

Anomalous Hydrodynamic Transport in Interacting **Noncentrosymmetric** Metals

Presenter : ¹Riki Toshio

¹Department of physics, Kyoto University, Japan

Collaborators: ²Kazuaki Takasan

¹Norio Kawakami

²Department of Physics, University of California, Berkeley, California

arXiv:2005.03406 (2020).

Outline A novel class of matter "<u>Hydrodynamic materials</u>" <u>System</u> Target **Phenomena** Unconventional **nonlinear** and **nonlocal** transport I'll explain the detail later!! WP_2 PdCoO₂ graphene

Outline

Outline

Introduction

~ What is "hydrodynamic materials" ~

- 1. Hierarchy in electron dynamics
- 2. Experimental realization

3. Three important aspects of the electron hydrodynamics

Nonequilibrium phenomena in solids

Light-induced phase transition

Light-induced phase transition

Anomalous transport near QCP

Hierarchy in electron dynamics

- l_{MR} = Mean free path of momentum relaxing scattering
- l_{MC} = Mean free path of momentum conserving scattering
 - W = Characteristic length scale of the dynamics

System size, wavelength, etc

the **minimal** scale determines the **<u>effective</u>** description !!

1 Ohmic regime

2 Ballistic regime

3 hydrodynamic regime

Local & one-particle response

2 Ballistic regime

One-particle response with quantum coherence

3 hydrodynamic regime

Nonlocal/Nonlinear collective response

Local & one-particle response

<u>Realization</u> typical metals/semiconductors <u>Example</u> Ohm's law, Drude theory Particle

2 Ballistic regime

One-particle response with quantum coherence

3 hydrodynamic regime

Nonlocal/Nonlinear collective response

Local & one-particle response

<u>Realization</u> typical metals/semiconductors Example Ohm's law, Drude theory Particle

Wave

2 Ballistic regime

One-particle response with quantum coherence <u>Realization</u> Mesoscopic systems <u>Example</u> Aharonov-Bohm effect

3 hydrodynamic regime

Nonlocal/Nonlinear collective response

Local & one-particle response

<u>Realization</u> typical metals/semiconductors <u>Example</u> Ohm's law, Drude theory

2 Ballistic regime

One-particle response with quantum coherence <u>Realization</u> Mesoscopic systems <u>Example</u> Aharonov-Bohm effect

3 hydrodynamic regime

Nonlocal/Nonlinear collective response

described by "electron hydrodynamics"

Particle

Wave

Fluid

 $W \ll l_{MC}$

1 Ohmic regime

Local & one-particle response

<u>Realization</u> typical metals/semiconductors Example Ohm's law, Drude theory

w-bohm effect

High conductivity or strong correlation are required !

Unexplored regime ... ! !

$l_{MC} \ll l_{MR}, W$

3 hydrodynamic regime

Nonlocal/Nonlinear collective response

described by "electron hydrodynamics"

Fluid

Particle

Wave

Stages for realization

Ultrapure metal with high conductivity
 (ex : Graphene, PdCoO₂, WP₂, MoP, GaAs quantum well)

(2) Non-Fermi liquid (ex : Bi₂Sr₂CuO₆)

A. Amoretti, et al., arXiv:1909.07991 (2019)

Historical background

Various reports since **2016** … !!

P. J. W. Moll, et al., Science **351** 1061 (2016).
R. K. Kumar, et al., Nature Physics **13** 1182 (2017).
J. Gooth, et al., Nature Communication **9** 4093 (2018).

Microfabricate the sample in μm order

 \Rightarrow Measure the <u>resistivity $\rho(B, w)$ </u>

J. Gooth, et al., Nature Communication 9 4093 (2018).

P. J. W. Moll, et al., Science 351 1061 (2016).

Viscosity of Electron Fluids in Crystals

 η : shear viscosity

 $u = \eta /
ho$: kinematic viscosity

fluids (~300 K)	η [g/cm s]	$\nu \ (cm^2 \ s)$
Water	0.010	0.010
Air	0.00018	0.150
Alcohol	0.018	0.022
Glycerin	8.5	6.8
Mercury	0.0156	0.0012
Honey	18	13
Mayonnaise	80	80
Doped Graphene	$\sim 10^{-14}$ [g/s]	$\sim 10^{3}$

Consistent with theory and experiments

D. A. Bandurin, et al., Science 351 1055 (2016)

0

1

 $\mathbf{2}$

3

-2

-1

-3

Is the Reynolds number high? Or low?

Reynolds number :
$$R \equiv \frac{LV}{v}$$
 $R \approx 1$: strongly nonlinear
or turbulent flow(L, V : characteristic length and velocity scale) $R \ll 1$: viscous flow

Current :
$$I = 2 \times 10^{-7} [A]$$

Particle density : $n = 10^{12} [cm^{-2}]$ \longrightarrow $V \sim \frac{I}{enL} \simeq 10^4 [cm \cdot s]$
Width : $L = 1 [\mu m]$
Kinetic viscosity : $\nu = 10^3 [cm^2 s]$ \longrightarrow $R \sim 10^{-3} \ll 1$

⇒ Viscosity-dominant regime

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

Electron-phonon fluids

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

Electron-phonon fluids

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

Electron-phonon fluids

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

Electron-phonon fluids

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

Electron-phonon fluids

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Nonlocal Transport

Instability and Turbulence

New Class of Fluids

Dirac/Weyl Fluids

е

n

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

Breaking of WF law

Electron-pl Today's Key Idea I

A new type of electron fluids realized in *noncentrosymmetric* metals

Unconventional transport

Correlation and Nonlocality, Nonlinearity

Nonlocal Transport

Viscous flow

New Class of Fluids

Novel anomalous nonlocal transport

due to the inversion breaking

0

Today's Key Idea II

New Approach for understanding of Non-fermi liquid

AdS-CFT Bound

 $\frac{\text{dS/CFT bound}}{\frac{\eta}{s} \geq \frac{\hbar}{4\pi k_B}}$

Breaking of WF law

Instability and Turbulence

Electron-pl Today's Key Idea I

A new type of electron fluids realized in *noncentrosymmetric* metals

20 - C

Research

~ Nonlocal and Nonlinear Anomalous Transport In Noncentrosymmetric Hydrodynamic Materials ~

- 1. Our Question
- 2. Setting and Model
- 3. Results
- 4. Conclusion and Future Works

Question What is the hydrodynamics peculiar to electron fluids in crystals ??

Conventional studies

not reflect the character of the fluids "in crystal" \Rightarrow (always assume the **isotropy and Galilei symmetry** on the fluids)

Current Backflow

L. Levitov and G. Falkovich, Nat. Phys. 12, 672 (2016)

Preturbulent flow

M. Mendoza, et al., PRL 106, 156601 (2011)

Poiseuille flow

P. J. W. Moll, et al., Science 351 1061 (2016). J. Gooth, et al., Nat. Comm. 9 4093 (2018).

Superballistic flow

R. K. Kumar, et al., Nat. Phys. 13, 1182 (2017)

Question What is the hydrodynamics peculiar to electron fluids in crystals ??

<u>Conventional studies</u> ⇒ not reflect the character of the fluids "in crystal" (always assume the <u>isotropy and Galilei symmetry</u> on the fluids)

Question What is the hydrodynamics peculiar to electron fluids in crystals ??

<u>Conventional studies</u> ⇒ not reflect the character of the fluids "in crystal" (always assume the <u>isotropy and Galilei symmetry</u> on the fluids)

Question What is the hydrodynamics peculiar to electron fluids in crystals ??

<u>Conventional studies</u> ⇒ not reflect the character of the fluids "in crystal" (always assume the <u>isotropy and Galilei symmetry</u> on the fluids)

Question What is the hydrodynamics peculiar to electron fluids in crystals ??

<u>Conventional studies</u> ⇒ not reflect the character of the fluids "in crystal" (always assume the <u>isotropy and Galilei symmetry</u> on the fluids)

Abstract

Abstract k_y Geometry of **Multi-band Crystal symmetry** the Bloch WFs k_x 1st BZ

Generalized Euler Equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} + \frac{\boldsymbol{\nabla}p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\boldsymbol{\nabla} \times \boldsymbol{E}) + \hat{F} \left(\boldsymbol{E} \times \frac{\boldsymbol{\nabla}T}{T} \right) + \hat{D} (\boldsymbol{E} \times \boldsymbol{\nabla}\mu) \right] + \frac{e}{m} \boldsymbol{E} = -\frac{\boldsymbol{u}}{\tau_{mr}}$$

Renormalized to three geometrical tensors \hat{C} , \hat{F} , \hat{D} and cause various anomalous transports as additional driving forces !!

Model

- <u>Goal</u>: Integration of the electron hydrodynamic theory with the crystal symmetry and geometrical properties.
- Target :
 TRS and Noncentrosymmetric
 Hydrodynamic materials

WP₂

Bilayer-graphene

MoP

GaAs quantum well

Model Goal: Integration of the electron hydrodynamic theory with the crystal symmetry and geometrical properties. Target : TRS and Noncentrosymmetric Hydrodynamic materials

Local and **Linear** anomalous current (anomalous Hall or thermal Hall effect, *et al*)

Nonlocal and Nonlinear anomalous current

Model

- **<u>Goal</u>**: Integration of the electron hydrodynamic theory with the crystal symmetry and geometrical properties.
- Target :
 TRS and
 Noncentrosymmetric
 Hydrodynamic materials

Model

<u>Goal</u>: Integration of the electron hydrodynamic theory with the crystal symmetry and geometrical properties.

 Target :
 TRS and Noncentrosymmetric
 Hydrodynamic materials

Model

<u>Goal</u>: Integration of the electron hydrodynamic theory with the crystal symmetry and geometrical properties.

 Target :
 TRS and Noncentrosymmetric
 Hydrodynamic materials

$$\vec{r}_{c} = \frac{1}{\hbar} \frac{\partial \varepsilon_{n}(\boldsymbol{k}_{c})}{\partial \boldsymbol{k}_{c}} - \dot{\boldsymbol{k}}_{c} \times \boldsymbol{\Omega}(\boldsymbol{k}_{c}), \quad \hbar \dot{\boldsymbol{k}}_{c} = -eE$$

$$- \frac{\text{Boltzmann eq.}}{\frac{\partial f}{\partial t} + \dot{r}_c \frac{\partial f}{\partial r_c} + \dot{k}_c \frac{\partial f}{\partial k_c} = \mathcal{C}[f]$$

Local equilibrium

Continuity eq.

Generalized Euler eq.

$$\frac{\partial f}{\partial t} + \dot{r}_{c} \frac{\partial f}{\partial r_{c}} + \dot{k}_{c} \frac{\partial f}{\partial k_{c}} = \mathcal{C}[f] \quad (\mathcal{C}[f] = \mathcal{C}^{mc}[f] + \mathcal{C}^{mr}[f])$$

Multiply conserved quantity $X_i(\mathbf{k})$ and Integrate out \mathbf{k}

$$(X_i = n, \boldsymbol{p}, \epsilon)$$

Identity between conserved quantity and M-C scat. term

$$\int d\mathbf{k} X_i(\mathbf{k}) C^{mc}[f] = 0$$

$$\frac{\partial X_i(\boldsymbol{r})}{\partial t} + \nabla_j \Pi_{ij}(\boldsymbol{r}) = (in/outflow \ of \ X_i) \qquad : \text{ continuity eq. of } X_i(\boldsymbol{r}, t)$$

Outline of derivation : continuity eq.

For example, in the case of <u>momentum</u> $(X_i = p_i)$

$$\begin{array}{c} \overline{} & \underline{\partial P_i} \\ \frac{\partial P_i}{\partial t} + \nabla_j \Pi_{ij} = -eE_i - \frac{P_i}{\tau_{mr}} \quad \left(\mathcal{C}^{mr}[f] = \frac{f - f_0}{\tau_{mr}} \right) \end{array}$$

where...

Momentum density :

$$\mathbf{P}(t,oldsymbol{r}) = oldsymbol{P}_lpha(t,oldsymbol{r},oldsymbol{p}) rac{doldsymbol{p}}{(2\pi\hbar)^d}$$
 ($lpha$: valley index)

<u>Momentum flux :</u>

$$\hat{\Pi}(t, \boldsymbol{r}) \equiv \sum_{lpha} \langle \boldsymbol{p} \boldsymbol{v}_{lpha}
angle_{lpha} = \sum_{lpha} \int \boldsymbol{p} \otimes \left(\frac{\partial arepsilon_{lpha}(\boldsymbol{p})}{\partial \boldsymbol{p}} + \frac{e \boldsymbol{E}}{\hbar} \times \Omega_{lpha}(\boldsymbol{p}) \right) f_{lpha}(t, \boldsymbol{r}, \boldsymbol{p}) \frac{d \boldsymbol{p}}{(2\pi\hbar)^{a}}$$

Assumption

Assumption ①

Each conduction band can be approximated as *parabolic* : $\varepsilon(p) = \frac{p^2}{2m}$

Crystal anisotropy is reflected *only* through **Berry curvature** $\Omega(p)$!! (approximately Galilean invariant)

Assumption

Assumption ①

Each conduction band can be approximated as *parabolic* : $\varepsilon(\mathbf{p}) = \frac{\mathbf{p}^2}{2m}$

Crystal anisotropy is reflected only through Berry curvature Ω(p)!!
 (approximately Galilean invariant)

<u>Assumption</u> (2) The electron system exists in *the hydrodynamic regime* $(l_{mc} \ll l_{mr}, W)$ and thus, f(r, p, t) can be described with perturbative theory from *local equilibrium distribution function* $f_0^{local}(r, p, t)$:

$$f(\mathbf{r}, \mathbf{p}, t) = f_0^{local}(\mathbf{r}, \mathbf{p}, t) + \delta f_1 + \cdots \quad (\delta f_1 \propto \mathcal{O}(l_{mc}/W))$$

$$f_0^{local}(\boldsymbol{r}, \boldsymbol{p}, t) \equiv \left[1 + e^{\beta(\varepsilon(\boldsymbol{p}) - \boldsymbol{u} \cdot \boldsymbol{p} - \mu)}\right]^{-1}$$

Electron states can be described only by hydrodynamic variables!!

Assumption

Assumption ①

Each conduction band can be approximated as *parabolic* : $\varepsilon(\mathbf{p}) = \frac{\mathbf{p}^2}{2m}$

→ Crystal anisotropy is reflected only through Berry curvature $\Omega(p)$!! (approximately Galilean invariant)

<u>Assumption</u> (2) The electron system exists \rightarrow Hydro. equation for ideal fluids and thus, f(r, p, t) can be described local equilibrium state $f_0^{local}(r, p, t)$:

$$f(\mathbf{r}, \mathbf{p}, t) = f_0^{local}(\mathbf{r}, \mathbf{p}, t) + \delta f_1 \leftarrow \mathcal{O}(l_{mc}/W)$$

$$f_0^{local}(\boldsymbol{r}, \boldsymbol{p}, t) \equiv \left[1 + e^{\beta(\varepsilon(\boldsymbol{p}) - \boldsymbol{u} \cdot \boldsymbol{p} - \mu)}\right]^{-1}$$

Electron states can be described only by **hydrodynamic variables**!!

$$\Pi_{ij} = mnu_iu_j + P\delta_{ij} + \frac{e}{\hbar}\epsilon_{jkl}C_{il}E_k + \mathcal{O}(E^2)$$

$$\frac{u : \text{velocity field}}{E : \text{electric field}}$$

$$E : \text{electric field}$$

$$Conventional term - Additional geometrical term$$

where...
$$C_{il} = \sum_{\alpha} C_{il}^{\alpha}$$
, $C_{il}^{\alpha} \equiv \int [d\mathbf{p}] p_i \Omega_{\alpha,l} f_{0\alpha}$

$$\underbrace{Momentum flux}_{Iij} = \underbrace{mnu_iu_j + P\delta_{ij}}_{Iij} + \frac{e}{\hbar}\epsilon_{jkl}C_{il}E_k + \mathcal{O}(E^2) + \mathcal{O}(E^2)$$

$$\underbrace{R = mnu}_{Iij} = \underbrace{mnu_iu_j + P\delta_{ij}}_{Iij} + \frac{e}{\hbar}\epsilon_{jkl}C_{il}E_k + \mathcal{O}(E^2) + \mathcal{O}(E^2)$$

$$\underbrace{R = mnu}_{Iij} = \underbrace{Additional geometrical term}_{Iij} = qE_i - \frac{P_i}{\tau_{mr}}$$

$$\underbrace{\frac{\partial P_i}{\partial t} + \nabla_j \Pi_{ij}}_{Iij} = qE_i - \frac{P_i}{\tau_{mr}}$$

$$\underbrace{\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \frac{\nabla p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m}\hat{C}(\nabla \times E) + \hat{F}\left(E \times \frac{\nabla T}{T}\right) + \hat{D}(E \times \nabla \mu)\right] + \frac{e}{m}E = -\frac{u}{\tau_{mr}}$$

$$\frac{\partial u}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} + \frac{\boldsymbol{\nabla}p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\boldsymbol{\nabla} \times \boldsymbol{E}) + \hat{F} \left(\boldsymbol{E} \times \frac{\boldsymbol{\nabla}T}{T} \right) + \hat{D} (\boldsymbol{E} \times \boldsymbol{\nabla}\mu) \right] + \frac{e}{m} \boldsymbol{E} = -\frac{u}{\tau_{mr}}$$

Geometrical coefficients

$$C_{il}^{\alpha} \equiv \int [d\mathbf{p}] p_i \Omega_{\alpha,l} f_{0\alpha}, \quad F_{il}^{\alpha} \equiv -\int [d\mathbf{p}] \varepsilon_{\alpha} \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}, \quad D_{il}^{\alpha} \equiv -\int [d\mathbf{p}] \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}$$
Reflect the *symmetry* and *geometry* in crystals

(Symmetry classification of C,F,D will be discussed later)

$$\frac{Generalized Euler Equation}{\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \frac{\nabla p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\nabla \times E) + \hat{F} \left(E \times \frac{\nabla T}{T} \right) + \hat{D} (E \times \nabla \mu) \right] + \frac{e}{m} E = -\frac{u}{\tau_{mr}}$$

For example, Yoshimasa Hidaka, Shi Pu, and Di-Lun Yang, Phys. Rev. D 97, 016004 (2018)

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \frac{\nabla p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\nabla \times E) + \hat{F} \left(E \times \frac{\nabla T}{T} \right) + \hat{D} (E \times \nabla \mu) \right] + \frac{e}{m} E = -\frac{u}{\tau_{mr}}$$

Unconventional Inverse Edelstein Effect (?)*

*As for this term, we need further discussion under magnetic field.

*As for this term, we need further discussion under magnetic field.

$$\frac{Generalized Euler Equation}{\frac{\partial u}{\partial t} + (u \cdot \nabla)u + \frac{\nabla p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\nabla \times E) + \hat{F} \left(E \times \frac{\nabla T}{T} \right) + \hat{D} (E \times \nabla \mu) \right] + \frac{e}{m} E = -\frac{u}{\tau_{mr}}$$
Nonlinear Anomalous Thermoelectric Effective

e.g.) 2D system under *thermal gradient* and *electric field*

Perpendicular to mirror line in 2D plane

Nonlinear thermoelectric current :

$$\boldsymbol{J} = \frac{e^2}{\hbar T} \frac{\tau_{mr}}{1 + i\omega\tau_{mr}} \left[\boldsymbol{E} \times \boldsymbol{\nabla}T\right]_z \cdot \boldsymbol{f}$$
$$\boldsymbol{F}_{ij} = \boldsymbol{f}_i \boldsymbol{\delta}_{jz}$$

e.g.) 2D system under *thermal gradient* and *electric field*

Nonlinear thermoelectric current :

$$\boldsymbol{J} = \frac{e^2}{\hbar T} \frac{\tau_{mr}}{1 + i\omega\tau_{mr}} \begin{bmatrix} \boldsymbol{E} \times \boldsymbol{\nabla}T \end{bmatrix}_z \cdot \underline{\boldsymbol{f}} \\ \boldsymbol{F}_{ij} = \boldsymbol{f}_i \boldsymbol{\delta}_{jz}$$

e.g.) 2D system under *thermal gradient* and *electric field*

Nonlinear thermoelectric current :

$$\boldsymbol{J} = \frac{e^2}{\hbar T} \frac{\tau_{mr}}{1 + i\omega\tau_{mr}} \begin{bmatrix} \boldsymbol{E} \times \boldsymbol{\nabla}T \end{bmatrix}_z \cdot \underline{\boldsymbol{f}} \\ \boldsymbol{F}_{ij} = \boldsymbol{f}_i \boldsymbol{\delta}_{jz}$$

Simultaneous Rotation of E and ∇T

e.g.) 2D system under *thermal gradient* and *electric field*

Question How can we translate
$$u(r,t)$$
 into $j(r,t)$?

Generally, "transport current" is given as

$$\boldsymbol{j}(\boldsymbol{r},t) = (-e)\sum_{\alpha} \int [d\boldsymbol{p}] \, \boldsymbol{\dot{r}}_{c,\alpha} \, f_{\alpha} + \boldsymbol{\nabla} \times \left(\sum_{\alpha} \int [d\boldsymbol{p}] \boldsymbol{m}_{\alpha} f_{\alpha}\right) - \boldsymbol{\nabla} \times \boldsymbol{M}$$

$$\boldsymbol{M}(\boldsymbol{r}) = \sum_{\alpha} \int [d\boldsymbol{p}] \boldsymbol{m}_{\alpha} f_{\alpha} + \sum_{\alpha} \frac{1}{\beta} \int [d\boldsymbol{p}] \frac{e}{\hbar} \Omega_{\alpha} \cdot \log(1 + e^{-\beta(\varepsilon_{\alpha} - \mu)})$$

Total magnetization

where...

$$\boldsymbol{m}_{\alpha}(\boldsymbol{k}) = -i \frac{e}{2\hbar} \langle \nabla_{\boldsymbol{k}} u_{\alpha \boldsymbol{k}} | \times \left[\widehat{H}(\boldsymbol{k}) - \varepsilon_{\alpha}(\boldsymbol{k}) \right] | \nabla_{\boldsymbol{k}} u_{\alpha \boldsymbol{k}} \rangle \quad \text{Orbital magnetic moment}$$

Di Xiao, et al., PRL 97, 026603 (2006). / N. R. Cooper, et al., PRB 55, 2344 (1997).

Generally, "transport current" is given as

$$\boldsymbol{j}(\boldsymbol{r},t) = (-e) \sum_{\alpha} \int [d\boldsymbol{p}] \, \dot{\boldsymbol{r}}_{c,\alpha} \, f_{\alpha} + \nabla \times \left(\sum_{\alpha} \int [d\boldsymbol{p}] \boldsymbol{m}_{\alpha} f_{\alpha} \right) - \nabla \times \boldsymbol{M}$$
Correction due to self-rotation of WP
Magnetization current

$$\boldsymbol{M}(\boldsymbol{r}) = \sum_{\alpha} \int [dp] \boldsymbol{m}_{\alpha} f_{\alpha} + \sum_{\alpha} \frac{1}{\beta} \int [d\boldsymbol{p}] \frac{e}{\hbar} \Omega_{\alpha} \cdot \log(1 + e^{-\beta(\varepsilon_{\alpha} - \mu)})$$

Total magnetization

where...

$$\boldsymbol{m}_{\alpha}(\boldsymbol{k}) = -i \frac{e}{2\hbar} \langle \nabla_{\boldsymbol{k}} u_{\alpha \boldsymbol{k}} | \times \left[\widehat{H}(\boldsymbol{k}) - \varepsilon_{\alpha}(\boldsymbol{k}) \right] | \nabla_{\boldsymbol{k}} u_{\alpha \boldsymbol{k}} \rangle \quad \text{Orbital magnetic moment}$$

Di Xiao, et al., PRL 97, 026603 (2006). / N. R. Cooper, et al., PRB 55, 2344 (1997).

Generally, "transport current" is given as

$$\boldsymbol{j}(\boldsymbol{r},t) = (-e) \sum_{\alpha} \int [d\boldsymbol{p}] \, \dot{\boldsymbol{r}}_{c,\alpha} \, f_{\alpha} + \boldsymbol{\nabla} \times \left(\sum_{\alpha} \int [d\boldsymbol{p}] \boldsymbol{m}_{\alpha} f_{\alpha} \right) - \boldsymbol{\nabla} \times \boldsymbol{M}$$
$$\boldsymbol{f}_{\alpha} \simeq \boldsymbol{f}_{0\alpha}^{local}$$

$$- \underline{Hydrodynamic \ description \ of \ electric \ current} }$$

$$\mathbf{j}(\mathbf{r},t) = -en\mathbf{u} - \frac{e}{\hbar} \bigg[m(e\mathbf{E} + \nabla \mu) \times ({}^{t}\widehat{D}\mathbf{u}) + \nabla \times ({}^{t}\widehat{C}\mathbf{u}) + m\bigg(\frac{\nabla T}{T}\bigg) \times ({}^{t}\widehat{F}\mathbf{u}) \bigg]$$

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

- <u>Hydrodynamic description of electric current</u>

$$\boldsymbol{j}(\boldsymbol{r},t) = -\boldsymbol{e}\boldsymbol{n}\boldsymbol{u} - \frac{\boldsymbol{e}}{\hbar} \left[m(\boldsymbol{e}\boldsymbol{E} + \boldsymbol{\nabla}\boldsymbol{\mu}) \times \left({}^{t}\widehat{\boldsymbol{D}}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{\boldsymbol{C}}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

Conventional relation under Galilean invariance

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m\left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

Geometrical coefficients

$$D_{il}^{\alpha} \equiv -\int [d\boldsymbol{p}] \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}, \qquad C_{il}^{\alpha} \equiv \int [d\boldsymbol{p}] p_i \Omega_{\alpha,l} f_{0\alpha}, \qquad F_{il}^{\alpha} \equiv -\int [d\boldsymbol{p}] \varepsilon_{\alpha} \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}$$

- <u>Hydrodynamic description of electric current</u>

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[\boldsymbol{m}(e\boldsymbol{E} + \boldsymbol{\nabla}\boldsymbol{\mu}) \times \left({}^{t}\widehat{\boldsymbol{D}}\boldsymbol{u}\right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{\boldsymbol{C}}\boldsymbol{u}\right) + \boldsymbol{m}\left(\frac{\boldsymbol{\nabla}T}{T}\right) \times \left({}^{t}\widehat{F}\boldsymbol{u}\right) \right]$$

Quantum Nonlinear Hall Effect

$$C_{il}^{\alpha} \equiv \int [d\boldsymbol{p}] p_i \Omega_{\alpha,l} f_{0\alpha} , \quad F_{il}^{\alpha} \equiv -\int [d\boldsymbol{p}] \varepsilon_{\alpha} \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}$$

- <u>Hydrodynamic description of electric current</u>

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[\boldsymbol{m}(e\boldsymbol{E} + \nabla \mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \nabla \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + \boldsymbol{m}\left(\frac{\nabla T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

Quantum Nonlinear Hall Effect Generalized Vortical Effect

$$F_{il}^{\alpha} \equiv -\int [d\boldsymbol{p}] \varepsilon_{\alpha} \Omega_{\alpha,l} \frac{\partial f_{0\alpha}}{\partial p_i}$$

$\frac{\text{Hydrodynamic description of electric current}}{j(r,t) = -enu - \frac{e}{\hbar} \left[m(eE + \nabla \mu) \times ({}^{t}\widehat{D}u) + \nabla \times ({}^{t}\widehat{C}u) + m\left(\frac{\nabla T}{T}\right) \times ({}^{t}\widehat{F}u) \right]}$ Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous Thermal Hall effect

$\frac{\text{Hydrodynamic description of electric current}}{j(r,t) = -enu - \frac{e}{\hbar} \left[m(eE + \nabla \mu) \times ({}^{t}\widehat{D}u) + \nabla \times ({}^{t}\widehat{C}u) + m\left(\frac{\nabla T}{T}\right) \times ({}^{t}\widehat{F}u) \right]}$ Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous Thermal Hall effect

Assumption(1) Apply a spatially uniform AC electric field : $E = \operatorname{Re}[\widetilde{E}e^{i\omega t}]$ (2) Consider the optical response up to the second order of E

The solution of Hydro. Eq.

$$\boldsymbol{u}(t) = \operatorname{Re}\left[-\frac{e\tau_{mr}}{m(1+i\omega\tau_{mr})}\widetilde{\boldsymbol{E}} e^{i\omega t}\right]$$

Assumption(1) Apply a spatially uniform AC electric field : $E = \operatorname{Re}[\widetilde{E}e^{i\omega t}]$ (2) Consider the optical response up to the second order of E

I. Sodemann and Liang Fu, PRL **115**, 216806 (2015). Su-Yang Xu, *et al.*, Nat. Phys. 14, 900 (2018) The solution of Hydro. Eq.

$$\boldsymbol{u}(t) = \operatorname{Re}\left[-\frac{e\tau_{mr}}{m(1+i\omega\tau_{mr})}\widetilde{\boldsymbol{E}} e^{i\omega t}\right]$$
$$j_i = \operatorname{Re}\left[j_i^0 + j_i^\omega e^{i\omega t} + j_i^{2\omega} e^{2i\omega t}\right]$$
$$j_i^\omega = \sigma^{(1)}\widetilde{E}_i, \quad j_i^0 = \sigma^{(2)}_{ijk}\widetilde{E}_j\widetilde{E}_k^* \quad j_i^{2\omega} = \sigma^{(2)}_{ijk}\widetilde{E}_j\widetilde{E}_k$$

Berry curvature dipole

$$\sigma_{ijk}^{(2)} = \epsilon_{ilk} \frac{e^3 \tau_{mr}}{2(1 + i\omega\tau_{mr})} \boldsymbol{D_{jl}}$$

The Drude conductivity

 $\sigma^{(1)}$ -

 σ_D

 $+i\omega\tau_{mr}$

Quantum Nonlinear Hall effect

Berry curvature dipole

Quantum Nonlinear Hall effect :

$$j_i^0 = \sigma_{ijk}^{(2)} \tilde{E}_j \tilde{E}_k^*$$

$$\sigma_{ijk}^{(2)} = \epsilon_{ilk} \frac{e^3 \tau_{mr}}{2(1 + i\omega\tau_{mr})} \boldsymbol{D}_{jl}$$

e.g.) 2D systems : $D_{il} \propto \delta_{ix} \delta_{lz}$

J. E. Moore and J. Orenstein, PRL 105, 026805 (2010)

$$y \xrightarrow{\text{mirror} x^*} BCD$$

$$Re[\mathbf{j}^{(\mathbf{0})}] \propto \frac{1}{1/\tau^2 + \omega^2} \left[i\omega \left(E_x E_y^* - E_y E_x^* \right) \widehat{\mathbf{x}} + 1/\tau \left(E_x E_y^* + E_y E_x^* \right) \widehat{\mathbf{x}} + |E_x|^2 \widehat{\mathbf{y}} \right]$$

Circular Photogalvanic

- Maximal for *circular* polarization Maximal for *linear* polarization
- Change the sign with helicity
- Allowed in *chiral* groups

Linear Photogalvanic

- Change the sign with direction
- Allowed in *noncentrosymmetric* materials

"Typical" Photogalvanic

- Independent on polarization
- Not change the sign

$Re[\mathbf{j}^{(\mathbf{0})}] \propto \frac{1}{1/\tau^2 + \omega^2} \left[i\omega \left(E_x E_y^* - E_y E_x^* \right) \widehat{\mathbf{x}} + 1/\tau \left(E_x E_y^* + E_y E_x^* \right) \widehat{\mathbf{x}} + |E_x|^2 \widehat{\mathbf{y}} \right]$

Circular Photogalvanic

- Maximal for *circular* polarization
- Change the sign with helicity
- Allowed in *chiral* groups

Photon polarization

Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)
Result ③: Quantum Nonlinear Hall effect

- <u>Hydrodynamic description of electric current</u>

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[\boldsymbol{m}(e\boldsymbol{E} + \boldsymbol{\nabla}\boldsymbol{\mu}) \times \left({}^{t}\widehat{D}\boldsymbol{u}\right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u}\right) + \boldsymbol{m}\left(\frac{\boldsymbol{\nabla}T}{T}\right) \times \left({}^{t}\widehat{F}\boldsymbol{u}\right) \right]$$

Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous Thermal Hall effect

I. Sodemann and Liang Fu, PRL **115**, 216806 (2015). Su-Yang Xu, *et al.*, Nat. Phys. 14, 900 (2018)

- <u>Hydrodynamic description of electric current</u>

u(r)

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\boldsymbol{\mu}) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

Generalized Vortical Effect

= velocity-gradient induced anomalous current

$$j_{GVE} \propto C(\nabla \times u)$$

 $\equiv \omega : \text{vorticity}$

→ Realization of **Chiral vortical effect** in crystals!?

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

An intuitive understanding

Orbital Edelstein effect

Current ⇒ Orbital Magnetization

Taiki Yoda, Takehito Yokoyama, Shuichi Murakami, Scientific Reports, **5**, 12024 (2015)

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \bigg[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \big({}^{t}\widehat{D}\boldsymbol{u}\big) + \boldsymbol{\nabla} \times \big({}^{t}\widehat{C}\boldsymbol{u}\big) + m\bigg(\frac{\boldsymbol{\nabla}T}{T}\bigg) \times \big({}^{t}\widehat{F}\boldsymbol{u}\big) \bigg]$$

An intuitive understanding

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

3D system 2D system $\hat{C} = diag(C, C, -2C)$ $C_{ii} = C\delta_{ii}$ $C_{ij} = C\delta_{ix}\delta_{jz}$ $j_z \propto C \omega_z$ $j_x \propto C \partial_y u_x$ $j_x \propto -\frac{C}{2} \left[\omega_x + 6\lambda_{yz} \right]$ $j_y \propto -C\partial_x u_x$ $\mathbf{j} \propto C \boldsymbol{\omega}$ $j_y \propto -\frac{C}{2} \left[\omega_y + 6 \lambda_{zx} \right]$ $(\lambda_{ij} \equiv [\partial_i u_j + \partial_j u_i]/2 : strain rate tensor)$

Hydrodynamic description of electric current

$$\boldsymbol{j}(\boldsymbol{r},t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t}\widehat{D}\boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t}\widehat{C}\boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t}\widehat{F}\boldsymbol{u} \right) \right]$$

Constraint beyond the symmetry consideration

 $C \equiv \operatorname{Tr}[\hat{C}] = \int [d\boldsymbol{p}] p_i \Omega_{\alpha,i} f_{0\alpha}$

Here, we used the assumption of parabolic dispersion

$$\propto \int [d\boldsymbol{p}] \frac{\partial \varepsilon}{\partial p_i} \Omega_{\alpha,i} f_{0\alpha}$$
$$= \int d\varepsilon f_{0\alpha}(\varepsilon) \oint_{\varepsilon_{\alpha}(\boldsymbol{k})=\varepsilon} (d\boldsymbol{S} \cdot \Omega_{\alpha}(\boldsymbol{k}))$$

= (total monopole charge in k-space) = $\mathbf{0}$

Trace component of \hat{C} is always zero even in chiral crystals!!

Application Asymmetric Poiseuille flow and Anomalous edge current

Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

<u>Application</u> Asymmetric Poiseuille flow and Anomalous edge current

$$\frac{\text{The solution of Hydro. Eq.}}{u_y(x) = \frac{e\tau_{mr}E}{m} \left[1 - \frac{\cosh(x/l)}{\cosh(w/2l)} \right] \longrightarrow \begin{cases} J_y = -enu_y + \frac{e}{\hbar} C_{zy} \omega_z \\ J_z = -\frac{e}{\hbar} C_{yy} \omega_z \end{cases}$$

Application Asymmetric Poiseuille flow and Anomalous edge current

Application Asymmetric Poiseuille flow and Anomalous edge current

Result (5): Crystal symmetry and Realization

Geometrical coefficients
$$\hat{C}, \hat{F}, \hat{D}$$
Asymmetric component C_n, C_{nv}

Symmetric component $C_n, D_n, T, 0, C_{1v}, C_{2v}, S_4$

Scalar component $C_n, D_n, T, 0$

	Material	point group	components	operations
	MoP	D_{3h}	NO	
3D systems	WP_2	C_{2v}	A_{xy}, A_{yx}	
	$PdCoO_2$	D_{3d}	NO	
	(110)-GaAs	C_s	$A \parallel m$	
	ML-Graphene	D_{6h}	NO	
2D systems	BL-Graphene	$D_{3h} \to C_s$	$oldsymbol{A}\paralleloldsymbol{m}$	uniaxial strain
	$ML-WTe_2$	C_s	$A \parallel m$	
	$ML-MoS_2$	$D_{3h} \to C_s$	$A \parallel m$	uniaxial strain

Result 5: Crystal symmetry and Realization

	Material	point group	components	operations
	MoP	D_{3h}	NO	
3D systems	WP_2	C_{2v}	A_{xy}, A_{yx}	
	$PdCoO_2$	D_{3d}	NO	
	(110)-GaAs	C_s	$A \parallel m$	
	ML-Graphene	D_{6h}	NO	
2D systems	BL-Graphene	$D_{3h} \to C_s$	$\boldsymbol{A} \parallel \boldsymbol{m}$	uniaxial strain
	$ML-WTe_2$	C_s	$A \parallel m$	
	$ML-MoS_2$	$D_{3h} \to C_s$	$A \parallel m$	uniaxial strain

e.g.) 2D systems

These tensors become pseudo-vectors in the plane :

 $\widehat{D} \to \boldsymbol{D}, \widehat{C} \to \boldsymbol{C}, \widehat{F} \to \boldsymbol{F}$

Perpendicular to the mirror line

Result 5: Crystal symmetry and Realization

	Material	point group	components	operations
	MoP	D_{3h}	NO	
3D systems	WP_2	C_{2v}	A_{xy}, A_{yx}	
	$PdCoO_2$	D_{3d}	NO	
	(110)-GaAs	C_s	$A \parallel m$	
2D systems	ML-Graphene	D_{6h}	NO	
	BL-Graphene	$D_{3h} \to C_s$	$\boldsymbol{A} \parallel \boldsymbol{m}$	uniaxial strain
	$ML-WTe_2$	C_s	$A \parallel m$	
	$ML-MoS_2$	$D_{3h} \to C_s$	$A \parallel m$	uniaxial strain

e.g.) Bilayer Graphene

Summary

Formulation of the hydrodynamic theory

for **noncentrosymmetric** hydrodynamic materials

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u} + \frac{\boldsymbol{\nabla}p}{\rho} + \frac{e}{mn\hbar} \left[\frac{1}{m} \hat{C} (\boldsymbol{\nabla} \times \boldsymbol{E}) + \hat{F} \left(\boldsymbol{E} \times \frac{\boldsymbol{\nabla}T}{T} \right) + \hat{D} (\boldsymbol{E} \times \boldsymbol{\nabla}\mu) \right] + \frac{e}{m} \boldsymbol{E} = -\frac{\boldsymbol{u}}{\tau_{mr}}$$
$$\boldsymbol{j}(\boldsymbol{r}, t) = -en\boldsymbol{u} - \frac{e}{\hbar} \left[m(e\boldsymbol{E} + \boldsymbol{\nabla}\mu) \times \left({}^{t} \hat{D} \boldsymbol{u} \right) + \boldsymbol{\nabla} \times \left({}^{t} \hat{C} \boldsymbol{u} \right) + m \left(\frac{\boldsymbol{\nabla}T}{T} \right) \times \left({}^{t} \hat{F} \boldsymbol{u} \right) \right]$$

Prediction of a variety of novel anomalous transport

- Current-induced anomalous thermal Hall effect
- > Generalized vortical effect, asymmetric Poiseuille flow, *etc*.

Result 1

Result 2

Supplemental Materials

Parameters in some hydrodynamic materials

Materials	$oldsymbol{v_F}$ [10 ⁶ m/s]	l _{mc} [μm]	$ au_{mc}$ [ps]	l _{mr} [μm]	$ au_{mr}$ [ps]
PdCoO2	7.5	2	2~3	20	20~30
Graphene	~1 [2.3]	0.1 - 0.3	0.1 - 0.3	<1	1
WP2		0.45	~1	100	~400
GaAs	0.33~0.41	1.4~2.8	3∼5 (2~40К)	20~40	80~90

Materials	T(K)	$\nu (m^2/s)$	n
PdCoO2	2.0	3.0×10 ^{−2} くらい	$2.45 \times 10^{22} cm^{-3}$
graphene	100~200	1.0×10^{-1}	
WP2	4(~20)	3.8×10^{-2}	$2.9 \times 10^{21} cm^{-3}$
GaAs	1.4(~50?)	$1.2 \sim 3.0 \times 10^{-1}$	$6 \sim 9.1 \times 10^{11} cm^{-2}$

Nonlocal transport phenomena in Graphene

D. A. Bandurin et al, Science 351, 6277 (2016).

Observation of the Poiseuille flow in WP₂

<u>How</u> and <u>Why</u> are the hydro. regime different from the conventional regime ??

<u>How</u> and <u>Why</u> are the hydro. regime different from the conventional regime ??

Continuity equation of electron Momentum

Continuity equation of Electron Momentum $\frac{\partial P_i}{\partial t} + \nabla_j \Pi_{ij} = \underline{q} E_i - \frac{P_i}{\tau_{mr}}$ General case : **Advection/Diffusion Driving force** Loss due to the translational symmetry breaking e-e N scat. e-i scat. Driving Boundary scat. Electron e-e U scat. e-p U scat. e-p N scat. Phonon

- Nonlinear response
- Instability
- Turbulence

- *Nonlinear* response
- Instability
- Turbulence

Coupling between density and momentum

- Dispersion relation of collective mode
- Non-local linear response
- Finite size effect
- Lifetime of collective mode

