QCD theory, online seminar, Oct 19, 2020

Hard- & Soft- deconfinement from nuclear to quark matter

Toru Kojo

(CCNU, Wuhan, China)

Ref) K. Fukushima, T.K., and W. Weise, 2008.08436 [hep-ph]

1/32

The purpose of this work

• propose notions of Soft- & Hard- Deconfinement

offer a concrete description of quark-hadron continuity

suggest new schemes of computations for dense QCD

Confinement-deconfinement in hot QCD

No order parameters, but the notion of conf-deconf trans. still makes sense :

Hot QCD case, lattice (e.g

(e.g., Ding+, review '15)

Confinement-deconfinement in hot QCD

No order parameters, but the notion of conf-deconf trans. still makes sense :

Hot QCD case, lattice

(e.g., Ding+, review '15)

An intuitive picture

At ~T_c, many hadrons with E >> T
(entropic effects > energy cost; Hagedorn)

An intuitive picture

Can we draw this sort of cartoon for dense QCD ?

4/32

 N_c counting : HRG vs Nuclear Matter

6/32

•

 N_c counting : HRG vs Nuclear Matter

"Soft" & "Hard" scales in a nucleon

"Soft" & "Hard" scales in a nucleon

Soft & Hard Deconfinement

Hard Deconfinement

4-7 $n_0 < n_B < \sim 50 n_0$

hard core overlap

pQCD valid

Hard Deconfinement

hard core overlap \neq perturbative regime

core properties of a nucleon \rightarrow alternative baselines ?

e.g. mechanical **P** & **E** in a nucleon

Hard Deconfinement

10/32

 $r_{\rm hard}$

hard core overlap \neq perturbative regime

core properties of a nucleon \rightarrow alternative baselines ?

e.g. mechanical **P** & **E** in a nucleon [Kobzarev-Okun('63), Pagels('66)] gravitational form factors proton state $\langle p_2 | \hat{T}^{q}_{\mu\nu} | p_1 \rangle = \bar{U}(p_2) \left[\frac{M_2^{q}(t)}{M} \frac{P_{\mu}P_{\nu}}{M} + J^{q}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M} + \frac{d_1^{q}(t)}{5M} \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M} \right] U(p_1)$ energy density angular mom pressure & shear forces energy mom. tensor

 $P = (p_1 + p_2)/2$; $\Delta = p_1 - p_2$

On-going programs

11/32

models on the market: bag model, chiral quark soliton, Skyme model,... (see also Rahan+ 2018)

For tentative estimates, we use a chiral soliton model + ω , ρ mesons (next slide)

"Nucleon" EoS vs neutron star EoS

12/32

close to realistic **NS EoS** : a useful **baseline** ? (like R_{AA} in HIC)

With this, can we quantify medium correlations such as BCS pairing?

Soft Deconfinement

$\sim 2 n_0 < n_B < 4-7 n_0$

nuclear

hard core overlap

Soft Deconfinement

relating "multi-quark exchanges" to "delocalization of quark w.f."

Need

to solve the dynamics of quarks being exchanged among moving baryons

looks very complicated...

strategy

Separate **fast** quark dynamics from **slow** baryon dynamics => *Born-Oppenheimer* descriptions

I, The velocity :
$$k_B/E_B \sim I/Nc \ll k_q/E_q \sim I$$
 $(k_B \sim k_q \sim n_B^{1/3})$
 $n_B = n_q^R = n_q^G = n_q^B$

2, Find quark eigenstates for a given baryon configuration

3, Take the "time average" \rightarrow "ensemble average" of baryons

A model of **classical** percolation

probability

16/32

3D cubic lattice

 $r_{\rm soft}$

 $r_{\rm soft}$

a site is occupied by a baryon : P unoccupied : **– –** [one baryon per site] $< N_B > = p x sites = < n_B > x volume$ $\rightarrow p \sim \langle n_B \rangle \times r_{soft}^3$

bonds for nearest neighbor hopping of quarks

17/32Classical Percolation (no quark dynamics)When do baryon clusters connect two opposite boundaries?e.g. 2D lattice(for $V \rightarrow \infty$)

p_c: critical probability (concentration)

def) at $p = p_c$, a cluster reaches opposite boundaries for the first time

Classical Percolation (no quark dynamics)

For 3D cubic lattice : $p_c = 0.34...$

A rough estimate of the critical density

Assuming r_{soft} ~ 0.7 fm

$$n_B^{c} \sim 0.34 \times (4\pi r_{soft}^3/3)^{-1} \sim 0.24 \text{ fm}^{-3}$$

~ 1.4 n_0 !

This may happen within the nuclear territory

But the CL percolation tells us only about the availability of paths for quarks...

Quantum Percolation

Quantum amplitudes from various paths may cancel: (destructive) interference

e.g. Anderson localization ('57)

19/32

Quantum Percolation

Quantum amplitudes from various paths may cancel: (destructive) interference

e.g. Anderson localization ('57)

dirty

→ **Bloch waves** (phase coherence)

 \rightarrow **Localized states** (random phase)

19/32

momentum space

Delineating quark wavefunctions

procedures

=> we diagnose the **quark contents** of given baryon configurations

A model of **quantum** percolation

1

```
21/32
```

[Kirkpatrick-Eggarter '72,...]

tight-binding
Hamiltonian
$$H = \sum_{n} |n\rangle \varepsilon_n \langle n| + \sum_{n \neq m} |n\rangle V_{nm} \langle m|$$
 $|n > : a quark state exists at a site n$
 $V_{nm} = -V \ (V > 0)$
nearest-neighbor hopping
the on-site energy is generated with probabilities
 $P(\varepsilon_n) = p\delta(\varepsilon_n - \varepsilon_{on}) + (1 - p)\delta(\varepsilon_n - \varepsilon_{off})$
 $= 6V$
(convenient choice) $\rightarrow \infty$

quarks hop only within connected clusters

I) $p \rightarrow 0$ (dilute limit) : **isolated** baryons only


```
like kin. energy (NR)
```

→ x

localized

I) $p \rightarrow 0$ (dilute limit) : **isolated** baryons only

2) $p \rightarrow I$ (dense limit): all sites are filled

Eigenstates => plane waves with wavenumbers k_i (Bloch type) extended $E(k) = 4V \sum_{i=x,y,z} \sin^2(k_i/2) \rightarrow V k^2$

small k limit

→ x

localized

for few baryon clusters (localized in y, z-directions)

a) 2-baryons

for few baryon clusters (localized in y, z-directions)

classically connected contain sub-clusters (localized states)

Histograms of quark eigenstates $\int dE \rho(E) = 1$

24/32

Note: classical percolation is necessary condition for quantum one

Mode-by-mode percolation

26/32

A momentum shell in Quarkyonic Matter

Quarkyonic Matter

[McLerran-Pisarski '07]

quark Fermi sea & mode-by-mode percolation 29/32

quark Fermi sea & mode-by-mode percolation

isolated baryons + sub-clusters

30/32

 $\int dE\rho(E) = 1$

quark Fermi sea & mode-by-mode percolation $\int dE \rho(E) = 1$

Summary: a cartoon

