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Introduction
and
Motivation



> Recently, there are exciting developments in
QCDs and its dualities.

[Aharony, Benini, Karch, Komargodski, Seiberg, Tong,...]

» For example,
[Komargodski, Seiberg (*17)]

SU(N), with N; termions

| 2| k| < Ny <N

U(N;/2 £ k) with N, scalars



)w/ some conditions ]

> In the phase of QCD3 w/ small m, the flavor
sym. is broken, which looks similar to QCDa.

» Moreover, the sym. breaking is described by
the Higgs phenomena in dual scalar theory.

mPp Dual theory of hadrons?



Dualities in 3d




[Peskin (‘78), Dasgupta, Halperin (‘81)]
> A simplest one is particle-vortex duality,

which is a duality between the Abelian-Higgs
model and the XY-model.



» The Abelian-Higgs model:
S =Jd3x<—i|f|2+|D¢|2—m2|¢|2—i|¢|4>
AH 42 p) .

- For |m| < e?, the theory is strongly coupled in IR.

* a global sym. U(1),,, acts on monopole op. as

U(1)yp : M(x) = e l(x).

* there are two phases depending on m.



» For m* > e*, the scalar is decoupled.

» U(1) gauge symmetry is unbroken
< Spontaneously broken U(1),,

< NG mode = photon

» The massive excitations that come from ¢
are logarithmically confined.

Gapless Coulomb phase
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» For m* < — ¢* the scalar condenses,

2

2__ "
P17 =——

» (1) gauge symmetry is spontaneously broken

< Unbroken U(1),,,

< Charged excitation = vortex

Gapped Higgs phase
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» The XY-model:

) U
SXY=[d3x(|a¢|2—m2|¢|2—5|¢|4.>

- a global symmetry U(1) acts on ¢ as
U(l): ¢ — e

* there are also two phases depending on 7.
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» For /m? > 0, the phase is gapped.

» The excitations ¢ are massive and carry the
charges under the unbroken global U(1).
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» For /> < 0, ¢ gets a VEV and the global U(1)
is broken.

» The NG mode is the angular component of ¢.

» A vortex and anti-vortex are logarithmically
confined.
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Particle-vortex duality

[Peskin (78), Dasgupta, Halperin (‘81)]

AH model

gauge vortex ¢ excitation

broken m*>0
phase —m2>o0

m* <0 unbroken

—* <0
¢ excitation global vortex

XY-model
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boson/fermion dualities
(3d bosonization)
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» In 3d, we can write the Chern-Simons term:

k
SCS — 4_77: Jd3x G'MU’OAIMOUAP,

where k€ 7.

» CS term is topological.

* CS term contributes to the statistical phase:

0/\0 = +ei7k o o
\



» conjecture: a bosonic theory with CS term
is described by a fermionic theory, e.g.,

U(1), with ¢ free v
1 2 4 — .
4 =—ada+ |D,p|" - || Z = oy
4
XY model U1)_ip with¥
>
Z=0pl*—|pl* Z = g,y

[Barkeshli, McGreevy (‘12), Wang, Senthil, (‘15), Metlitski, Vishwanath (’15),
Karch, Tong (‘16), Seiberg, Senthil, Wang, Witten ('16)]
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» For non-Abelian QCDs3,

Boson Fermion
N, < 2k

Uk+N;/2)_y withN, ¢ << SUN), with N, y

]\932(k—1)ifN=2,1\9§2k it N>2
SOk + N;/2)_y with N; ¢ = SON), with N, y

N < 2k
Sp(k + N;/2)_y with N; ¢ — Sp(N)with N, y

and their time-reversed versions.
[Aharony (‘15), Hsin, Seiberg (‘16), Aharony, Benini, Hsin, Seiberg ('16)]
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mw<0

y)
n%<0

SUN),w/ N; y

TQFT

N, <2k

TQFT

SUN)—n,12 SUN)in 12

£

£

v

Uk — N;/2)_y

Uk + N;12)_y W/ N; ¢
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v

Uk + N;/2)_y

mw>0

level-rank duality + level-rank duality =————

y)
m¢>0



N larger than 2k ??
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[Komargodski, Seiberg ("17)]

SU(N), w/ Ny y |21kl <N, <A N>2

TQFT TQFT

SUWN)-n,12 NLSM SUWN)iyn, 2

<0 AN 4 ..o
- |evel-rank duality H level-rank duality 9
. U(Ny) .

U(Nf/2 — k) U(N¢/2 + k) X UNy /2 = k) U(]\Gc/2 + k)_N
with NI

UN;/2 — K)y W/ N; ¢ UN;/2 + k)_y W/ Ny ¢

20



Tests of the conjectures

[Nguyen, Sudbo ('99), Kajantie, Laine, Neuhaus, Rajantie, Rummukainen ('04)]
» |lattice Monte Carlo simulation (for particle-vortex duality)

[Aharony (‘15)]
» large N analyses

» flux attachments |
[Karch, Tong ('16)]

> ~
fro m MIrror Sym m etry [Kachru, Mulligan, Torroba, Wang ('16)]

» 't Hooft anomaly matching
[Benini, Hsin, Seiberg (‘17), Komargodski, Seiberg (‘17), Cordova, Hsin, Seiberg ('17)]

» embedding in string theory and/or holography

[Jensen, Karch (“17), Armoni, Niarchos (‘17), Argurio, Bertolini, Bigazzi, Cotrone, Niro (‘18),
Aitken, Baumgartner, Karch (18), Akhond, Armoni, Speziali ("19)]
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toward hadron physics
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[Komargodski, Seiberg ("17)]

SU(N), w/ Ny y |21kl <N, <A N>2

TQFT TQFT

SUWN)-n,12 NLSM SUWN)iyn, 2

U

WL NOT chiral sym. breaking...

m, > 0

m, <0 »

W

UN;/2 — K)y W/ N; ¢ UN;/2 + k)_y W/ Ny ¢
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» We add the explicit breaking terms
gex —_ l/_/a3l//+ l/:/a3l/~1,
to SU(N)o with (N + N¢) fermions.

> The theory in the broken phase is described
by (U(N;) X UN)) UN;) -

mPp coincide with chiral symmetry breaking

24



[NK, Kitano, Yankielowicz, Yokokura (‘19)]

SUN) W/ 2N, w+ &

X

TQFT TQFT

SUN)_y, NLSM SUN)y,

U(N;) X U(Ny)
U,y UNp UN,)_x
with NT”

UNy)y W/ 2N, ¢ + L, UNp) -y W/ 2N; b+ Loy

25



QCD4

26



» We start with QCD4 on M, x S,

i | i
S = ——ZTI' |f| +
M;xS1 L

287

3

0(x;)

8772

Ny

Tr (f*) +i2‘i’i D, Y|,

=1

where the 6 winds around S1,

uSl

df = 2nk
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» We start with QCD4 on M, x S,

Ny -

] ,  0(x3) _
S = ———Tr + Tr(f2)+i Y V. D V.|,
| g () < i L
- =1

3

where the 6 winds around S1,

dl = 2rk = 272]\9.
.JSl
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Effective theory
for small and large radius
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» For small radius, A,R < 1, we can perform
the KK decomposition.

» From the 6-term, we find the CS term,

1 1 2
_2[ OTr(ff) = —ZJ Tr <ada + —a3> df, mod 2r.
871' M3><Sl 87[ M3><Sl 3

» There is a mass gap, but the low energy limit
is the CS theory, SU(N)Nf :
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» For large radius, A,R > 1, the low effective
theory is given by

2 2
m;f: | 2
Seff=J d*x |f2Tr|0,,U|* — ! log(e"edetU)‘ 1 oo ||
M;xS! i Ny

where U = exp(iz®T* + in) .
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» The EoM for nis

0° , 0
_;7 = m S — .
8)632 4 Nf

mP the n gets a winding,

n(x; + 2zR) = n(x;) + 2.
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» Under the background where the n has
winding, the 4d WZW term which couple to
the external gauge fields includes 3d WZ term,

N | 2
Tr (AdA + —A3) an .
M;xS! 3

Swzw 2

82
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4d on S1
QCDa4 on S1

SU(N)Nf
CS thy

1/R

phase tr. at
somewhere

U(N)) x U(N))
U(N;)

with NI’
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4d on S1
QCDa4 on S1

SU(N)Nf
CS thy

1/R

phase tr. at
somewhere

U(N)) x U(N))
U(N;)

with NT'

3dw/ Z_,
QCDs3
My
U(N;)_n SUN)y,
CS thy CS thy
U(N;)_n 2nd order
wl 2N, ¢ phase tr.
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UN,) x UN;)

U(N,)
with NT'



4d on S1 3dw/ &,

QCDa4 on 51 QCDs3
1/R My
SUWN)y,
CS thy UNp) -y UN,)_y SUWN)y,
¢S thy CS thy CS thy
UWN
phase tr. at (Np)_n 2nd order
somewhere 4\ wl 2Ny ¢ phase tr.
' 2272
dual U(Nf) picture??* UV,) x U
U(N;) X U(Ny) U(N;)
V) with NT

with NT'
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» The extension of the chiral Lagrangian to U(N¥)
gauge theory is known to give a great success
to describe the phenomenology of the vector
mesons p and w. [Bando, Kugo Uehara, Yamawaki, Yanagida (‘85)]

candidates for U(Nf) gauge boson
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» At large radius, AyR > 1,

p and w

mass
spectrum

massless pions
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» Close to critical radius, AjR ~ 1,

KK modes

p and w

Mass

spectrum
massless pions

and scalar mesons

Form U(N;) gauge theory
with 2N, scalars
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» At small radius, AyR < 1,

KK modes

mass
spectrum

gapped

p and w
U(N;)_y CS theory

(chiral sym. is restored)
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Holographic model



The quiver diagram of our model

[NK, Kitano, Yankielowicz, Yokokura ('19)]

U(Ny)L
© : U(Nf) gauge field

. —— : bifund. link field
o |
...... f'l\y | : fund. chiral fermion
" \%HR@\

~. :fermion mass term
U(Ny¢)r

> For (H; ) # 0, describing 7 's and 7.

> When (H, z) =0, the model becomes U(N,)_y .
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Summary

In QCDa4 with winding 0, there is a phase
transition between the large and small radius.

We conjectured the dual U(Nf) description near
the critical pt from 3d duality, and suggested
the new picture of hadrons!!!

We proposed the holographic model of
the dual theory that realizes our picture.
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Conventions

» Dynamical gauge fields are given by lowercase
letters a,b,...;A,B, ... representnon-
dynamical fields.

» We represent the Lagrangian of QED with
a CS term as

1 are
L = —— [, " + iy*(0, — ia )y — mjry + —

prp
22 . € aﬂayap

k
= iylD,y + Z‘Ze ada,

where k,, . € 7.
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» When |m| > ¢°, we can integrate out a
fermion, and this shifts the bare CS level by
sgn(m)/2.

» In addition, the theory is regularized to preserve
gauge invariance with a Pauli-Villars regulator,
which shifts the bare CS level by —1/2.
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» For this reason, we define the CS level k as

k = kbare - ]\5‘/2’

where N, is the number of the fermions.

» For example, QED withk, =0

Z = wyl,y

is expressed as U(1)_,, +y .
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» When the fermions have masses and they are
integrated out, the CS level in the low energy
theory is

» Our labeling of theories with non-Abelian
gauge groups is analogous.
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The Lagrangian of the model

P — -(L)O},ﬂ(a iA /EL)) qu(L)O + iZ](R)O}/”(OM —jA /SR)) qu(R)O

np, np
4 Z ié(L)iy”(aﬂ _ ib/ftL)i)q(L)i 4 Z l’q(R)i},ﬂ(aﬂ _ ib'b(lR)i)q(R)i

i=1 i=1
1R
_ Z (L)2 Tr( f(L)z f(L)i,ul/) Z 2g o Tr( f(R)z f(R)i,m/)
l
n—1
+Tr|0,UY — iAlDUL +iyDp DT |2 + Z Tr| 0,0, - ib®U® +iU®), pLi+1 |2
-

+Tr| 0, UK — i UR + ig®AR | + ZTrla U = ib UL+ iU B
=1l

+Tr|0,® — ib""® + idb V"% |

. (L)i+1 5 (L)z+1 (L)‘( (L)z (R) —(R)z (R)T (R)i+1
Z ll+1 Ull+1 Z ml+1l l+1 P L4 +h Y



