Ideal gas limit

Ratio to ideal gas limits

Summary

Summary

