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System A novel class of matter “Hydrodynamic materials”

Phenomena Unconventional nonlinear and nonlocal transport

graphene

PdCoO2

WP2

Target

I’ll explain the 
detail later!!
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Formulation of the hydrodynamic theory 

for noncentrosymmetric hydrodynamic materials 

Target

Result 1

System A novel class of matter “Hydrodynamic materials”

Phenomena Unconventional nonlinear and nonlocal transport

Chiral fluid

Analogy!?

Noncentrosymmetric Electron Fluids



Outline

Prediction of a variety of novel anomalous transport

Target

Result 2

System A novel class of matter “Hydrodynamic materials”

Phenomena Unconventional nonlinear and nonlocal transport

➢ Current-induced anomalous thermal Hall effect

➢ Generalized vortical effect, asymmetric Poiseuille flow, etc.

Formulation of the hydrodynamic theory 

for noncentrosymmetric hydrodynamic materials 
Result 1



Introduction
～ What is “hydrodynamic materials ” ～

1. Hierarchy in electron dynamics

2. Experimental realization

3. Three important aspects of the electron hydrodynamics



Nonequilibrium phenomena in solids

Ohm’s law Aharonov-Bohm effect Anderson localization

Light-induced phase transition Anomalous transport near QCP
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Nonequilibrium phenomena in solids

Ohm’s law Aharonov-Bohm effect Anderson localization

Light-induced phase transition Anomalous transport near QCP

How can we extract a universal physics from 

these diverse and complex nonequilibrium phenomena?

Spatio-Temporal Hierarchical structure

in Electron Dynamics
Hint 



3 scales to characterize the dynamics in crystals

𝒍𝑴𝑹 ＝ Mean free path of momentum relaxing scattering

𝒍𝑴𝑪 ＝ Mean free path of momentum conserving scattering

𝑾 ＝ Characteristic length scale of the dynamics

Impurity scattering,
e-p scattering
e-e Umklapp scattering etc...

Normal e-e scattering

System size, wavelength, etc

N: Normal

U: Umklapp

Momentum flow in crystals



Hierarchy in electron dynamics

𝒍𝑴𝑹 ＝ Mean free path of momentum relaxing scattering

𝒍𝑴𝑪 ＝ Mean free path of momentum conserving scattering

𝑾 ＝ Characteristic length scale of the dynamics

Normal e-e scattering

System size, wavelength, etc

➡ the minimal scale determines  the effective description !!

① Ohmic regime ② Ballistic regime ③hydrodynamic regime

Impurity scattering,
e-p scattering
e-e Umklapp scattering etc...



Local & one-particle response

One-particle response

with quantum coherence

Nonlocal/Nonlinear collective response

① Ohmic regime

② Ballistic regime

③hydrodynamic regime

Particle

Wave
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Local & one-particle response

One-particle response

with quantum coherence

Nonlocal/Nonlinear collective response Fluid

Example Ohm’s law, Drude theory

Realization typical metal/semiconductor

➡ described by  ”electron hydrodynamics”

① Ohmic regime

② Ballistic regime

③hydrodynamic regime

Example Aharonov-Bohm effect

Realization Mesoscopic systems

Particle

Wave

Unexplored regime…！！

High conductivity or

strong correlation are required！Realization of “hydrodynamic regime” 

has been reported very recently !!



Realizations in recent experiments

graphene

PdCoO2

WP2

① Ultrapure metal with high conductivity

Various reports since 2016 …!!

（ex：Graphene, PdCoO2, WP2, MoP, GaAs quantum well）

Stages for realization

Historical background
P. J. W. Moll, et al., Science 351 1061 (2016).
R. K. Kumar, et al., Nature Physics 13 1182 (2017).
J. Gooth, et al., Nature Communication 9 4093 (2018).

② Non-Fermi liquid（ex：Bi2Sr2CuO6）

A. Amoretti, et al., arXiv:1909.07991 (2019)



graphene

PdCoO2

WP2

10μm

Microfabricate the sample in 𝝁𝒎 order

⇒ Measure the resistivity 𝝆 𝑩,𝒘

J. Gooth, et al., Nature Communication 9 4093 (2018).

Realizations in recent experiments



graphene

PdCoO2

WP2

Microfabricate the sample in 𝝁𝒎 order

⇒ Measure the resistivity 𝝆 𝑩,𝒘

Poiseuille flow： 𝜌 ∝ 𝜂 𝐵 ,𝑤−2

Derived from Navier-Stokes Eq. 

J. Gooth, et al., Nature Communication 9 4093 (2018).

Realizations in recent experiments



graphene

PdCoO2

WP2

Microfabricate the sample in 𝝁𝒎 order

⇒ Measure the resistivity 𝝆 𝑩,𝒘

Derived from Navier-Stokes Eq. 

P. J. W. Moll, et al., Science 351 1061 (2016).
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Realizations in recent experiments

Poiseuille flow： 𝜌 ∝ 𝜂 𝐵 ,𝑤−2



Viscosity of  Electron Fluids in Crystals

fluids (~300 K) 𝜼 [g/cm s] 𝝂 (𝒄𝒎𝟐 𝒔)

Water 0.010 0.010

Air 0.00018 0.150

Alcohol 0.018 0.022

Glycerin 8.5 6.8

Mercury 0.0156 0.0012

Honey 18 13

Mayonnaise 80 80

Doped Graphene ∼ 10−14 [g/s] ∼ 103

A. Principi, et al., PRB 93, 125410 (2016)

D. A. Bandurin, et al., Science 351 1055 (2016)

theory

experiment

𝜂 : shear viscosity

𝜈 = 𝜂/𝜌 : kinematic viscosity

Consistent with theory 
and experiments
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fluids (~300 K) 𝜼 [g/cm s] 𝝂 (𝒄𝒎𝟐 𝒔)

Water 0.010 0.010

Air 0.00018 0.150

Alcohol 0.018 0.022

Glycerin 8.5 6.8

Mercury 0.0156 0.0012

Honey 18 13

Mayonnaise 80 80

Doped Graphene ∼ 10−14 [g/s] ∼ 103

A. Principi, et al., PRB 93, 125410 (2016)

D. A. Bandurin, et al., Science 351 1055 (2016)

theory

𝜂 : shear viscosity

𝜈 = 𝜂/𝜌 : kinematic viscosity

Consistent with theory 
and experiments

≫

Kinetic viscosity

× 100



Is the Reynolds number high?  Or low?

Reynolds number : 𝑅 ≡
𝐿𝑉

𝜈

(𝐿, 𝑉 : characteristic length and velocity scale)

𝑅 ≫ 1 :  strongly nonlinear
or turbulent flow

𝑅 ≪ 1 : viscous flow

𝐿 = 1 [𝜇𝑚]

𝑉 ∼
𝐼

𝑒𝑛𝐿
≃ 104 [𝑐𝑚 ⋅ 𝑠]

𝑛 = 1012 [𝑐𝑚−2]

𝑰 = 𝟐 × 𝟏𝟎−𝟕 [𝑨]

𝜈 = 103 [𝑐𝑚2𝑠]

Current :

Particle density :

Width :

Kinetic viscosity :
𝑅 ∼ 10−3 ≪ 1

⇒ Viscosity-dominant regime



Unconventional transport 
Correlation and Nonlocality, Nonlinearity 

New Class of Fluids

Dirac/Weyl Fluids
Nonlocal Transport

Viscosity Effects

Electron-phonon fluids

AdS-CFT Bound

Breaking of WF law

Instability and Turbulence
Scaling of Resistivity 

in Strange Metals

New Approach 
for understanding 

of  Non-fermi liquid

e
p
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Unconventional transport 
Correlation and Nonlocality, Nonlinearity 

New Class of Fluids

Dirac/Weyl Fluids
Nonlocal Transport

Viscosity Effects

Electron-phonon fluids

AdS-CFT Bound

Breaking of WF law

Instability and Turbulence

New Approach 
for understanding 

of  Non-fermi liquid

Scaling of Resistivity 
in Strange Metals

Scaling of Resistivity 
in Strange Metals

Today’s Key Idea II 

Novel anomalous nonlocal transport
due to the inversion breaking

e
p

Scaling of Resistivity 
in Strange Metals

Scaling of Resistivity 
in Strange Metals

Today’s Key Idea I 

A new type of electron fluids
realized in noncentrosymmetric metals



Research
～ Nonlocal and Nonlinear Anomalous Transport

In Noncentrosymmetric Hydrodynamic Materials～

1. Our Question

2. Setting and Model

3. Results

4. Conclusion and Future Works
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Question

Question What is the hydrodynamics peculiar to electron fluids  in crystals ??

Conventional studies ⇒ not reflect the character of the fluids “in crystal”

Crystal symmetry Multi-band   
the Bloch WFs

Geometry of 

Q . What characterizes the fluids in crystals??

（always assume the isotropy and Galilei symmetry on the fluids）



Crystal symmetry Multi-band   
the Bloch WFs

Geometry of 

Abstract



Renormalized to  three geometrical tensors መ𝐶, ෠𝐹, ෡𝐷

and cause various anomalous transports as additional driving forces !!

Crystal symmetry Multi-band   
the Bloch WFs

Geometry of 

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ 𝛁 𝒖 +

𝛁𝑝

𝜌
+

𝑒

𝑚𝑛ℏ

1

𝑚
መ𝐶 𝛁 × 𝑬 + ෠𝐹 𝑬 ×

𝛁𝑇

𝑇
+ ෡𝐷 𝑬 × 𝛁𝜇 +

𝑒

𝑚
𝑬 = −

𝒖

𝜏𝑚𝑟

Generalized Euler Equation 

Abstract



Model

WP2 Bilayer-graphene MoP GaAs quantum well

Goal： Integration of the electron hydrodynamic theory

with the crystal symmetry and geometrical properties.

Target： TRS and Noncentrosymmetric Hydrodynamic materials



Model

Goal： Integration of the electron hydrodynamic theory

with the crystal symmetry and geometrical properties.

Target： TRS and Noncentrosymmetric Hydrodynamic materials

Local and Linear anomalous current
(anomalous Hall or thermal Hall effect, et al)

Nonlocal and Nonlinear anomalous current

prohibited

dominant



ሶ𝒓𝑐 =
1

ℏ

𝜕𝜀𝑛 𝒌𝑐
𝜕𝒌𝑐

− ሶ𝒌𝑐 × 𝛀 𝒌𝑐 , ℏ ሶ𝒌𝑐 = −𝑒𝐸

EOM for electron wave-packet

Model

Anomalous velocity

Origin of various anomalous transport
（anomalous Hall effect, valley Hall effect, et al）

Group velocity

Goal： Integration of the electron hydrodynamic theory

with the crystal symmetry and geometrical properties.

Target： TRS and Noncentrosymmetric Hydrodynamic materials

Di Xiao, et al., Rev. Mod. Phys. 82, 1959 (2010)



ሶ𝒓𝑐 =
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ℏ

𝜕𝜀𝑛 𝒌𝑐
𝜕𝒌𝑐

− ሶ𝒌𝑐 × 𝛀 𝒌𝑐 , ℏ ሶ𝒌𝑐 = −𝑒𝐸

EOM for electron wave-packet

Model

Anomalous velocity

Goal： Integration of the electron hydrodynamic theory

with the crystal symmetry and geometrical properties.

Target： TRS and Noncentrosymmetric Hydrodynamic materials

Di Xiao, et al., Rev. Mod. Phys. 82, 1959 (2010)

Ω𝑛,𝑎 𝒌 ≡ 𝛁𝒌 × 𝐴𝑛 𝒌 𝑎 : Berry curvature

= 𝑖𝜖𝑎𝑏𝑐 ෍

𝑚≠𝑛

𝑛 𝜕𝑘𝑏
෡𝐻 𝑚 𝑚 𝜕𝑘𝑎

෡𝐻 𝑛

𝜀𝑛 − 𝜀𝑚
2

𝐴𝑛 𝒌 ≡ 𝑖 𝑢𝑛𝒌|∇𝑢𝑛𝒌 : Berry connection

⚫ geometry of Bloch w.f.
⚫ multi-band properties



ሶ𝒓𝑐 =
1

ℏ

𝜕𝜀𝑛 𝒌𝑐
𝜕𝒌𝑐

− ሶ𝒌𝑐 × 𝛀 𝒌𝑐 , ℏ ሶ𝒌𝑐 = −𝑒𝐸

EOM for electron wave-packet

Model

Anomalous velocity

Goal： Integration of the electron hydrodynamic theory

with the crystal symmetry and geometrical properties.

Target： TRS and Noncentrosymmetric Hydrodynamic materials

Boltzmann eq.

𝜕𝑓

𝜕𝑡
+ ሶ𝒓𝒄

𝜕𝑓

𝜕𝒓𝒄
+ ሶ𝒌𝑐

𝜕𝑓

𝜕𝒌𝑐
= 𝒞[𝑓]

Continuity eq. Generalized Euler eq.

Local equilibrium



Outline of derivation：continuity eq.

Multiply conserved quantity 𝑋𝑖 𝒌
and Integrate out  𝒌

Identity between

conserved quantity and M-C scat. term

𝜕𝑋𝑖 𝒓

𝜕𝑡
+ ∇𝑗Π𝑖𝑗 𝒓 = (𝑖𝑛/𝑜𝑢𝑡𝑓𝑙𝑜𝑤 𝑜𝑓 𝑋𝑖) ：continuity eq. of 𝑋𝑖 𝒓, 𝑡

Boltzmann eq.

𝜕𝑓

𝜕𝑡
+ ሶ𝒓𝒄

𝜕𝑓

𝜕𝒓𝒄
+ ሶ𝒌𝑐

𝜕𝑓

𝜕𝒌𝑐
= 𝒞[𝑓] 𝒞 𝑓 = 𝒞𝑚𝑐 𝑓 + 𝒞𝑚𝑟 𝑓

𝑋𝑖 = 𝑛, 𝒑, 𝜖



Outline of derivation：continuity eq.

For example, in the case of  momentum 𝑋𝑖 = 𝑝𝑖

where... 

𝜕𝑃𝑖
𝜕𝑡

+ ∇𝑗Π𝑖𝑗 = −𝑒𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

(𝛼 : valley index)

𝒞𝑚𝑟 𝑓 =
𝑓 − 𝑓0
𝜏𝑚𝑟

Momentum density : 

Momentum flux : 

Continuity Equation  of  Electron Momentum



Assumption 

𝜀 𝒑 =
𝒑2

2𝑚
Assumption Each conduction band can be approximated as parabolic：①

Crystal anisotropy  is reflected only through Berry curvature 𝛀(𝒑)!!

(approximately Galilean invariant)
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𝜀 𝒑 =
𝒑2

2𝑚
Assumption Each conduction band can be approximated as parabolic：①

𝑓 𝒓, 𝒑, 𝑡 = 𝑓0
𝑙𝑜𝑐𝑎𝑙 𝒓, 𝒑, 𝑡 + 𝛿𝑓1 +⋯

𝑓0
𝑙𝑜𝑐𝑎𝑙 𝒓, 𝒑, 𝑡 ≡ 1 + 𝑒𝛽 𝜀 𝑝 −𝒖⋅𝒑−𝜇 −1

The electron system exists in the hydrodynamic regime 𝑙𝑚𝑐 ≪ 𝑙𝑚𝑟,𝑊

and thus, 𝑓 𝒓, 𝒑, 𝑡 can be described with perturbative theory from 

local equilibrium distribution function 𝑓0
𝑙𝑜𝑐𝑎𝑙 𝑟, 𝑝, 𝑡 :

𝛿𝑓1 ∝ 𝒪 𝑙𝑚𝑐/𝑊

Assumption ②

Crystal anisotropy  is reflected only through Berry curvature 𝛀(𝒑)!!

Electron states can be described only by hydrodynamic variables!!

(approximately Galilean invariant)



Assumption 

𝜀 𝒑 =
𝒑2

2𝑚
Assumption Each conduction band can be approximated as parabolic：①

𝑓 𝒓, 𝒑, 𝑡 = 𝑓0
𝑙𝑜𝑐𝑎𝑙 𝒓, 𝒑, 𝑡 + 𝛿𝑓1 +⋯

𝑓0
𝑙𝑜𝑐𝑎𝑙 𝒓, 𝒑, 𝑡 ≡ 1 + 𝑒𝛽 𝜀 𝑝 −𝒖⋅𝒑−𝜇 −1

The electron system exists in the hydrodynamic regime 𝑙𝑚𝑐 ≪ 𝑙𝑚𝑟,𝑊

and thus, 𝑓 𝒓, 𝒑, 𝑡 can be described with perturbative theory from 

local equilibrium state 𝑓0
𝑙𝑜𝑐𝑎𝑙 𝑟, 𝑝, 𝑡 :

𝛿𝑓1 ∝ 𝒪 𝑙𝑚𝑐/𝑊

Assumption ②

Crystal anisotropy  is reflected only through Berry curvature 𝛀(𝒑)!!

Electron states can be described only by hydrodynamic variables!!

We consider the zeroth order approx.

→  Hydro. equation for ideal fluids

(approximately Galilean invariant)



Result ①： Generalized Euler Equations

𝒖：velocity field
𝑝：pressure
𝑬：electric field

Momentum flux 

Π𝑖𝑗 = 𝑚𝑛𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗 +
𝑒

ℏ
𝜖𝑗𝑘𝑙𝐶𝑖𝑙𝐸𝑘

Additional geometrical termConventional term

𝐶𝑖𝑙 =෍

𝛼

𝐶𝑖𝑙
𝛼 , 𝐶𝑖𝑙

𝛼 ≡ න 𝑑𝒑 𝑝𝑖Ω𝛼,𝑙𝑓0𝛼where... 

+𝒪 𝐸2



Result ①： Generalized Euler Equations

𝒖：velocity field
𝑝：pressure
𝑬：electric field

Generalized Euler Equation 

𝜕𝑃𝑖
𝜕𝑡

+ ∇𝑗Π𝑖𝑗 = 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

𝑷 = 𝑚𝑛𝒖

Momentum flux 

Π𝑖𝑗 = 𝑚𝑛𝑢𝑖𝑢𝑗 + 𝑃𝛿𝑖𝑗 +
𝑒

ℏ
𝜖𝑗𝑘𝑙𝐶𝑖𝑙𝐸𝑘

Additional geometrical termConventional term

+𝒪 𝐸2



Result ①： Generalized Euler Equations

Geometrical coefficients

𝐷𝑖𝑙
𝛼 ≡ −න 𝑑𝒑 Ω𝛼,𝑙

𝜕𝑓0𝛼
𝜕𝑝𝑖

𝐶𝑖𝑙
𝛼 ≡ න 𝑑𝒑 𝑝𝑖Ω𝛼,𝑙𝑓0𝛼 , 𝐹𝑖𝑙

𝛼 ≡ −න 𝑑𝒑 𝜀𝛼Ω𝛼,𝑙
𝜕𝑓0𝛼
𝜕𝑝𝑖

,

Reflect the symmetry and geometry in crystals 

(Symmetry classification of C,F,D will be discussed later)

Generalized Euler Equation 



Result ①： Generalized Euler Equations

Noncentrosymmetic electron fluids Quark-Gluon Plasma(Chiral fluid)

Analogy!?

Yoshimasa Hidaka, Shi Pu, and Di-Lun Yang, Phys. Rev. D 97, 016004 (2018)

Generalized Euler Equation 

For example,



Result ①： Generalized Euler Equations

Generalized Euler Equation 

Unconventional Inverse Edelstein Effect (?)*

Force

𝑬

*As for this term, we need further discussion under magnetic field.  



Result ①： Generalized Euler Equations

Generalized Euler Equation 

Unconventional Inverse Edelstein Effect (?)* Nonlinear Anomalous Thermoelectric Effect

Force

𝑬

Force

𝑬 𝛁T

*As for this term, we need further discussion under magnetic field.  



e.g.)  Nonlinear anomalous thermoelectric effect

Generalized Euler Equation 

Nonlinear Anomalous Thermoelectric Effect

e.g.)  2D system under  thermal gradient and electric field

𝑱 =
𝑒2

ℏ𝑇

𝜏𝑚𝑟

1 + 𝑖𝜔𝜏𝑚𝑟
𝑬 × 𝛁𝑇 𝑧 ⋅ 𝒇

𝑭𝒊𝒋 = 𝒇𝒊𝜹𝒋𝒛

Nonlinear thermoelectric current：

Perpendicular to mirror line in 2D plane



e.g.)  Nonlinear anomalous thermoelectric effect

e.g.)  2D system under  thermal gradient and electric field

𝑱 =
𝑒2

ℏ𝑇

𝜏𝑚𝑟

1 + 𝑖𝜔𝜏𝑚𝑟
𝑬 × 𝛁𝑇 𝑧 ⋅ 𝒇

𝑭𝒊𝒋 = 𝒇𝒊𝜹𝒋𝒛

Nonlinear thermoelectric current：



e.g.)  Nonlinear anomalous thermoelectric effect

e.g.)  2D system under  thermal gradient and electric field

𝑱 =
𝑒2

ℏ𝑇

𝜏𝑚𝑟

1 + 𝑖𝜔𝜏𝑚𝑟
𝑬 × 𝛁𝑇 𝑧 ⋅ 𝒇

𝑭𝒊𝒋 = 𝒇𝒊𝜹𝒋𝒛

Nonlinear thermoelectric current：

Simultaneous Rotation of E and 𝜵𝑻

Current direction : unchanged



e.g.)  Nonlinear anomalous thermoelectric effect

e.g.)  2D system under  thermal gradient and electric field

𝑱 =
𝑒2

ℏ𝑇

𝜏𝑚𝑟

1 + 𝑖𝜔𝜏𝑚𝑟
𝑬 × 𝛁𝑇 𝑧 ⋅ 𝒇

𝑭𝒊𝒋 = 𝒇𝒊𝜹𝒋𝒛

Nonlinear thermoelectric current：

Simultaneous Rotation of E and 𝜵𝑻

Current direction : unchanged

Switching of Either of  𝜵𝑻 or E

Current direction : Flipped



Result ②： Hydrodynamic description of electric current

How can we translate 𝒖 𝒓, 𝑡 into 𝒋 𝒓, 𝑡 ??

Generally,  “transport current ”  is given as

𝑴(𝒓) =෍

𝛼

න 𝑑𝑝 𝒎𝛼𝑓𝛼 +෍

𝛼

1

𝛽
න 𝑑𝒑

𝑒

ℏ
Ω𝛼 ⋅ log(1 + 𝑒−𝛽(𝜀𝛼−𝜇))

𝒎𝛼 𝒌 = −𝑖
𝑒

2ℏ
𝛁𝒌𝑢𝛼𝒌 × ෡𝐻 𝑘 − 𝜀𝛼 𝑘 𝛁𝒌𝑢𝛼𝒌 Orbital magnetic moment

Total magnetizationwhere...

Question

Di Xiao, et al., PRL 97, 026603 (2006). / N. R. Cooper, et al., PRB 55, 2344 (1997).

𝒋 𝒓, 𝑡 = −𝑒 ෍

𝛼

න 𝑑𝒑 ሶ𝒓𝑐,𝛼 𝑓𝛼 + 𝛁 × ෍

𝛼

න 𝑑𝑝 𝒎𝛼𝑓𝛼 − 𝛁 ×𝑴



Result ②： Hydrodynamic description of electric current

Generally,  “transport current ”  is given as

𝒋 𝒓, 𝑡 = −𝑒 ෍

𝛼

න 𝑑𝒑 ሶ𝒓𝑐,𝛼 𝑓𝛼 + 𝛁 × ෍

𝛼

න 𝑑𝑝 𝒎𝛼𝑓𝛼 − 𝛁 ×𝑴

𝑴(𝒓) =෍

𝛼

න 𝑑𝑝 𝒎𝛼𝑓𝛼 +෍

𝛼

1

𝛽
න 𝑑𝒑

𝑒

ℏ
Ω𝛼 ⋅ log(1 + 𝑒−𝛽(𝜀𝛼−𝜇))

𝒎𝛼 𝒌 = −𝑖
𝑒

2ℏ
𝛁𝒌𝑢𝛼𝒌 × ෡𝐻 𝑘 − 𝜀𝛼 𝑘 𝛁𝒌𝑢𝛼𝒌 Orbital magnetic moment

Total magnetization

Correction due to self-rotation of WP

where...

Magnetization current

Di Xiao, et al., PRL 97, 026603 (2006). / N. R. Cooper, et al., PRB 55, 2344 (1997).

How can we translate 𝒖 𝒓, 𝑡 into 𝒋 𝒓, 𝑡 ??Question



Result ②： Hydrodynamic description of electric current

Generally,  “transport current ”  is given as

𝒋 𝒓, 𝑡 = −𝑒 ෍

𝛼

න 𝑑𝒑 ሶ𝒓𝑐,𝛼 𝑓𝛼 + 𝛁 × ෍

𝛼

න 𝑑𝑝 𝒎𝛼𝑓𝛼 − 𝛁 ×𝑴

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

How can we translate 𝒖 𝒓, 𝑡 into 𝒋 𝒓, 𝑡 ??Question

𝑓𝛼 ≃ 𝑓0𝛼
𝑙𝑜𝑐𝑎𝑙



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Conventional relation under Galilean invariance



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Geometrical coefficients

𝐷𝑖𝑙
𝛼 ≡ −න 𝑑𝒑 Ω𝛼,𝑙

𝜕𝑓0𝛼
𝜕𝑝𝑖

, 𝐶𝑖𝑙
𝛼 ≡ න 𝑑𝒑 𝑝𝑖Ω𝛼,𝑙𝑓0𝛼 , 𝐹𝑖𝑙

𝛼 ≡ −න 𝑑𝒑 𝜀𝛼Ω𝛼,𝑙
𝜕𝑓0𝛼
𝜕𝑝𝑖



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Quantum Nonlinear Hall Effect

𝐶𝑖𝑙
𝛼 ≡ න 𝑑𝒑 𝑝𝑖Ω𝛼,𝑙𝑓0𝛼 , 𝐹𝑖𝑙

𝛼 ≡ −න 𝑑𝒑 𝜀𝛼Ω𝛼,𝑙
𝜕𝑓0𝛼
𝜕𝑝𝑖

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Quantum Nonlinear Hall Effect Generalized Vortical Effect

𝐹𝑖𝑙
𝛼 ≡ −න 𝑑𝒑 𝜀𝛼Ω𝛼,𝑙

𝜕𝑓0𝛼
𝜕𝑝𝑖

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous 
Thermal Hall effect

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ②： Hydrodynamic description of electric current

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous 
Thermal Hall effect

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ③： Quantum Nonlinear Hall effect

Assumption
①Apply a spatially uniform AC electric field : 𝑬 = Re ෩𝑬𝑒𝑖𝜔𝑡

② Consider the optical response up to the second order of 𝑬

The solution of Hydro. Eq.  

𝒖 𝑡 = Re −
𝑒𝜏𝑚𝑟

𝑚 1 + 𝑖𝜔𝜏𝑚𝑟

෩𝑬 𝑒𝑖𝜔𝑡

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ③： Quantum Nonlinear Hall effect

Assumption
①Apply a spatially uniform AC electric field : 𝑬 = Re ෩𝑬𝑒𝑖𝜔𝑡

② Consider the optical response up to the second order of 𝑬

𝒖 𝑡 = Re −
𝑒𝜏𝑚𝑟

𝑚 1 + 𝑖𝜔𝜏𝑚𝑟

෩𝑬 𝑒𝑖𝜔𝑡

𝑗𝑖 = 𝑅𝑒 𝑗𝑖
0 + 𝑗𝑖

𝜔𝑒𝑖𝜔t + 𝑗𝑖
2𝜔𝑒2𝑖𝜔t

𝑗𝑖
𝜔 = 𝜎 1 ෨𝐸𝑖 , 𝑗𝑖

0 = 𝜎𝑖𝑗𝑘
2 ෨𝐸𝑗 ෨𝐸𝑘

∗ 𝑗𝑖
2𝜔 = 𝜎𝑖𝑗𝑘

2 ෨𝐸𝑗 ෨𝐸𝑘

𝜎 1 =
𝜎𝐷

1 + 𝑖𝜔𝜏𝑚𝑟
𝜎𝑖𝑗𝑘

2
= 𝜖𝑖𝑙𝑘

𝑒3𝜏𝑚𝑟

2 1 + 𝑖𝜔𝜏𝑚𝑟
𝑫𝒋𝒍

The Drude conductivity Quantum Nonlinear Hall effect

Berry curvature dipole

The solution of Hydro. Eq.  

I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)



Result ③： Quantum Nonlinear Hall effect

𝜎𝑖𝑗𝑘
2
= 𝜖𝑖𝑙𝑘

𝑒3𝜏𝑚𝑟

2 1 + 𝑖𝜔𝜏𝑚𝑟
𝑫𝒋𝒍Quantum Nonlinear Hall effect :

Berry curvature dipole

𝑗𝑖
0 = 𝜎𝑖𝑗𝑘

2 ෨𝐸𝑗 ෨𝐸𝑘
∗

𝐷𝑗𝑙 ∝ 𝛿𝑗𝑥𝛿𝑙𝑧

𝑅𝑒 𝒋 𝟎 ∝
1

1/𝜏2 + 𝜔2 𝑖𝜔 𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗ ෝ𝒙 + 1/𝜏 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ ෝ𝒙 + 𝐸𝑥
2 ෝ𝒚

Circular Photogalvanic Linear Photogalvanic “Typical” Photogalvanic

・Maximal for circular polarization

・ Change the sign with helicity

・Allowed in chiral groups

・ Maximal for linear polarization

・ Change the sign with direction

・ Allowed in noncentrosymmetric materials

・ Independent on polarization

・ Not change the sign

e.g.)  2D systems : J. E. Moore and J. Orenstein, PRL 105, 026805 (2010)

mirror

BCD

x

y



Result ③： Quantum Nonlinear Hall effect

𝑅𝑒 𝒋 𝟎 ∝
1

1/𝜏2 + 𝜔2 𝑖𝜔 𝐸𝑥𝐸𝑦
∗ − 𝐸𝑦𝐸𝑥

∗ ෝ𝒙 + 1/𝜏 𝐸𝑥𝐸𝑦
∗ + 𝐸𝑦𝐸𝑥

∗ ෝ𝒙 + 𝐸𝑥
2 ෝ𝒚

Circular Photogalvanic

・Maximal for circular polarization

・ Change the sign with helicity

・Allowed in chiral groups

Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)

P
h

o
to

cu
rr

en
t

Photon polarization



Result ③： Quantum Nonlinear Hall effect

Shift of  the distribution 

by 1st order perturbation

equilibrium distribution Steady distribution under E

e e e e

Compensation of anomalous currents 

due to TR symmetry!!

Net anomalous currents emerge

by breaking of TR-symmetry!!

TR-symmetry

Quantum Nonlinear Hall effect  Anomalous Hall effect  

𝑬 × 𝛀𝐤

e



I. Sodemann and Liang Fu, PRL 115, 216806 (2015).
Su-Yang Xu, et al., Nat. Phys. 14, 900 (2018)

Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Quantum Nonlinear Hall Effect Generalized Vortical Effect Current-induced anomalous 
Thermal Hall effect



Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

≡ 𝝎 : vorticity
𝒖 𝒓

Generalized Vortical Effect

= velocity-gradient induced anomalous current

Realization of Chiral vortical effect in crystals!?



Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

An intuitive understanding

Taiki Yoda, Takehito Yokoyama, Shuichi Murakami,
Scientific Reports, 5, 12024 (2015)

Orbital Edelstein effect

Current  ⇒
Orbital Magnetization



Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

An intuitive understanding

Orbital Edelstein effect

Current  ⇒
Orbital Magnetization

Generalized vortical effect

nonuniform current

➡ nonuniform 𝑴 𝒓

➡ magnetization current



Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

3D system

𝐶𝑖𝑗 = 𝐶𝛿𝑖𝑗 𝐶𝑖𝑗 = 𝐶𝛿𝑖𝑥𝛿𝑗𝑧෠C = 𝑑𝑖𝑎𝑔(𝐶, 𝐶, −2𝐶)

2D system

𝜆𝑖𝑗 ≡ 𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖 /2 ∶ 𝑠𝑡𝑟𝑎𝑖𝑛 𝑟𝑎𝑡𝑒 𝑡𝑒𝑛𝑠𝑜𝑟



Result ④： Generalized Vortical Effect

𝒋(𝒓, 𝑡) = −𝑒𝑛𝒖 −
𝑒

ℏ
𝑚 𝑒𝑬 + 𝛁𝜇 × 𝑡෡𝐷𝒖 + 𝛁 × 𝑡 መ𝐶𝒖 + 𝑚

𝛁𝑇

𝑇
× (𝑡 ෠𝐹𝒖)

Hydrodynamic description of electric current 

Constraint beyond the symmetry consideration 

= (total monopole charge in k-space)   = 𝟎

Trace component of መ𝐶 is always zero even in chiral crystals!!

Here, we used the assumption of parabolic dispersion



Result ④：Asymmetric Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

𝒋𝑮𝑽𝑬 ∝ 𝝎

𝒖

Poiseuille flow



Result ④：Asymmetric Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

𝒋𝑮𝑽𝑬 ∝ 𝝎

Viscosity causes velocity gradient

⇒ Generalized vortical effect

𝒖

𝒖

Poiseuille flow



Result ④：Asymmetric Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

𝒋𝑮𝑽𝑬 ∝ 𝝎

𝒖

𝒖

Poiseuille flow

𝐽𝑦 = −𝑒𝑛𝑢𝑦 +
𝑒

ℏ
𝐶𝑧𝑦𝜔𝑧

𝐽𝑧 = −
𝑒

ℏ
𝐶𝑦𝑦𝜔𝑧

𝑢𝑦 𝑥 =
𝑒𝜏𝑚𝑟𝐸

𝑚
1 −

cosh 𝑥/𝑙

cosh 𝑤/2𝑙

The solution of Hydro. Eq.  



Result ④：Asymmetric Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

𝐽𝑧 = −
𝑒

ℏ
𝐶𝑦𝑦𝜔𝑧

width：50μmwidth：10μm

Localized on the surface



Result ④：Asymmetric Poiseuille flow

Application Asymmetric Poiseuille flow and Anomalous edge current

𝐽𝑦 = −𝑒𝑛𝑢𝑦 +
𝑒

ℏ
𝐶𝑧𝑦𝜔𝑧

width：50μmwidth：10μm



Result ⑤： Crystal symmetry and Realization

Geometrical coefficients መ𝐶, ෠𝐹, ෡𝐷

Asymmetric component

Symmetric component

Scalar component

𝐶𝑛, 𝐶𝑛𝑣

𝐶𝑛, 𝐷𝑛, 𝑇, 𝑂

𝐶𝑛, 𝐷𝑛, 𝑇, 𝑂, 𝐶1𝑣 , 𝐶2𝑣 , 𝑆4

3D systems

2D systems



Result ⑤： Crystal symmetry and Realization

3D systems

2D systems

e.g.) 2D systems

෡𝐷 → 𝑫, መ𝐶 → 𝑪, ෠𝐹 → 𝑭𝑨

These tensors become pseudo-vectors 
in the plane :

Perpendicular to the mirror line



Result ⑤： Crystal symmetry and Realization

3D systems

2D systems

e.g.) Bilayer Graphene

𝑫𝟑𝒉

Three mirror lines

𝑪𝒔

One mirror line

uniaxial strain

𝑨



Summary

Prediction of a variety of novel anomalous transport
Result 2

➢ Current-induced anomalous thermal Hall effect

➢ Generalized vortical effect, asymmetric Poiseuille flow, etc.

Formulation of the hydrodynamic theory 

for noncentrosymmetric hydrodynamic materials 
Result 1
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Parameters in some hydrodynamic materials

Materials 𝒗𝑭 [106m/s] 𝒍𝒎𝒄 [𝜇𝑚] 𝝉𝒎𝒄 [ps] 𝒍𝒎𝒓 [𝜇𝑚] 𝝉𝒎𝒓 [ps]

PdCoO2 7.5 2 2~3 20 20~30

Graphene ~1 [2.3] 0.1 - 0.3 0.1 – 0.3 <1 1

WP2 0.45 ~1 100 ~400

GaAs 0.33~0.41 1.4~2.8 3~5 (2~40K) 20~40 80~90

Materials 𝑻(𝑲) 𝝂 (𝒎𝟐/𝒔) 𝒏

PdCoO2 2.0 3.0 × 10−2くらい 2.45 × 1022𝑐𝑚−3

graphene 100~200 1.0 × 10−1

WP2 4(~20) 3.8 × 10−2 2.9 × 1021𝑐𝑚−3

GaAs 1.4(~50?) 1.2~3.0 × 10−1 6~9.1 × 1011𝑐𝑚−2



Nonlocal transport phenomena in Graphene

修士論文発表会

D. A. Bandurin et al, Science 351, 6277 (2016).



Observation of the Poiseuille flow in WP2

修士論文発表会J. Gooth, et al., Nat. Comm. 9 4093 (2018).



Question
How and Why are the hydro. regime 

different from the conventional regime ??



Question
How and Why are the hydro. regime 

different from the conventional regime ??

Hint

Continuity equation of electron Momentum



Continuity equation of Electron Momentum

𝜕𝑃𝑖
𝜕𝑡

+ ∇𝑗Π𝑖𝑗 = 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Driving force
Loss due to the 

translational symmetry breaking

Advection/Diffusion

General case :



Continuity equation of Electron Momentum

𝜕𝑃𝑖
𝜕𝑡

+ ∇𝑗Π𝑖𝑗 = 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Driving force
Loss due to the 

translational symmetry breaking

Advection/Diffusion

𝜕𝑃𝑖
𝜕𝑡

= 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Ohmic regime :

𝑙𝑚𝑟 ≪ 𝑙𝑚𝑐 ,𝑊 ✓ Friction is Dominant!! ⇒ Local transport

✓ Continuity eq. of 𝑷 =   Drude eq.

Loss  or friction

classify

General case :



Continuity equation of Electron Momentum

𝜕𝑃𝑖
𝜕𝑡

+ ∇𝑗Π𝑖𝑗 = 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Driving force
Loss due to the 

translational symmetry breaking

Advection/Diffusion

General case :

classify

𝜕𝑃𝑖
𝜕𝑡

= −∇𝑗Π𝑖𝑗 + 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Hydrodynamic regime :

𝑙𝑚𝑐 ≪ 𝑙𝑚𝑟 ,𝑊
Advection/Diffusion is important!! ⇒ Nonlocal transport

✓ Momentum flux can be expanded by gradient 𝛁 !!

Continuity eq. = Hydrodynamic equations

Advection/Diffusion



Continuity equation of Electron Momentum

𝜕𝑃𝑖
𝜕𝑡

= −∇𝑗Π𝑖𝑗 + 𝑞𝐸𝑖 −
𝑃𝑖
𝜏𝑚𝑟

Hydrodynamic regime :

𝒗 ⋅ 𝛁 𝒗 𝛁𝑃 𝜂𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑘𝑣𝑙

Nonlinear term P-gradient term Viscosity term

reversible irreversible



Continuity equation of Electron Momentum

Hydrodynamic regime :

𝒗 ⋅ 𝛁 𝒗 𝛁𝑃 𝜂𝑖𝑗𝑘𝑙𝜕𝑗𝜕𝑘𝑣𝑙

Nonlinear term P-gradient term Viscosity term

reversible irreversible

• Nonlinear response
• Instability
• Turbulence
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Continuity equation of Electron Momentum

Hydrodynamic regime :
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Continuity equation of Electron Momentum

Hydrodynamic regime :
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• Nonlinear response
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• Non-local linear response
• Finite size effect
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