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Relativistic hydrodynamics

* Hydrodynamics: small perturbations close to thermal equilibrium,
long wave length and long time limit;

* Dynamics determined by conservation equations
0, 1" =0
* Constitutive equations:
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Hydrodynamic modes

* Poles at w=0 due to conservation of
energy momentum

* Propagating modes: W = +|k|vs — ivsk*/2

e Diffusive modes: w = —iDKk?

* Crossing point in the real part of the
eigenvalues at E=k=0

e To first order in ki =——>
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Looking for topological modes in hydrodynamics:
motivation

* Quantum gapless topological states: Weyl semimetal; topological nodes

* Classical topological states: sounds/optics

* Possible experimental observational eftects?

* Implications to other topological systems



Outline

e Effective Hamiltonian

* Engineering the Hamiltonian: making it gapped, separating the
nodes

* Non-conservations: gravitons; non-inertial reference frames,
symmetry;

* Transports, second order ettects;

* Topological invariants: orthogonal adjacent states;

* Holography

* More general systems with two sectors of energy momentum;
* Summary and open questions



[: Looking for topological modes in hydrodynamics:
ettective Hamiltonian

Hydrodynamic modes, dynamics determined by the conservation equation
0,0T" = () 0, 0€ + 1kym, = 0,
oyl + ikxvg be + v k*m, =0
Oy~ + v k*m;- = 0.
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[: Looking for topological modes in hydrodynamics:
ettective Hamiltonian

* Resemblance to the equation of motion for fermions: Dirac
Hamiltonian

i%—f:—i&-ﬁw%—mﬁwzﬁw

* An effective Hamiltonian in hydrodynamics, whose eigenvalues

give the spectrum
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[I: Engineering the effective Hamiltonian:
gapping the hydrodynamic modes

* Gapless topological modes: stable under perturbations that usually
gap the system

* First step: gap the hydrodynamic modes

* Non-conservation of energy momentum
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* y, z direction m terms would have the same effect



[I: Engineering the effective Hamiltonian:
gapping the hydrodynamic modes

* Note: different from the usual momentum dissipation considered in
holography
* What we have here:  0,0T*" = mdéT™

* Gap: 0,0T"" = —mvZdT"

* What they have there: 0,0T" =0,
* Momentum dissipation 0,0T" = T6T"



[I: Engineering the effective Hamiltonian:
gapping the hydrodynamic modes

* Compare the eftective Hamiltonians

* Momentum dissipation
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[I: Engineering the effective Hamiltonian:
separating the hydrodynamic modes

* More non-conservation terms 0, 6TH = méT™ | 0,6TH" = —mv26T"
. 0,0THY = bv 0T, 0,0TH* = —bu, 6T
/ 0 kr. +im k, kz\ g ? . ?
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[I: Engineering the effective Hamiltonian:
separating the hydrodynamic modes

* Note that the y or z direction mass terms could still gap the system

\ / Topologically nontrivial protected
by certain symmetries: not gapped

by the x direction m terms.
The spectrum with y or z mass terms




Meaning of topologically gapless states

* Accidental vs topological

* Symmetry protection



* (Topological) phase transition: tuning b from larger than m to
smaller than m

N >

b>m, at
nonzero ky
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[1I Origin for non-conservation of energy momentum

* From a symmetric tensor external field: f,, O™
* Non-conservation equation: aMTW — O(w((?yf af 200.f 1/5)

* Choose the operator to be 7" ; caretully choosing the nonzero
components of the external field could give us the non-conservation
equation that is needed.

* The symmetric tensor field could be some external etfective matter
field, but its coupling has to be caretully tuned in real systems.



[1I Origin for non-conservation of energy momentum

* The most interesting and natural possibility for the symmetric
tensor field: the gravitational field

Juv = nuu_l_h,uu O(h/W) ~ O(k)

* Energy momentum is conserved covariantly V /TH” = (

« Expanding the covariant conservation equation to first order of /1 m
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[II Origin for non-conservation of energy momentum

* With the following nonzero components of h L

1
hit = hgye = mx, hip = hygy = §mt(v§ +1),

1 1
hty — hyt — —§b1)32, htz — hzt — §bv8y.

-

for h,,,,, here we pick a
simple choice
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infinite many possibilities
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* The covariant conservation equation gives the non-conservation

terms needed
0, 0TH = méT™ |, 0,6TH" = —muv2dT"
0,0THY = bu 0T | 0,0TH* = —bv 6T



* How do we get this gravitational field i, ?
* Surprisingly all Riemann tensors vanish for this metric!

* h,, could emerge from a coordinate transformation from the flat
spacetime

~

Ty =Ty + &y
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* In a specific non-inertial frame, we could observe hydrodynamic
modes that are topologically protected even when they are
topologically trivial in the original inertial frame.

* Another effect for accelerating frames in addition to the Unruh
effect.



The non-inertial frame

* A rest observer in the new reference frame
di* = 0 for i = 1,2,3

* Solving this equation, we have the movement of the rest observer in
the original flat spacetime (at leading order in k)

s muvtdt bv zdt bvsydt
di = dt, do = -0t gy — buszdt g, b

* Integrating these equations with appropriate boundary conditions,

we have

bZS t and z = — Ry sin

bug

y = Ry cos i




The non-inertial frame

* The rest observer in the new reference frame:

» Rotating with a constant angular velocity w, = %= in the y-z

4
plane

mv2

* Accelerating with a constant acceleration a = 5 inthex
direction
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* A remark: with the coordinate transtformation to the new frame, the
constitutive equation has to be transtormed, too, which could
contribute to extra terms in the equation. [ Accelerating observer, with the ﬂuid}

rest in the inertial frame

* By considering these ettects caretully by transtormation the four
velocity of the fluid to the non-inertial frame, extra terms all vanish
and the spectrum does not change!

* It is also possible to have the fluid also accelerating: the spectrum
does not change up to a rescaling of parameters m, b and vs.



Symmetry of the system

* To keep the exact form of these non-conservation terms, we need the
isometry of the new spacetime metric.

* [sometry: coordinate transformation from the Poincare symmetry of
the original flat spacetime

3 6

* Killing vectors K, = Z a;X; + Z c,0,
1=0 1=1
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The protecting symmetry

* It could be the whole symmetry of the isometry

* However, we only need the symmetry that forbids the m terms in the y and
z directions. There could be extra b terms that change the value of b, which
do not open the gap.

* The two Killing vectors for this symmetry are

e = ayxyt+azXxz

Xy — ( bZ4U3’ O’ 1’ — btij«S) This symmetry looks complicated, however, it

is just the y and z translational symmetry in the
[ byv byv
== (2, 0, e, 1)

inertial frame.
* Combined translational and boost symmetry in the y(z) and z(y) directions




Summary of the physical picture

* The non-conservation terms look ad-hoc; the protecting symmetry looks weird.
* Let us analyze the physical picture carefully.

* Hydrodynamic modes observed in the accelerating frame where the normal
fluid is at rest in the inertial frame, i.e. the receiver accelerates while the fluid is
at rest.

* In the accelerating frame, the non-conservation terms come out naturally due
to the gravitational field, and the protecting symmetry comes out naturally as
two generators of the isometry.

* We will have the covariant conservation of /""" in the accelerating frame as
long as we have the conservation of 7'#” in the flat spacetime: the symmetry
required is the y and z momentum conservation in the flat spacetime.

* All that is needed is the accelerating receiver who has to accelerate exactly in
the way required and it is a natural accelerating frame of a helix.



Possible experimental realization

* Possible application: doubling of amplitudes at a finite k and w;
stable under perturbations;

* Laboratory tests: accelerating the detector/observer for sound modes
in a helix with small acceleration and angular velocity.

* Direct detection of sound modes; indirect test of transport behavior;

* Implications to other topological materials, e.g. electronic systems.



[V topological invariants

* For symmetry protected topological states

* Topological invariants calculated at
high symmetric points of the system
ky=kz=0;

* |In1> and |n2> normal to each other:

<ni|n2>=0 undetermined Berry phase

The singularity cannot become a trivial
point by continuous change, unless after
a topological phase transition
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V. Transports, second order ettects

* Transports: thermal conductivity

* m,b both have effects in thermal conductivity;

] P
K/xa;(w7 kx) — ZW(E _l_ ) |
T ((k2 + m2)v2 + i swk? — w2)
k2 )2
by (W, k) = Fpp (W, kg) = — N+ iw(e + P)
g (b%g + (iw+ F5k;)° )
P)bu,
/iyz(w, kx> — _sz(wjkx) — (6 + ) (Y

T (b%g + (iw + 5k2)? )
* yz components become nonzero due to b terms; xx, yy, zz components
do not diverge anymore due to b or m.



V. Imaginary parts: second order in k effects

* A jump in the imaginary part: indicating topological change?

0, w
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VI. Holographic realization and Ward identities

* Strongly coupled hydrodynamic systems.
* Hydrodynamic modes-> gravitons
* Non-conservation of energy momentum: massive gravity?

* Another prescription for holographic realization of this system:
holographic non-inertial reference frames, coordinate
transformation from the original AdAS/CFT correspondence

* First step to prove that it is indeed the holographic system needed:
reproduce the Ward identities due to the energy momentum non-
conservation terms



VI. Holographic realization and Ward identities

* Ward identities for the conserved energy momentum tensor

ku(GH20 — X (TH) = (TH) = i (T™) + 0 (T™)) = 0

* With energy momentum non-conservation terms, the Ward
identities become

k, GH (k) + 4 [r“)%(;aw(k) J I‘(l)”wGW’Ap(k)} + contact terms = 0



VI. Holographic realization and Ward identities

* A new prescription to calculate holographic Ward identities without
calculating all the components of the Green functions

* For perturbations of the metric 0 9uv (k ) , we denote the ten
components tt,tx, ty, tz, xx, vy, 2, Yy, yz, 22 as ¢;, ¢ € {1...,10}

Fourier transtormed to the momentum space in the t, x, y, z directions

* The action could be written as

drd*k /.. L L L L
5> [ Gt (W01 R)6, )+ W6l (-R)6) () + WY ol (~R)o, () + W o(~Ryo () )




VI. Holographic realization and Ward identities

* Deriving equations of motion for this system and substituting the
solutions into the action, we could the on-shell action.

* The on-shell action that is relevant to the Green functions:

2 D/ Tk v g —Ryo, @)
on—shell (27_‘_> A 2 Y1 J -

e ... are terms related to the contact terms

* Note that components with r could be viewed as constraint
equations, which could be solved and substituted into the on-shell
action.



VI. Holographic realization and Ward identities

* Holographic Ward identities--- diffeomorphism

* The action has to be composed of gauge invariant combinations

* All possible gauge invariant combinations:

00w = V6, + Vi€,
B 00z 0Gtx n 0wt 7, — 59yy 59ty o
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VI. Holographic realization and Ward identities

 The on-shell action should be

T'b

Th

s> [ %sz@f(—@zj@)

* All 55 components of Green functions should be expressed using the

21 independent Gij functions.

* Eliminating all Gij’s, we obtain 34 identities for holographic Green
functions.

* 40 Ward identities need to be reproduced, 6 of which are
independent that could be derived from other 34 identities

* They match to each other.



The holographic non-inertial frame

* The metric for the coordinate transformed AdS spacetime:

bulk __ AdS bulk
g,uu o g,uy _I_h,ul/

hzglk — v,ufy + vl/fu

 With the new metric, the form of the on-shell action would be
different from the AdS one, nevertheless, it can still be written as
sums of gauge invariant terms.



VI. Holographic realization and Ward identities

* New gauge invariant combinations

7, = 09zc  OGtx Ot B 1m0 Gy n 1m0 Gty B imv§5gm
2k2  wk,  2w? 4k w? 2k2w

2, — 09w 09  O9n _ IMU;0Gen  1bVs0G.
2/65 wk, = 2w? 4k..w? 4k, k,w

7, = %9 | 00i: | Ogu _ im00Gs | ibU.Ogy,
2k2  wk, 2w? 4k,.w? 4kyk,w

_ 00z OGay | Ofyy  1MOGya
Y22 Kok, 2k2 4K3

7, = 09 _ 09az | 08z
2k2  kyk, = 2k2
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Using the same method as the
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match the Ward identities from
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VI. Holographic realization and Ward identities

* This method for calculating holographic Ward identities could also
be generalized to massive gravities.

* More to do:
* More details: hydrodynamics modes, Green functions;

* Other holographic realizations, massive gravity? External fields?



VII. Generalized systems with two sectors

* With two separately conserved hydrodynamic systems.

* Introducing weak interchange of energy and momentum between
the two systems

* Start from the simplest case: two 1+1d systems each with an energy
momentum tensor

0,071 = m 6T} + bi0Ty, |
0,0TL" = —myvi 0T7 + b16Ty
0,0Th = mydTE — bydT}
0,0TE® = —mapv2pdThH — bydTH"



VII. Generalized systems with two sectors

* A better version with two interacting energy
momentum tensors in 2d+2d

( 0 kr +1m 1b
7 (ky — ?m)v? 0 0
—1b 0 0
\ 0 —ib  (ky —im)v
w = +b % /m? + k2v,

2
s

0
b
kr +1i1m

\/

T~
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* [t does not need to be protected by any

symmetry
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VII. Generalized systems with two sectors

* (Topological) phase transition:
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3d+3d: case I

Effective Hamiltonian Hizp 3p; =

Spectrum

ky ib 0 0 \
0 0 1 0

0 0 0 0

0 0 kr +1m kK,
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0 e, 0 0)
\—/
— .
= e
/\



VII. Generalized systems with two sectors

* Crossing nodes

No m in the y direction With m in the y direction

[ Two red points: symmetry protected; two circles, no need for symmetry protection }




3d+3d case II

e Effective H

Hspisp,ir =

* Spectrum

4 )

Crossing nodes are three
circles, no need for
symmetry protection

\_ J

ky +tm
0
0
0
0
— b

b

0

0

0
k,—1m
k, —im

increasing from k, = 0 to larger values from left to right.

0 0 \

b 0
0 b
ky +tm  k,+1m
0 0
0 0 )

Figure 10: The spectrum of the modified hydrodynamics with (3.17) Hzpy3sp rr at m < b and



4d+4d cases

* More complicated, qualitatively similar;

* With maximal b terms, no need for symmetry protection, while the

crossing nodes are two dimensional spheres: co-dimension one
surfaces;

* With fewer b terms, symmetry protected by the symmetry
forbidding the m term in the direction with no b term: ettectively co-
dimension one in the calculation of topological invariants



Topological invariants

e For the 2d+2d case

* |In1> and |n2> normal to each other:

* Only parameter: kx \\/

<ni|n2>=0 undetermined Berry phase
The singularity cannot become a trivial
point by continuous change, unless after

a topological phase transition
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Topological invariants

* For the 3d+3d/4d+4d case: much more complicated

* symmetry protected by yz translation symmetries: calculated at high

symmetric points: ky=kz=0
Protected by y translation

* The same as previous cases |
10
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e T'\Wo cases: Not symmetry protected ones

* With y translation

* Without y translation
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Transport properties

* 2d+2d case: four components of thermal conductivity; m=o finite;

w(e + P) (0% + (k2 + m?)v? — w?)

%LL(W, kx) = KRR(W, km) =i =

T (b* +

((k2 +m?)vz —
(e + P) (b

w2)? — 202 (k2 + m2)v? + wz))
— (k2 + m*)v? — w?)

/iLR(w, k:c) — —KRL(Wa ka:) —

* No second order effects

+ ((k2 4+ m?)v2 —

W ) — 2b% ((k2 + m?)v2 + wz))



Summary

* Gapless topological modes in relativistic hydrodynamics
* Several possible realizations: 4d, 2d+2d, 3d+3d/4d+4d...

* Symmetry protected topological modes; phase transitions;
topological invariants;

* Transport; second order eftects; Holography

* The take-home message: normal modes become (symmetry protected)
topologically nontrivial gapless modes in a certain non-inertial reference
frame: the frame of the accelerating observer moving in a helix; could be
tested in laboratories;

* A new effect for accelerating observes, in addition to the Unruh
effect;



Open questions

* Next steps:

* Extra U(I) current;

* Holographic calculation of hydrodynamic modes
* Non-Hermitian, PT symmetry related?

* Fermionic topological systems, non-inertial frame? Preliminary
results



Open questions:

* Gapped topological modes?

* Gapless modes with other kinds of topology?

* With U(1)*U(1) symmetry, more transports

* Possible experimental realizations?

* Non-relativistic systems?

* Holographic realizations from massive gravity?

* Two sector systems: possible non-inertial frames?
* Holographic realization for two sector systems?

* Relation with nontrivial topological modes in gravitational waves?



Thank youl



