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Motivation

behaviour in 3 classes
of theoretical models
(here: holography)

heavy-ion collisions
at RHIC and LHC
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Motivation

behaviour in 3 classes

heavy-ion collisions .
4 of theoretical models

at RHIC and LHC

(here: MIS)
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Bjorken flow: basics .. .,

collision axis =z =0

+ two transverse coordinates

Bjorken’s simplification: physics Is the same in all longitudinally boosted
reference frame; this Is Lorentzian analogue of rotational invariance.

analogue of the radius: 7= Vt2 —22  analogue of the angle: y = arccosh(t/x)
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Relativistic hydrodynamics: basics
e.g. 1205.5040 by Kovtun; 1707.02282 with Spalinski & Florkowski; 1712.05815 by Romatschke?

In relativistic systems like nuclear matter at RHIC and LHC energy and
momentum are encoded in the energy-momentum tensor T

General energy-momentum tensor has |0 components subject to 4
conservation equations V, T* =0

Relativistic hydrodynamics is buillt on an assumption that if we wait long
enough the number of degrees of freedom (independent components of T)
reduces to these specifying a local equilibrium state

T = E(T)u"u” +P(T) (¢"" +u"u”)+ ... with wu,u® = —1

This stress tensor defines perfect fluid hydrodynamics: V. (s(T)u") =0
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Relativistic hydrodynamics: dissipation
e.g. 1205.5040 by Kovtun; 1707.02282 with Spalinski & Florkowski; 1712.05815 by Romatschke?

Realistic fluids dissipate and in hydrodynamics this is encapsulated by some of
the corrections to the perfect fluid description

T = E(T)uu” + P(T) (g + uru”) + wH"

To the leading order In derivatives, the dissipative terms are

= —n(T) V¥u" — ((T)(g" +utu")Vau® + O(V?)

shear term bulk term
0712.2451 by Baier et al.

_ . 1507.0246| by Grozdanov & Kaplis
allow for dissipation

Such corrections » Influence properties of solutions of hydrodynamics

therefore of interest to pheno at RHIC/LHC
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Bjorken flow and relativistic hydrodynamics

e.g. 1 707.02282 with Spalinski & Florkowski

collision axis T=0 Bjorken flow Is a comoving flow in Minkowsk:

7>0

. |

........ time ¢ 1
g VHPuY ~ — etc
T

[t 1s an intrinsically nonlinear phenomenon

For conformal fluids € =3P ~T* and n~ T°

e
N

=

1 _ v
T Ty 1 | 5
A= E/3 _S'O( )
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Motivation

heavy-ion collisions behaviour in three classes
at RHIC and LHC of theoretical models
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Bjorken flow as a tool

of hydrodynamic gradient expansion
T = —n(T) V¥ +0(V?)

s a question with a foundational, as well as a phenomenological component

The key simplifying feature that triggered progress on this problem is the fact
that velocity in Bjorken flow Is entirely fixed by the symmetry: v, = 9,

This allows to define a version of on-shell gradient expansion of the form

1y o0
Tr Tr N 1 B
A= —= = 8- -O(V?) = AW
E/3 sTT(T) (V) Za W
\% n=1
ZO\] gmicro "
~ Knudsen number: (6 >

which is soluble among a whole class of models giving rise to hydrodynamics
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The main Bjorken flow result

In all but one example of a microscopic model*, one gets that a,, ~ n!

Therefore hydrodynamic gradient expansion can diverge factorially on-shell

A standard tool in asymptotic series Is a sequence

Aw)~ 3 o
n=1

which In holography reveals 1302.0697 with Janik and Witaszczyk
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The main Bjorken flow result

A standard tool in asymptotic series Is a sequence

= o0 100
n Qp, b0—|—...—|—b1005
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ambiguity in the inverse Borel transform (/ d¢ —/ d§> ™% w BA(E),
Cq Co

reveals that gradient expansion diverges here due to transients



Making our life simple(r)
Holography Is an ab initio description of a class of strongly-coupled QFTs

[ts equations of motion are PDEs in one higher dimension

In order to make progress it is certainly useful to simplify the problem; in the
end, what one wants Is a system with hydrodynamics and transients

A particularly insightful system are Mduller-Israel-Stewart theories providing
hyperbolic formulations of viscous relativistic hydrodynamics (at a price):

Ta (T UV otV = —hV — n(T)V ) 4 .

exponential decay “over 7 (T)"
to a viscous prediction of 7 = —n(T)V#u") + ...
supplemented by conservation equations:

v, 7" =V, {ET)uv” +P(T) (" +u'u”) + 7"} =0
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New look at “old” results

One can repeat the analysis done Iin holography in MIS:
T (TuV ot = —g — n(T)VHu") 4 ... — | st order ODE for A(w)

This led to recognizing trans-series structure in  A(w) with hydro being the

perturbative part and transients non-perturbative corrections and attractors
1503.071 14 with Spalinski

However, the true value of these results depends on how general they are:

Bjorken flow Is highly symmetric; is its divergence due to some finte-tuning?

Can hydrodynamics diverge non-factorially or even converge!

T it diverges, Is It due to a growing number of transport coeffs: |+ 5-+~20...?

How general Is the interplay between transients and hydro seen for Bjorken!?
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New results (2020-now)

2007.05524

| with Serantes, Spalinski, Svensson & Withers
+ work in progress



Linear response theory

see, for example, 1707.02282 with Florkowski and Spalinski

1
Linear response theory ontop p ~e 7 s the simplest and very

powerful model of nonequilibrium physics with a hydrodynamic tall

5(0(t,p)) = / do et GS(w, p) T (~w, —p)

— OO

with GS(t,z) =i0(t) tr (p [O(t,z),0(0,0)])

The response is encoded in singularities in w of G'% (w,p) at fixed value of p

O = 1 p/T = 0.1
In a holographic p/T =
CFT: p/T = 10
| ,;0 Re(w)/T
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New insight from linear response theor

1803.08058 by Withers; 1904.01018 and 1904.12862 by Grozdanov, Kovtun, Starinets, Tadic

At the level of the linear response theory, hydrodynamic gradient expansion
leads to the expansion of hydrodynamic mode frequencies wy, In p, e.g.

2
.M o (M Ta 01 4
“h ™ ZsTp Z(52T2 23T)p T

The quoted works showed that this expansion has a finite radius of
convergence set by the smallest |p.| for which wi (p«) = Wsome transient (Px)

For example, in the simple model we considered In 1503.07114 with Spalinski based
on MIS and having only | transient one has

—14+/1—-4"57,p? —1— /145 T p?
W =1 \/ s U and Wtransient — \/ = &
2T, 2Ty
. . 1 sT
In this case p. Is real and equals i§ ?7—7
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Basic idea

2007.05524 with Serantes, Spalinski, Svensson, Withers

Linearized hydrodynamics, w9, =8; +v’9; and E=E& +e¢ , allows us to
overcome the need of high symmetry, as was the case for the Bjorken flow

As we realized, In linearized hydrodynamics the hydrodynamic constitutive
relations can be written as only three contributions at each order

2
o1 = (8]'2&1 -I- al’u,j — ﬁéﬂﬁru’")

. 6 1
IIj; = —A(0%) oji — B(0*) m}; — C(8%) 7 with "t = (ajal Cd- 15jl82> )

Moreover, the properties of A(0%) etc determined Dy wy, 1 A(9?) = isTwhl| 2 o

This allows to translate the properties of the expansion of A(0*) when acting

on a solution to the properties of w, and |p.|, as well as u’ (p)
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Real space statement

2007.05524 with Serantes, Spalinski, Svensson, Withers
Let us take MIS:

—14+ /1 —-4-7L —1—-4/1—
Wh =1 \/ and Wiransient — l \/
2T 27‘7T
o o 1
We look at the inrtial condrtions w4 (0, p) =0, 0u(0,p) = %e—ﬂ PO(p2  —p?)

consider TI; 3(t,z) = A(02) Opuy(t, x) Z(S with &, having 2n + 1 derivatives:

‘p*‘ S Pmax < X0
geometric divergence

o5 1075151+ 02 Proaz =2 5
0.4 vanishing radius
0.4p 0.3
[ 02 of convergence
0.2% :

n
50 100 150 200
50 100 150 200

This turns out to be the universal statement that we proved in our paper
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First nonlinear results for general flows

21 Ox.xxxxx with Serantes, Spalinski, Svensson, Withers

Since MIS has worked so well for the linearized hydro and the Bjorken flow,
maybe one can use 1t to elucidate gradient expansion for more general flows?

Indeed, at least for flows depending on ¢ and z one can solve for constitutive
relations in MIS as
1
- _l+ Tn(T)u*0n + . . .
understoogas a series
With numerical simulations on a spacetime lattice one can evaluate the series.
At large orders geometric (lattice), intermediately (continuum) factorial

T (DO Vo =~ — (T)V ) 4 . = 7 n(T)V )

15 ) 1.5 .
Borel singularities < Qf} ey 2 { O‘_g‘r" >
at three times =55 05 10 hift b I 05 10
Ve f s N SNITL Dy -0.5 ~
1 .0 % ' /’7‘ dT/ T _1%
—15 - ’ _1 5
r Tr(L(77))
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New look at “old” results

One can repeat the analysis done Iin holography in MIS:
T (TN o = —1 — n(T)V¥u") + ... —— |st order ODE for A(w)

This led to recognizing trans-series structure in  A(w) with hydro being the
perturbative part and transients non-perturbative corrections, attractors...

However, the true value of these results depends on how general they are:

New result provided new insights:

Bjorken flow Is highly symmetric; is its divergence due to some finte-tuning?
no

Can hydrodynamics diverge non-factorially or even converge!
yes to both, however fine-tuning or lattice seem to be essential
T it diverges, Is It due to a growing number of transport coeffs: |+ 5-+~20...?
this is certainly not necessarily, but we have not ruled it out
How general Is the interplay between transients and hydro seen for Bjorken!?
very general, visible both in momentum and real space




New results
on hydrodynamics attractors

2003.07368 with Jefferson, Spalinski & Svensson



Hydrodynamic attractors

1503.07514 with Spalinski

At w = 0 there is only SRR
| sensible solution with aPP'”f?j'ma es It well:

, 1 1 3
: C,, w (== A A,’+(—CT,,+—— )A2—|—— A—-12C, =0
finte A and we called w4 3 8C, " 2"
it the (hydro) attractor s

built-in
exponential decay

lst or 2nd order ©

gradient expansion 0

work well since some
threshold time:

1 16
AH(’LU) = 80776 -+ 3077 (C’T7T — C>\1)

-1

1
E .« .

divergent series, see also 1509.05046 by Basar & Dunne
attractor = a particular resummation

Since 2015: many studies of finite / slow-roll solutions (= hydro attractors)
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A new look at hydrodynamic attractors

The idea of attractors arose as a way of providing a preferred resummation

of divergent hydrodynamic series and, eventually, of doing hydro better
similar motivation to 0704.1647 by Lublinsky & Shuryak

[t i1s not clear at this level If solutions having a finite A(w = 0)/ slow-roll solutions
are phenomenologically interesting. In particular, for a generic solution, hydro
attractor of 1503.07514 becomes relevant only from some time onwards

New idea: make use of expansion and dissipation (see also 1712.03856 by Blaizot &
van) 1o argue for a reduction of effective degrees of freedom In heavy-ion
collision setups (~ local “attractors”)

This will not require introducing any “preferred” parametrization of evolution
of states akin to A(w)
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Dimensionality reduction in phase space

Let's revisit the theory of hydrodynamics: EOMs are 2nd order ODEs for T'(7)

The phase space” therefore is 2D: for each 7 a state can be param.by T& T,
however, many different choices are possible, iIncluding w& A

Time evolution turns out to dimensionally reduce regions of phase space:

T()T

The MIS attractor is a red curve V = 100, { nT(7), 587 (r) |
I . d (. )
T =T T an ~1/4 W , .
A(TT) = 73 F=6418 K|V| 0 02 04 06 08 1.0

Slow regions similar to 1910.00021 by Brewer;Yan &Yin
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Principal components analysis and attractors

A useful tool to quantify dimensionality reduction 1s PCA
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Comments on the new idea

After some short time some directions In phase space become locally
irrelevant

As a result, all inrtial states localized in a finite phase space volume end up on
a lower D manifold

Details depend on parametrization and choice of phase space metric
A useful way of detecting and parametrizing dimensional reduction Is the

principal component analysis. We checked it works in RTA kinetic theory with
effective phase space made from truncated moments

A pheno potential of this idea might lie In the fact that in heavy-ion collisions
we might then not care about evolving all inttial states till late times, but
rather just representatives from different points of this lower D manifold
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Summary and outlook



Summary

Many reasons to be interested In relativistic hydrodynamics in 202 1: nuclear
collisions, gravity, neutron stars mergers and, last but not least, resurgence

Behaviour of hydrodynamic expansion at large orders Is a foundational
question In relativistic fluild mechanics of possible practical iImportance

T = —n(T) V¥u?) +0O(V?)

(Conformal) Bjorken flow is a highly symmetric non-equilibrium dynamics in
which gradient expansion can be written as a late time expansion

1 v o0
T 7Ty 7] 1 2 E : —n
J— :8_ I O — n e o o
A E/3 sTT(T) (V) — At
\% n—l
2(/\]

This triggered extensive studies. In all but one™ studied models a,, ~ n!

This not only brought connection with transseries to hydro, but more
importantly raised many questions, effectively starting a new research area
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Outlook

The progress | described today can be shortly summarized as going beyond
the A(w) paradigm both for the gradient expansion and attractors
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Thank you



